CMPSCI 670: Computer Vision Corner detection

University of Massachusetts, Amherst September 29, 2014

Instructor: Subhransu Maji

Administrivia

- Homework 2 code.zip had a bug (or two)
 - Download the latest code.zip from the homework 2 page
 - For those of who who already started:
 - The bugs were in the evalCode.m, function calls had the wrong syntax and a variable (integrationMethod) was not defined
- Get started with the homework!
- Office hours on Wednesday after class in case you have questions

Feature extraction: Corners

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract featuresStep 2: match featuresStep 3: align images

Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Applications

Feature points are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval
- Object recognition

A hard feature matching problem

NASA Mars Rover images

Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Corner Detection: Basic Idea

- We should easily recognize the corners by looking through a small window
- Shifting a window in *any direction* should give *a large change* in intensity at a corner

"flat" region: no change in all directions

"edge": no change along the edge direction "corner": significant change in all directions

Change in appearance of window *W* for the shift [*u*,*v*]:

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

Change in appearance of window *W* for the shift [*u*,*v*]:

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

Change in appearance of window W for the shift [u,v]:

$$E(u, v) = \sum_{(x,y)\in W} \left[I(x+u, y+v) - I(x, y) \right]^2$$

We want to find out how this function behaves for small shifts

• First-order Taylor approximation for small motions [*u*, *v*]:

$$I(x + u, y + v) = I(x, y) + I_x u + I_y v$$

• Let's plug this into *E*(*u*,*v*)

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

$$\simeq \sum_{(x,y)\in W} [I(x,y) + I_x u + I_y v - I(x,y)]^2$$

$$= \sum_{(x,y)\in W} [I_x u + I_y v]^2$$

$$= \sum_{(x,y)\in W} [I_x^2 u^2 + I_x I_y u v + I_y I_x u v + I_y^2 v]^2$$

The quadratic approximation can be written as

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a second moment matrix computed from image derivatives:

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

(the sums are over all the pixels in the window W)

- The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.
 - Specifically, in which directions does it have the smallest/greatest change?

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

First, consider the axis-aligned case (gradients are either horizontal or vertical)

If either *a* or *b* is close to 0, then this is **not** a corner, so look for locations where both are large.

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{vmatrix} u \\ v \end{vmatrix} = \text{const}$

This is the equation of an ellipse.

Diagonalization of M:
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

Corner response function

$$R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

 α : constant (0.04 to 0.06)

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel:

$$M = \begin{bmatrix} \sum_{x,y} w(x,y) I_x^2 & \sum_{x,y} w(x,y) I_x I_y \\ \sum_{x,y} w(x,y) I_x I_y & \sum_{x,y} w(x,y) I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function R

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Compute corner response *R*

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function R
- 4. Threshold R
- 5. Find local maxima of response function (non-maximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Find points with large corner response: *R* > threshold

Take only the points of local maxima of R

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

Partially invariant to affine intensity change

Image translation

Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

All points will be classified as edges

Corner location is not covariant to scaling!

Further thoughts and readings...

- Original corner detector paper
 - C.Harris and M.Stephens, <u>"A Combined Corner and Edge Detector.</u>" Proceedings of the 4th Alvey Vision Conference, 1988
- Other corner functions
 - Can you think of other $f(\lambda_1,\lambda_2)$ that work for finding corners?
- How can we make the Harris corner detector scale covariant?