

CMPSCI 670: Computer Vision Blob detection

University of Massachusetts, Amherst October 1, 2014

Instructor: Subhransu Maji

Blob detection

Feature detection with scale selection

 We want to extract features with characteristic scale that is covariant with the image transformation such as scaling and translation

Matching regions across scales

Source: L. Lazebnik 3

Recall: invariance and covariance

Invariance

- The property should not change when the input is transformed
- For e.g., an *intensity invariant* corner detector finds the same corners even if the intensity of the image is changed

Covariance

- The property should be transformed according to the image transformation
- For e.g., a *translation covariant* corner detector finds the same corners translated by the amount the image is translated

Scaling

All points will be classified as edges

Corner location is not covariant to scaling!

Blob detection: Basic idea

- To detect blobs, convolve the image with a "blob filter" at multiple scales and look for extrema of filter response in the resulting *scale space*
- This will give us a scale and space covariant detector

Blob detection: Basic idea

Find maxima and minima of blob filter response in space and scale

Blob filter

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

Recall: Edge detection

Edge detection, take 2

From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

Scale selection

- We want to find the characteristic scale of the blob by convolving it with Laplacians at several scales and looking for the maximum response
- However, Laplacian response decays as scale increases:

Scale normalization

• The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases

Scale normalization

- The response of a derivative of Gaussian filter to a perfect step edge decreases as σ increases
- To keep response the same (scale-invariant), must multiply Gaussian derivative by σ
- Laplacian is the second Gaussian derivative, so it must be multiplied by σ^2

Effect of scale normalization

Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale-normalized:

$$\nabla_{\text{norm}}^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$

Scale selection

• At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?

image

Laplacian

Scale selection

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- The Laplacian is given by (up to scale):

$$(x^{2} + y^{2} - 2\sigma^{2}) e^{-(x^{2} + y^{2})/2\sigma^{2}}$$

• Therefore, the maximum response occurs at

 $\sigma = r/\sqrt{2}$.

Characteristic scale

 We define the characteristic scale of a blob as the scale that produces peak of Laplacian response in the blob center

Source: L. Lazebnik 19

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scalespace

Scale-space blob detector: Example

Efficient implementation

 Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

(Laplacian)
$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)
$$(x^{2} + y^{2} - 2\sigma^{2}) e^{-(x^{2} + y^{2})/2\sigma^{2}}$$

Is the Laplacian separable?

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

From feature detection to description

- Scaled and rotated versions of the same neighborhood will give rise to blobs that are related by the same transformation
- What to do if we want to compare the appearance of these image regions?
 - Normalization: transform these regions into same-size circles
 - Problem: rotational ambiguity

Eliminating rotation ambiguity

- To assign a unique orientation to circular image windows:
- Create histogram of local gradient directions in the patch
- Assign canonical orientation at peak of smoothed histogram

SIFT features

 Detected features with characteristic scales and orientations:

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Source: L. Lazebnik 29

From feature detection to description

Detection is *covariant*:

features(transform(image)) = transform(features(image))

Description is *invariant*:

features(transform(image)) = features(image)

SIFT descriptors

David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Source: L. Lazebnik 31

Properties of SIFT

Extraordinarily robust detection and description technique

- Can handle changes in viewpoint
 - Up to about 60 degree out-of-plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night
- Fast and efficient—can run in real time
- Lots of code available

Affine adaptation

• Affine transformation approximates viewpoint changes for roughly planar objects and roughly orthographic cameras

Affine adaptation

Consider the second moment matrix of the window containing the blob:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

This ellipse visualizes the "characteristic shape" of the window

Source: L. Lazebnik 34

Affine adaptation example

Scale-invariant regions (blobs)

Affine adaptation example

Affine-adapted blobs

Further readings and thoughts ...

- More about scale-space
 - T. Lindeberg, <u>Scale-space theory: A basic tool for analyzing</u> <u>structures at different scales</u>, Journal of Applied Statistics, 1994
- SIFT descriptor in detail
 - David G. Lowe, <u>Distinctive Image Features from Scale-</u> <u>Invariant Keypoints</u>, IJCV 2004
- How good are local point detectors and descriptors?
 - K. Mikolajczyk, C. Schmid, <u>A performance evaluation of local</u> <u>descriptors</u>, IEEE PAMI 2005
- Chapter 4, R. Szeliski's book