
CMPSCI 670: Computer Vision!
Linear filtering cont., Edge detection
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• Homework 2 is up (due October 6 before class starts) 
• Photometric stereo 

!

!

!

!

!

!
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• Office hours this week (today tomorrow) Th 3:45-4:45, CS274 

Administrivia
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Joys of computer vision research
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http://xkcd.com/1425/

http://xkcd.com/1425/


• How can we reduce noise in a photograph?

Motivation: Image de-noising
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• Let’s replace each pixel with a weighted average of its 
neighborhood 

• The weights are called the filter kernel 

• What are the weights for the average of a 3x3 
neighborhood?

Moving average
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“box filter”

Source: D. Lowe



Gaussian vs. box filtering
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• A median filter operates over a window by selecting the 
median intensity in the window  
 
 
 
 
 
 

Alternative idea: Median filtering
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•   Is median filtering linear?
Source: K. Grauman



• What advantage does median filtering have over Gaussian 
filtering? 
• Robustness to outliers

Median filter

8Source: K. Grauman



MATLAB: medfilt2(image, [h w])

Salt-and-pepper noise Median filtered

Source: M. Hebert

Median filter
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Gaussian vs. median filtering
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3x3 5x5 7x7

Gaussian

Median



Sharpening revisited

11Source: D. Lowe



What does blurring take away?

Sharpening revisited
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original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+ α



Unsharp mask filter
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A. Oliva, A. Torralba, P.G. Schyns,  
“Hybrid Images,” SIGGRAPH 2006

Application: Hybrid Images
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Gaussian Filter

Laplacian Filter

http://cvcl.mit.edu/hybridimage.htm
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motorcycle and bicycle



17

dolphin and car



Edge detection
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Winter in Kraków photographed by Marcin Ryczek

http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html
http://www.likecool.com/Winter_in_Krak_w_photographed_by_Marcin_Ryczek--Pic--Gear.html


• Goal:  Identify sudden changes 
(discontinuities) in an image 
• Intuitively, most semantic and shape 

information from the image can be 
encoded in the edges 

• More compact than pixels  

• Ideal: artist’s line drawing (but 
artist is also using object-level 
knowledge)

Edge detection

19Source: D. Lowe



Edges are caused by a variety of factors:

Origin of edges
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depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz



• An edge is a place of rapid change in the image intensity 
function

Edge detection
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image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative



For 2D function f(x,y), the partial derivative is: 
!

!

!
!

For discrete data, we can approximate using finite differences: 
!

!

!

To implement the above as convolution, what would be  
the associated filter?

Derivatives with convolution
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Partial derivatives of an image
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Which one shows changes with respect to x?

-1     
1

1     
-1or-1    1

x
yxf

∂

∂ ),(
y
yxf

∂

∂ ),(



Other approximations of derivative filters exist:

Finite difference filters

24Source: K. Grauman



The gradient points in the direction of most rapid increase 
in intensity 
 
 

The gradient of an image:  
!

!

 

Image gradient
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The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?



Consider a single row or column of the image

Effects of noise
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Where is the edge?
Source: S. Seitz



Solution: smooth first

27

• To find edges, look for peaks in )( gf
dx
d
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Source: S. Seitz



• Differentiation is convolution, and convolution is associative:  

!

• This saves us one operation:

g
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d

fgf
dx
d

∗=∗ )(

Derivative theorem of convolution
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Which one finds horizontal/vertical edges?

Derivative of Gaussian filters
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x-direction y-direction



Are these filters separable?

Derivative of Gaussian filters
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x-direction y-direction



Recall: Separability of the Gaussian filter

31Source: D. Lowe



Smoothed derivative removes noise, but blurs edge. Also 
finds edges at different “scales”

1 pixel 3 pixels 7 pixels

Scale of Gaussian derivative filter

32Source: D. Forsyth



Smoothing filters 
• Gaussian: remove “high-frequency” components;  

“low-pass” filter 
• Can the values of a smoothing filter be negative? 
• What should the values sum to? 

- One: constant regions are not affected by the filter 
!

 

Derivative filters 
• Derivatives of Gaussian 
• Can the values of a derivative filter be negative? 
• What should the values sum to?  

- Zero: no response in constant regions 
• High absolute value at points of high contrast

Review: Smoothing vs. derivative filters
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1. Filter image with derivative of Gaussian  
2. Find magnitude and orientation of gradient 
3. Non-maximum suppression: 

• Thin wide “ridges” down to single pixel width 
4. Linking and thresholding (hysteresis): 

• Define two thresholds: low and high 
• Use the high threshold to start edge curves and the low 

threshold to continue them  
MATLAB:   edge(image, ‘canny’);

The Canny edge detector
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J. Canny, A Computational Approach To Edge Detection, IEEE Trans. 
Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

http://www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf


original image

The Canny edge detector

35Slide credit: Steve Seitz



The Canny edge detector
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norm of the gradient



The Canny edge detector
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thresholding



The Canny edge detector
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thresholding

How to turn 
these thick 
regions of 
the gradient 
into curves?



Check if pixel is local maximum along gradient direction, 
select single max across width of the edge 
• requires checking interpolated pixels p and r

Non-maximum suppression
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The Canny edge detector
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thinning 
(non-maximum suppression)

Problem: 
pixels along 
this edge 
didn’t survive 
the 
thresholding



Use a high threshold to start edge curves, and a low 
threshold to continue them.

Hysteresis thresholding

41Source: Steve Seitz



Hysteresis thresholding
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original image

high threshold 
(strong edges)

low threshold 
(weak edges)

hysteresis threshold

Source: L. Fei-Fei



1. Compute x and y gradient images  
2. Find magnitude and orientation of gradient 
3. Non-maximum suppression: 

• Thin wide “ridges” down to single pixel width 
4. Linking and thresholding (hysteresis): 

• Define two thresholds: low and high 
• Use the high threshold to start edge curves and the low 

threshold to continue them  
MATLAB:   edge(image, ‘canny’);

Recap: Canny edge detector
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J. Canny, A Computational Approach To Edge Detection, IEEE Trans. 
Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

http://www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf


• Hybrid images project 
• http://cvcl.mit.edu/hybridimage.htm 

• Canny edge detector 
• www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf 

• Bilateral filtering for image denoising (and other application) 
• http://people.csail.mit.edu/sparis/bf_course/ 

!

!

!

• If all else fails www.xkcd.com

Further thoughts and readings …
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http://cvcl.mit.edu/hybridimage.htm
http://www.limsi.fr/Individu/vezien/PAPIERS_ACS/canny1986.pdf
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