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• Homework 2 code.zip had a bug (or two) 
• Download the latest code.zip from the homework 2 page 
• For those of who who already started: 

- The bugs were in the evalCode.m, function calls had the wrong syntax 
and a variable (integrationMethod) was not defined 

• Get started with the homework! 
• Office hours on Wednesday after class in case you have 

questions

Administrivia 
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Feature extraction: Corners
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9300 Harris Corners Pkwy, Charlotte, NC

Slide credit: L. Lazebnik



• Motivation: panorama stitching 
• We have two images – how do we combine them?

Why extract features?

4Slide credit: L. Lazebnik



• Motivation: panorama stitching 
• We have two images – how do we combine them?

Why extract features?
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Step 1: extract features
Step 2: match features

Slide credit: L. Lazebnik



• Motivation: panorama stitching 
• We have two images – how do we combine them?

Why extract features?
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Step 1: extract features
Step 2: match features
Step 3: align images

Slide credit: L. Lazebnik



• Repeatability 
• The same feature can be found in several images despite geometric and photometric 

transformations  
• Saliency 

• Each feature is distinctive 
• Compactness and efficiency 

• Many fewer features than image pixels 
• Locality 

• A feature occupies a relatively small area of the image; robust to clutter and occlusion

Characteristics of good features

7Slide credit: L. Lazebnik



Feature points are used for: 
• Image alignment  
• 3D reconstruction 
• Motion tracking 
• Robot navigation 
• Indexing and database retrieval 
• Object recognition

Applications  

8Slide credit: L. Lazebnik



A hard feature matching problem
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NASA Mars Rover images



NASA Mars Rover images 
with SIFT feature matches 
Figure by Noah Snavely

Answer below (look for tiny colored squares…)
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• We should easily recognize the corners by looking through 
a small window 

• Shifting a window in any direction should give a large 
change in intensity at a corner

Corner Detection: Basic Idea
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“edge”: 
no change along 
the edge 
direction

“corner”: 
significant 
change in all 
directions

“flat” region: 
no change in 
all directions



Corner Detection: Mathematics
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Change in appearance of window W for the shift [u,v]:

E(3,2)

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

I(x, y)
E(u, v)



Corner Detection: Mathematics
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E(0,0)

Change in appearance of window W for the shift [u,v]:

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

I(x, y)
E(u, v)



Corner Detection: Mathematics
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We want to find out how this function behaves for 
small shifts

Change in appearance of window W for the shift [u,v]:

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

E(u, v)



• First-order Taylor approximation for small motions [u, v]: 
!

!

• Let’s plug this into E(u,v)

Corner Detection: Mathematics
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Corner Detection: Mathematics
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The quadratic approximation can be written as

where M is a second moment matrix computed from image 
derivatives:
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(the sums are over all the pixels in the window W)



• The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape. 

• Specifically, in which directions  
does it have the smallest/greatest 
change?

Interpreting the second moment matrix
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First, consider the axis-aligned case 
(gradients are either horizontal or vertical)

If either a or b is close to 0, then this is not a corner, so 
look for locations where both are large.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix
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This is the equation of an ellipse.
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Interpreting the second moment matrix
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This is the equation of an ellipse.
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0
0
λ

λ

The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R 

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Diagonalization of M:



Visualization of second moment matrices
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Visualization of second moment matrices
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Interpreting the eigenvalues
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λ1

λ2

“Corner” 
λ1 and λ2 are large,  
 λ1 ~ λ2; 
E increases in all 
directions

λ1 and λ2 are small;  
E is almost constant 
in all directions

“Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of M:



Corner response function
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“Corner” 
R > 0

“Edge”  
R < 0

“Edge”  
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR
α: constant (0.04 to 0.06)

λ2

λ1



1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a Gaussian window 

around each pixel: 

The Harris corner detector

25

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  
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http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf


1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a Gaussian window 

around each pixel  
3. Compute corner response function R

The Harris corner detector
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C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector: Steps
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Harris Detector: Steps
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Compute corner response R



1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a Gaussian window 

around each pixel  
3. Compute corner response function R 

4. Threshold R	


5. Find local maxima of response function (non-maximum 

suppression)

The Harris corner detector

29

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf
http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector: Steps
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Find points with large corner response: R > threshold



Harris Detector: Steps
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Take only the points of local maxima of R



Harris Detector: Steps
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• We want corner locations to be invariant to photometric 
transformations and covariant to geometric transformations 
• Invariance: image is transformed and corner locations do not change 
• Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations

Invariance and covariance
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Affine intensity change
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•   Only derivatives are used => 
invariance to intensity shift I → I + b

•   Intensity scaling: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I → a I + b



Image translation

35

•  Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation



Image rotation
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Second moment ellipse rotates but its shape (i.e. 
eigenvalues) remains the same

Corner location is covariant w.r.t. rotation



Scaling
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All points will be 
classified as 
edges

Corner

Corner location is not covariant to scaling!



• Original corner detector paper 
• C.Harris and M.Stephens, “A Combined Corner and Edge Detector.” 

Proceedings of the 4th Alvey Vision Conference,1988 

• Other corner functions!
• Can you think of other                        that work for finding corners? 

• How can we make the Harris corner detector scale 
covariant?

Further thoughts and readings…
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