
CMPSCI 670: Computer Vision!
Linear filtering

University of Massachusetts, Amherst
September 22, 2014

Instructor: Subhransu Maji

Slides credit: L. Lazebnik and others

• Administrivia:
• Anyone had problems with submitting homework via edlab

should email their homework to me (smaji@cs.umass.edu)
• Late submission policy

- Everyone has two late days for the entire semester. Beyond that you
lose 15% of the homework per day.

• Office hours this week: Thursday 3:45 - 4:45, CS 274

• Today’s lecture
• Conclude photometric stereo, aka, shape from shading
• Linear filtering

Today

2

mailto:smaji@cs.umass.edu

Diffuse reflection: Lambert’s law

3

θρ

ρ

cos

)(

S
SN

=

⋅=BN
S

B: radiosity (total power leaving the
surface per unit area)
ρ: albedo (fraction of incident irradiance
reflected by the surface)
N: unit normal
S: source vector (magnitude
proportional to intensity of the source)

θ

• Can we reconstruct the shape of an object based on
shading cues?

Photometric stereo (shape from shading)

4

Luca della Robbia, 
Cantoria, 1438

Assume:
• A Lambertian object
• A local shading model (each point on a surface receives light only from

sources visible at that point)
• A set of known light source directions
• A set of pictures of an object, obtained in exactly the same camera/object

configuration but using different sources
• Orthographic projection

Goal: reconstruct object shape and albedo

Photometric stereo

5

Sn

???S1

S2

F&P 2nd ed., sec. 2.2.4

Surface model: Monge patch

6F&P 2nd ed., sec. 2.2.4

z = f(x,y)

() ()()
() ()()

j

j

jj

yx

kyxyx

yxyxkyxI

Vg
SN
SN

⋅=

⋅=

⋅=

),(

)(,,

,,),(

ρ

ρ

• Known: source vectors Sj and pixel values Ij(x,y)

• Unknown: surface normal N(x,y) and albedo ρ(x,y)

• Assume that the response function of the camera is a linear
scaling by a factor of k

• Lambert’s law:

Image model

7F&P 2nd ed., sec. 2.2.4

• Obtain least-squares solution for g(x,y) (which we defined as N(x,y) ρ(x,y))
• Since N(x,y) is the unit normal, ρ(x,y) is given by the magnitude of g(x,y)
• Finally, N(x,y) = g(x,y) / ρ(x,y)

Least squares problem

8

),(

),(

),(
),(

2

1

2

1

yx

yxI

yxI
yxI

T
n

T

T

n

g

V

V
V

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

!!

(n × 1)
known known unknown

(n × 3) (3 × 1)

• For each pixel, set up a linear system:

F&P 2nd ed., sec. 2.2.4

Example

9

Recovered albedo Recovered normal field

F&P 2nd ed., sec. 2.2.4

Recall the surface is written
as
!

!

This means the normal has
the form:

Recovering a surface from normals

10

If we write the estimated
vector g as
!

!

!

!

Then we obtain values for
the partial derivatives of the
surface:

)),(,,(yxfyx

!
!
!

"

#

$
$
$

%

&

++
=

11
1),(

22 y

x

yx

f
f

ff
yxN

!
!
!

"

#

$
$
$

%

&

=

),(
),(
),(

),(

3

2

1

yxg
yxg
yxg

yxg

),(/),(),(
),(/),(),(

32

31

yxgyxgyxf
yxgyxgyxf

y

x

=

=

F&P 2nd ed., sec. 2.2.4

Integrability: for the surface f
to exist, the mixed second
partial derivatives must be
equal:

Recovering a surface from normals

11

We can now recover the
surface height at any point
by integration along some
path, e.g.

(for robustness, should
take integrals over many
different paths and
average the results)

(in practice, they should
at least be similar)

)),(/),((

)),(/),((

32

31

yxgyxg
x

yxgyxg
y

∂

∂

=
∂

∂

Cdttxf

dsysfyxf

y

y

x

x

+

+=

∫

∫

0

0

),(

),(),(

F&P 2nd ed., sec. 2.2.4

Surface recovered by integration

12F&P 2nd ed., sec. 2.2.4

Homework 2: Photometric stereo

13

Application

14

https://www.youtube.com/watch?v=S7gXih4XS7A

https://www.youtube.com/watch?v=S7gXih4XS7A
https://www.youtube.com/watch?v=S7gXih4XS7A

Linear filtering

15

• How can we reduce noise in a photograph?

Motivation: Image de-noising

16

• Let’s replace each pixel with a weighted average of its
neighborhood

• The weights are called the filter kernel

• What are the weights for the average of a 3x3
neighborhood?

Moving average

17

111

111

111

“box filter”

Source: D. Lowe

• Let f be the image and g be the kernel. The output of
convolving f with g is denoted f * g.

∑ −−=∗
lk

lkglnkmfnmgf
,

],[],[],)[(

Defining convolution

18Source: F. Durand

• MATLAB functions: conv2, filter2, imfilter

Convention:  
kernel is “flipped”

f

• Linearity: filter(f1 + f2) = filter(f1) + filter(f2)

• Shift invariance: same behavior regardless of pixel
location: filter(shift(f)) = shift(filter(f))

• Theoretical result: any linear shift-invariant operator can be
represented as a convolution

Key properties

19

• Commutative: a * b = b * a
• Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c
• Often apply several filters one after another: (((a * b1) * b2) * b3)
• This is equivalent to applying one filter: a * (b1 * b2 * b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)
• Scalars factor out: ka * b = a * kb = k (a * b)
• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], 

a * e = a

Properties in more detail

20

What is the size of the output?
• MATLAB: filter2(g, f, shape)

• shape = ‘full’: output size is sum of sizes of f and g
• shape = ‘same’: output size is same as f
• shape = ‘valid’: output size is difference of sizes of f and g

Annoying details

21

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

What about near the edge?
• the filter window falls off the edge of the image
• need to extrapolate
• methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Annoying details

22Source: S. Marschner

What about near the edge?
• the filter window falls off the edge of the image
• need to extrapolate
• methods (MATLAB):

- clip filter (black): imfilter(f, g, 0)
- wrap around: imfilter(f, g, ‘circular’)
- copy edge: imfilter(f, g, ‘replicate’)
- reflect across edge: imfilter(f, g, ‘symmetric’)

Annoying details

23Source: S. Marschner

Practice with linear filters

24

000
010
000

Original

?

Source: D. Lowe

Practice with linear filters

25

000
010
000

Original Filtered 	

(no change)

Source: D. Lowe

Practice with linear filters

26

000
100
000

Original

?

Source: D. Lowe

Practice with linear filters

27

000
100
000

Original Shifted left	

By 1 pixel

Source: D. Lowe

Practice with linear filters

28

Original

?
111
111
111

Source: D. Lowe

Practice with linear filters

29

Original

111
111
111

Blur (with a	

box filter)

Source: D. Lowe

Practice with linear filters

30

Original

111
111
111

000
020
000 - ?

(Note that filter sums to 1)

Source: D. Lowe

Practice with linear filters

31

Original

111
111
111

000
020
000 -

Sharpening filter
- Accentuates differences
with local average

Source: D. Lowe

Sharpening

32Source: D. Lowe

What does blurring take away?

Sharpening

33

original smoothed (5x5)

–

detail

=

sharpened

=

Let’s add it back:

original detail

+

• What’s wrong with this picture?
• What’s the solution?

Smoothing with box filter revisited

34Source: D. Forsyth

• What’s wrong with this picture?
• What’s the solution?

• To eliminate edge effects, weight contribution of
neighborhood pixels according to their closeness to the
center

Smoothing with box filter revisited

35
“fuzzy blob”

• Constant factor at front makes volume sum to 1 (can be
ignored when computing the filter values, as we should
renormalize weights to sum to 1 in any case)

Gaussian Kernel

36

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5, σ = 1

Source: C. Rasmussen

• Standard deviation σ: determines extent of smoothing

Gaussian Kernel

37

σ = 2 with 30 x 30
kernel

σ = 5 with 30 x 30
kernel

Source: K. Grauman

• The Gaussian function has infinite support, but discrete
filters use finite kernels

Choosing kernel width

38Source: K. Grauman

• Rule of thumb: set filter half-width to about 3σ

Choosing kernel width

39

Gaussian vs. box filtering

40

• Remove high-frequency components from the image (low-
pass filter)

• Convolution with self is another Gaussian
• So can smooth with small-σ kernel, repeat, and get same result as larger-σ

kernel would have
• Convolving two times with Gaussian kernel with std. dev. σ  

is same as convolving once with kernel with std. dev.

• Separable kernel
• Factors into product of two 1D Gaussians
• Discrete example:

Gaussian filters

41Source: K. Grauman

2σ

[]121
1
2
1

121
242
121

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

Separability of the Gaussian filter

42Source: D. Lowe

• Separability means that a 2D convolution can be reduced to
two 1D convolutions (one among rows and one among
columns)

• What is the complexity of filtering an n×n image with an
m×m kernel?

• O(n2 m2)

• What if the kernel is separable?
• O(n2 m)

Why is separability useful?

43

• Salt and pepper noise:
contains random
occurrences of black and
white pixels

• Impulse noise: contains
random occurrences of
white pixels

• Gaussian noise:
variations in intensity
drawn from a Gaussian
normal distribution

Noise

44Source: S. Seitz

• Mathematical model: sum of many independent factors
• Good for small standard deviations
• Assumption: independent, zero-mean noise

Gaussian noise

45Source: M. Hebert

Smoothing with larger standard deviations suppresses noise,
but also blurs the image

Reducing Gaussian noise

46

noise

What’s wrong with the results?

Reducing salt-and-pepper noise

47

3x3 5x5 7x7

• A median filter operates over a window by selecting the
median intensity in the window  
 
 
 
 
 
 

Alternative idea: Median filtering

48

• Is median filtering linear?
Source: K. Grauman

• What advantage does median filtering have over Gaussian
filtering?
• Robustness to outliers

Median filter

49Source: K. Grauman

MATLAB: medfilt2(image, [h w])

Salt-and-pepper noise Median filtered

Source: M. Hebert

Median filter

50

