
CMPSCI 670: Computer Vision!
Linear filtering 

University of Massachusetts, Amherst 
September 22, 2014

Instructor: Subhransu Maji

Slides credit: L. Lazebnik and others



• Administrivia: 
• Anyone had problems with submitting homework via edlab 

should email their homework to me (smaji@cs.umass.edu) 
• Late submission policy 

- Everyone has two late days for the entire semester. Beyond that you 
lose 15% of the homework per day. 

• Office hours this week: Thursday 3:45 - 4:45, CS 274 

• Today’s lecture 
• Conclude photometric stereo, aka, shape from shading 
• Linear filtering

Today
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Diffuse reflection: Lambert’s law
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B: radiosity (total power leaving the 
surface per unit area) 
ρ: albedo (fraction of incident irradiance 
reflected by the surface) 
N: unit normal 
S: source vector (magnitude 
proportional to intensity of the source)
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• Can we reconstruct the shape of an object based on 
shading cues?

Photometric stereo (shape from shading)

4

Luca della Robbia, 
Cantoria, 1438



Assume: 
• A Lambertian object 
• A local shading model (each point on a surface receives light only from 

sources visible at that point) 
• A set of known light source directions 
• A set of pictures of an object, obtained in exactly the same camera/object 

configuration but using different sources 
• Orthographic projection 

Goal: reconstruct object shape and albedo

Photometric stereo
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Surface model: Monge patch

6F&P 2nd ed., sec. 2.2.4

z = f(x,y)
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• Known: source vectors Sj and pixel values Ij(x,y) 

• Unknown: surface normal N(x,y) and albedo ρ(x,y)  

• Assume that the response function of the camera is a linear 
scaling by a factor of k   

• Lambert’s law:

Image model

7F&P 2nd ed., sec. 2.2.4



• Obtain least-squares solution for g(x,y) (which we defined as N(x,y) ρ(x,y)) 
• Since N(x,y) is the unit normal, ρ(x,y) is given by the magnitude of g(x,y)  
• Finally, N(x,y) = g(x,y) / ρ(x,y)

Least squares problem
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(n × 1)
known known unknown

(n × 3) (3 × 1)

•   For each pixel, set up a linear system:

F&P 2nd ed., sec. 2.2.4



Example
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Recovered albedo Recovered normal field

F&P 2nd ed., sec. 2.2.4



Recall the surface is written 
as 
!

!

This means the normal has 
the form:

Recovering a surface from normals
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If we write the estimated 
vector g as 
!

!

!
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Then we obtain values for 
the partial derivatives of the 
surface:
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Integrability: for the surface f  
to exist, the mixed second 
partial derivatives must be 
equal:

Recovering a surface from normals
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We can now recover the 
surface height at any point 
by integration along some 
path, e.g.

(for robustness, should 
take integrals over many 
different paths and 
average the results)

(in practice, they should 
at least be similar)
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Surface recovered by integration

12F&P 2nd ed., sec. 2.2.4



Homework 2: Photometric stereo
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Application
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https://www.youtube.com/watch?v=S7gXih4XS7A

https://www.youtube.com/watch?v=S7gXih4XS7A
https://www.youtube.com/watch?v=S7gXih4XS7A


Linear filtering
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• How can we reduce noise in a photograph?

Motivation: Image de-noising
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• Let’s replace each pixel with a weighted average of its 
neighborhood 

• The weights are called the filter kernel 

• What are the weights for the average of a 3x3 
neighborhood?

Moving average
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“box filter”

Source: D. Lowe



• Let f be the image and g be the kernel. The output of 
convolving f with g is denoted f * g.
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Defining convolution

18Source: F. Durand

•   MATLAB functions: conv2, filter2, imfilter

Convention:  
kernel is “flipped”

f



• Linearity: filter(f1 + f2) = filter(f1) + filter(f2) 

• Shift invariance: same behavior regardless of pixel 
location: filter(shift(f)) = shift(filter(f)) 

• Theoretical result: any linear shift-invariant operator can be 
represented as a convolution

Key properties

19



• Commutative: a * b = b * a 
• Conceptually no difference between filter and signal 

• Associative: a * (b * c) = (a * b) * c 
• Often apply several filters one after another: (((a * b1) * b2) * b3) 
• This is equivalent to applying one filter: a * (b1 * b2 * b3) 

• Distributes over addition: a * (b + c) = (a * b) + (a * c) 
• Scalars factor out: ka * b = a * kb = k (a * b) 
• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …], 

a * e = a

Properties in more detail
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What is the size of the output? 
• MATLAB: filter2(g, f, shape) 

• shape = ‘full’: output size is sum of sizes of f and g 
• shape = ‘same’: output size is same as f 
• shape = ‘valid’: output size is difference of sizes of f and g 

Annoying details
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What about near the edge? 
• the filter window falls off the edge of the image 
• need to extrapolate 
• methods: 

- clip filter (black) 
- wrap around 
- copy edge 
- reflect across edge

Annoying details

22Source: S. Marschner



What about near the edge? 
• the filter window falls off the edge of the image 
• need to extrapolate 
• methods (MATLAB): 

- clip filter (black):  imfilter(f, g, 0) 
- wrap around:  imfilter(f, g, ‘circular’) 
- copy edge:          imfilter(f, g, ‘replicate’) 
- reflect across edge:  imfilter(f, g, ‘symmetric’)

Annoying details

23Source: S. Marschner



Practice with linear filters

24

000
010
000

Original

?

Source: D. Lowe



Practice with linear filters

25

000
010
000

Original Filtered 	

(no change)

Source: D. Lowe



Practice with linear filters
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Practice with linear filters
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Practice with linear filters
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Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Practice with linear filters
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Sharpening filter 
- Accentuates differences 
with local average

Source: D. Lowe



Sharpening

32Source: D. Lowe



What does blurring take away?

Sharpening
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• What’s wrong with this picture? 
• What’s the solution?

Smoothing with box filter revisited

34Source: D. Forsyth



• What’s wrong with this picture? 
• What’s the solution? 

• To eliminate edge effects, weight contribution of 
neighborhood pixels according to their closeness to the 
center

Smoothing with box filter revisited
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“fuzzy blob”



• Constant factor at front makes volume sum to 1 (can be 
ignored when computing the filter values, as we should 
renormalize weights to sum to 1 in any case)

Gaussian Kernel
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0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
0.003   0.013   0.022   0.013   0.003

5 x 5, σ = 1

Source: C. Rasmussen 



• Standard deviation σ: determines extent of smoothing

Gaussian Kernel
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σ = 2 with 30 x 30 
kernel

σ = 5 with 30 x 30 
kernel

Source: K. Grauman



• The Gaussian function has infinite support, but discrete 
filters use finite kernels

Choosing kernel width

38Source: K. Grauman



• Rule of thumb: set filter half-width to about 3σ

Choosing kernel width
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Gaussian vs. box filtering
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• Remove high-frequency components from the image (low-
pass filter) 

• Convolution with self is another Gaussian 
• So can smooth with small-σ kernel, repeat, and get same result as larger-σ 

kernel would have 
• Convolving two times with Gaussian kernel with std. dev. σ  

is same as convolving once with kernel with std. dev.  

• Separable kernel 
• Factors into product of two 1D Gaussians 
• Discrete example:

Gaussian filters

41Source: K. Grauman
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Separability of the Gaussian filter

42Source: D. Lowe



• Separability means that a 2D convolution can be reduced to 
two 1D convolutions (one among rows and one among 
columns) 

• What is the complexity of filtering an n×n image with an 
m×m kernel?  

• O(n2 m2) 

• What if the kernel is separable? 
• O(n2 m)

Why is separability useful?
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• Salt and pepper noise: 
contains random 
occurrences of black and 
white pixels 

• Impulse noise: contains 
random occurrences of 
white pixels 

• Gaussian noise: 
variations in intensity 
drawn from a Gaussian 
normal distribution

Noise

44Source: S. Seitz



• Mathematical model: sum of many independent factors 
• Good for small standard deviations 
• Assumption: independent, zero-mean noise

Gaussian noise

45Source: M. Hebert



Smoothing with larger standard deviations suppresses noise, 
but also blurs the image

Reducing Gaussian noise
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noise



What’s wrong with the results?

Reducing salt-and-pepper noise
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3x3 5x5 7x7



• A median filter operates over a window by selecting the 
median intensity in the window  
 
 
 
 
 
 

Alternative idea: Median filtering
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•   Is median filtering linear?
Source: K. Grauman



• What advantage does median filtering have over Gaussian 
filtering? 
• Robustness to outliers

Median filter

49Source: K. Grauman



MATLAB: medfilt2(image, [h w])

Salt-and-pepper noise Median filtered

Source: M. Hebert

Median filter
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