CMPSCI 670: Computer Vision Linear filtering

University of Massachusetts, Amherst September 22, 2014

Instructor: Subhransu Maji

Slides credit: L. Lazebnik and others

Today

• Administrivia:

- Anyone had problems with submitting homework via edlab should email their homework to me (<u>smaji@cs.umass.edu</u>)
- Late submission policy
 - Everyone has two late days for the entire semester. Beyond that you lose 15% of the homework per day.
- Office hours this week: Thursday 3:45 4:45, CS 274
- Today's lecture
 - Conclude photometric stereo, aka, shape from shading
 - Linear filtering

Diffuse reflection: Lambert's law

 $B = \rho(\mathbf{N} \cdot \mathbf{S})$ $= \rho \|\mathbf{S}\| \cos \theta$

B: radiosity (total power leaving the surface per unit area)
ρ: albedo (fraction of incident irradiance reflected by the surface)
N: unit normal
S: source vector (magnitude proportional to intensity of the source)

Photometric stereo (shape from shading)

 Can we reconstruct the shape of an object based on shading cues?

Luca della Robbia, *Cantoria*, 1438

Photometric stereo

Assume:

- A Lambertian object
- A *local shading model* (each point on a surface receives light only from sources visible at that point)
- A set of *known* light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- Orthographic projection

Goal: reconstruct object shape and albedo

Surface model: Monge patch

Image model

- **Known:** source vectors S_j and pixel values $I_j(x,y)$
- **Unknown:** surface normal N(x,y) and albedo $\rho(x,y)$
- Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$I_{j}(x, y) = k \rho(x, y) (\mathbf{N}(x, y) \cdot \mathbf{S}_{j})$$
$$= (\rho(x, y) \mathbf{N}(x, y)) \cdot (k\mathbf{S}_{j})$$
$$= \mathbf{g}(x, y) \cdot \mathbf{V}_{j}$$

Least squares problem

• For each pixel, set up a linear system:

$$\begin{bmatrix} I_1(x, y) \\ I_2(x, y) \\ \vdots \\ I_n(x, y) \end{bmatrix} = \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \\ \vdots \\ \mathbf{V}_n^T \\ \mathbf{V}_n^T \end{bmatrix} \mathbf{g}(x, y)$$
$$\begin{vmatrix} & & & \\$$

- Obtain least-squares solution for g(x,y) (which we defined as $N(x,y) \rho(x,y)$)
- Since N(x,y) is the unit normal, $\rho(x,y)$ is given by the magnitude of g(x,y)
- Finally, $N(x,y) = g(x,y) / \rho(x,y)$

Example

Recovered albedo

Recovered normal field

9

Recovering a surface from normals

Recall the surface is written as

$$(x, y, f(x, y))$$

This means the normal has the form:

If we write the estimated vector *g* as

$$\mathbf{g}(x, y) = \begin{pmatrix} g_1(x, y) \\ g_2(x, y) \\ g_3(x, y) \end{pmatrix}$$

Then we obtain values for the partial derivatives of the surface:

$$f_x(x, y) = \frac{g_1(x, y)}{g_3(x, y)}$$
$$f_y(x, y) = \frac{g_2(x, y)}{g_3(x, y)}$$

Recovering a surface from normals

Integrability: for the surface *f* to exist, the mixed second partial derivatives must be equal:

$$\frac{\partial}{\partial y}(g_1(x,y)/g_3(x,y)) =$$

$$\frac{\partial}{\partial x}(g_2(x,y)/g_3(x,y))$$

(in practice, they should at least be similar) We can now recover the surface height at any point by integration along some path, e.g.

$$f(x, y) = \int_{0}^{x} f_x(s, y) ds + \int_{0}^{y} f_y(x, t) dt + C$$

(for robustness, should take integrals over many different paths and average the results)

Surface recovered by integration

Homework 2: Photometric stereo

Input

Estimated albedo

Estimated normals

Integrated height map

0.5

Application

GELSIGHT

https://www.youtube.com/watch?v=S7gXih4XS7A

Linear filtering

Motivation: Image de-noising

• How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a *weighted* average of its neighborhood
- The weights are called the *filter kernel*
- What are the weights for the average of a 3x3 neighborhood?

"box filter"

Defining convolution

Let f be the image and g be the kernel. The output of convolving f with g is denoted f * g.

$$(f * g)[m, n] = \sum_{k,l} f[m - k, n - l]g[k, l]$$

• MATLAB functions: conv2, filter2, imfilter

Key properties

- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
- Associative: **a** * (**b** * **c**) = (**a** * **b**) * **c**
 - Often apply several filters one after another: (((a * b₁) * b₂) * b₃)
 - This is equivalent to applying one filter: a * (b₁ * b₂ * b₃)
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],
 a * e = a

Annoying details

What is the size of the output?

- MATLAB: filter2(g, f, shape)
 - shape = 'full': output size is sum of sizes of f and g
 - *shape* = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f and g

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, 'circular')
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')

Original

?

Original

Filtered (no change)

Original

9

Original

Shifted *left* By 1 pixel

Original

?

Original

Blur (with a box filter)

(Note that filter sums to 1)

Original

•)

Original

Sharpening filter - Accentuates differences

with local average

Sharpening

before

after

Sharpening

What does blurring take away?

detail

Let's add it back:

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

	0.013 0.022 0.013	0.013 0.059 0.097 0.059 0.013	0.097 0.159 0.097	0.059 0.097 0.059	0.013 0.022 0.013	
--	-------------------------	---	-------------------------	-------------------------	-------------------------	--

 Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Gaussian Kernel

• Standard deviation σ : determines extent of smoothing

Source: K. Grauman 37

Choosing kernel width

• The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ

Gaussian vs. box filtering

Gaussian filters

- Remove high-frequency components from the image (*low-pass filter*)
- Convolution with self is another Gaussian
 - So can smooth with small- σ kernel, repeat, and get same result as larger- σ kernel would have
 - Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev.
- Separable kernel
 - Factors into product of two 1D Gaussians
 - Discrete example:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Source: K. Grauman 41

 $\sigma \sqrt{2}$

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$
$$= \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi\sigma}} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of *x* and the other a function of *y*

In this case, the two functions are the (identical) 1D Gaussian

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one among rows and one among columns)
- What is the complexity of filtering an n×n image with an m×m kernel?
 - O(n² m²)
- What if the kernel is separable?
 - O(n² m)

Noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels

• Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

3x3

5x5

7x7

What's wrong with the results?

Alternative idea: Median filtering

• A **median filter** operates over a window by selecting the median intensity in the window

• Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

Source: K. Grauman 49

Median filter

Salt-and-pepper noise

Median filtered

MATLAB: medfilt2(image, [h w])