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Blob detection

2Source: L. Lazebnik



• We want to extract features with characteristic scale that is 
covariant with the image transformation such as scaling 
and translation

Feature detection with scale selection
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Matching regions across scales

Source: L. Lazebnik



Invariance!
• The property should not 

change when the input is 
transformed 

• For e.g., an intensity 
invariant corner detector 
finds the same corners 
even if the intensity of the 
image is changed

Recall: invariance and covariance
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Covariance!
• The property should be 

transformed according to 
the image transformation 

• For e.g., a translation 
covariant corner detector 
finds the same corners 
translated by the amount 
the image is translated 



Scaling

5

All points will be 
classified as 
edges

Corner

Corner location is not covariant to scaling!
Source: L. Lazebnik



• To detect blobs, convolve the image with a “blob filter” at 
multiple scales and look for extrema of filter response in 
the resulting scale space 

• This will give us a scale and space covariant detector

Blob detection: Basic idea
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Find maxima and minima of blob filter response in space 
and scale

Blob detection: Basic idea
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Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D

Blob filter
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Recall: Edge detection

9

g
dx
d

f ∗

f

g
dx
d

Edge

Derivative 
of Gaussian

Edge = maximum 
of derivative

Source: S. Seitz



Edge detection, take 2
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• Edge = ripple 
• Blob = superposition of two ripples

From edges to blobs
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Spatial selection: the magnitude of the Laplacian 
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is 
“matched” to the scale of the blob

maximum

Source: L. Lazebnik



• We want to find the characteristic scale of the blob by 
convolving it with Laplacians at several scales and looking 
for the maximum response 

• However, Laplacian response decays as scale increases:

Scale selection
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increasing σoriginal signal 
(radius=8)

Source: L. Lazebnik



• The response of a derivative of Gaussian filter to a perfect 
step edge decreases as σ increases

Scale normalization
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Source: L. Lazebnik



• The response of a derivative of Gaussian filter to a perfect 
step edge decreases as σ increases 

• To keep response the same (scale-invariant), must multiply 
Gaussian derivative by σ 

• Laplacian is the second Gaussian derivative, so it must be 
multiplied by σ2

Scale normalization
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Effect of scale normalization
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Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum
Source: L. Lazebnik



Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D

Blob detection in 2D
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• At what scale does the Laplacian achieve a maximum 
response to a binary circle of radius r?

Scale selection
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r

image Laplacian
Source: L. Lazebnik



• At what scale does the Laplacian achieve a maximum 
response to a binary circle of radius r? 

• To get maximum response, the zeros of the Laplacian have to 
be aligned with the circle 

• The Laplacian is given by (up to scale):  
 

• Therefore, the maximum response occurs at 

Scale selection
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• We define the characteristic scale of a blob as the scale 
that produces peak of Laplacian response in the blob 
center

Characteristic scale
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characteristic scale
T. Lindeberg (1998). "Feature detection with automatic scale 
selection." International Journal of Computer Vision 30 (2): pp 77--116. 

Source: L. Lazebnik

http://www.nada.kth.se/cvap/abstracts/cvap198.html


1. Convolve image with scale-normalized Laplacian at 
several scales

Scale-space blob detector
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Scale-space blob detector: Example
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Scale-space blob detector: Example
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1. Convolve image with scale-normalized Laplacian at 
several scales 

2. Find maxima of squared Laplacian response in scale-
space

Scale-space blob detector
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Scale-space blob detector: Example
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• Approximating the Laplacian with a difference of 
Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian)

(Difference of Gaussians)

Efficient implementation

25Source: L. Lazebnik

Is the Laplacian separable?
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Efficient implementation
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David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


• Scaled and rotated versions of the same neighborhood will 
give rise to blobs that are related by the same transformation 

• What to do if we want to compare the appearance of these 
image regions? 

• Normalization: transform these regions into same-size 
circles 

• Problem: rotational ambiguity

From feature detection to description
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• To assign a unique orientation to circular image windows: 
• Create histogram of local gradient directions in the patch 
• Assign canonical orientation at peak of smoothed histogram

Eliminating rotation ambiguity
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0 2 π

Source: L. Lazebnik



• Detected features with characteristic scales and 
orientations:

SIFT features
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David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Source: L. Lazebnik

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Detection is covariant: 
 features(transform(image)) = transform(features(image)) 

Description is invariant: 
 features(transform(image)) = features(image) 

From feature detection to description
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SIFT descriptors
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David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Source: L. Lazebnik

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Extraordinarily robust detection and description technique 
• Can handle changes in viewpoint 

- Up to about 60 degree out-of-plane rotation 
• Can handle significant changes in illumination 

- Sometimes even day vs. night 
• Fast and efficient—can run in real time 
• Lots of code available

Properties of SIFT

32Source: N. Snavely



• Affine transformation approximates viewpoint changes for 
roughly planar objects and roughly orthographic cameras

Affine adaptation
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Affine adaptation
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This ellipse visualizes the “characteristic shape” of the 
window Source: L. Lazebnik



Affine adaptation example
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Scale-invariant regions (blobs)

Source: L. Lazebnik



Affine adaptation example
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Affine-adapted blobs

Source: L. Lazebnik



• More about scale-space 
• T. Lindeberg, Scale-space theory: A basic tool for analyzing 

structures at different scales, Journal of Applied Statistics, 
1994 

• SIFT descriptor in detail 
• David G. Lowe, Distinctive Image Features from Scale-

Invariant Keypoints, IJCV 2004  

• How good are local point detectors and descriptors? 
• K. Mikolajczyk, C. Schmid, A performance evaluation of local 

descriptors, IEEE PAMI 2005 

• Chapter 4, R. Szeliski’s book

Further readings and thoughts …
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ftp://ftp.nada.kth.se/CVAP/scsp/papers/scsptheory-review.jas94.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://hal.inria.fr/docs/00/54/85/29/PDF/mikolajczyk_pami05.pdf

