CMPSCI 670: Computer Vision Linear filtering

University of Massachusetts, Amherst September 22, 2014

Instructor: Subhransu Maji

Today

- Administrivia:

- Anyone had problems with submitting homework via edlab should email their homework to me (smaji@cs.umass.edu)
- Late submission policy
- Everyone has two late days for the entire semester. Beyond that you lose 15\% of the homework per day.
- Office hours this week: Thursday 3:45-4:45, CS 274
- Today's lecture
- Conclude photometric stereo, aka, shape from shading
- Linear filtering

Diffuse reflection: Lambert's law

$$
\begin{aligned}
B & =\rho(\mathbf{N} \cdot \mathbf{S}) \\
& =\rho\|\mathbf{S}\| \cos \theta
\end{aligned}
$$

B : radiosity (total power leaving the surface per unit area)
ρ : albedo (fraction of incident irradiance reflected by the surface)
N : unit normal
S : source vector (magnitude proportional to intensity of the source)

Photometric stereo (shape from shading)

- Can we reconstruct the shape of an object based on shading cues?

Luca della Robbia,
Cantoria, 1438

Photometric stereo

Assume:

- A Lambertian object
- A local shading model (each point on a surface receives light only from sources visible at that point)
- A set of known light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- Orthographic projection

Goal: reconstruct object shape and albedo

Surface model: Monge patch

Image model

- Known: source vectors \mathbf{S}_{j} and pixel values $I_{j}(x, y)$
- Unknown: surface normal $\mathbf{N}(x, y)$ and albedo $\rho(x, y)$
- Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$
\begin{aligned}
I_{j}(x, y) & =k \rho(x, y)\left(\mathbf{N}(x, y) \cdot \mathbf{S}_{j}\right) \\
& =(\rho(x, y) \mathbf{N}(x, y)) \cdot\left(k \mathbf{S}_{j}\right) \\
& =\mathbf{g}(x, y) \cdot \mathbf{V}_{j}
\end{aligned}
$$

Least squares problem

- For each pixel, set up a linear system:

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
I_{1}(x, y) \\
I_{2}(x, y) \\
\vdots \\
I_{n}(x, y)
\end{array}\right]} \\
\left.\left\lvert\, \begin{array}{c}
\mathbf{V}_{1}^{T} \\
\mathbf{V}_{2}^{T} \\
\vdots \\
(n \times 1) \\
\mathbf{V}_{n}^{T}
\end{array}\right.\right] \\
\left\lvert\, \begin{array}{c}
\mid \\
\text { known }
\end{array}\right. \\
\begin{array}{c}
(n \times 3) \\
\text { known }
\end{array} \\
\begin{array}{c}
(3 \times 1) \\
\text { unknown }
\end{array}
\end{array}\right.
$$

- Obtain least-squares solution for $\mathbf{g}(x, y)$ (which we defined as $\mathbf{N}(x, y) \rho(x, y)$)
- Since $\mathbf{N}(x, y)$ is the unit normal, $\rho(x, y)$ is given by the magnitude of $\mathbf{g}(x, y)$
- Finally, $\mathbf{N}(x, y)=\mathbf{g}(x, y) / \rho(x, y)$

Example

Recovered normal field

Recovering a surface from normals

Recall the surface is written as

$$
(x, y, f(x, y))
$$

This means the normal has the form:

$$
\mathbf{N}(x, y)=\frac{1}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}}\left(\begin{array}{c}
f_{x} \\
f_{y} \\
1
\end{array}\right)
$$

If we write the estimated vector g as

$$
\mathbf{g}(x, y)=\left(\begin{array}{l}
g_{1}(x, y) \\
g_{2}(x, y) \\
g_{3}(x, y)
\end{array}\right)
$$

Then we obtain values for the partial derivatives of the surface:

$$
\begin{aligned}
& f_{x}(x, y)=g_{1}(x, y) / g_{3}(x, y) \\
& f_{y}(x, y)=g_{2}(x, y) / g_{3}(x, y)
\end{aligned}
$$

Recovering a surface from normals

Integrability: for the surface f to exist, the mixed second partial derivatives must be equal:

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(g_{1}(x, y) / g_{3}(x, y)\right)= \\
& \frac{\partial}{\partial x}\left(g_{2}(x, y) / g_{3}(x, y)\right)
\end{aligned}
$$

(in practice, they should at least be similar)

We can now recover the surface height at any point by integration along some path, e.g.

$$
\begin{aligned}
f(x, y)= & \int_{0}^{x} f_{x}(s, y) d s+ \\
& \int_{0}^{y} f_{y}(x, t) d t+C
\end{aligned}
$$

(for robustness, should take integrals over many different paths and average the results)

Surface recovered by integration

F\&P $2^{\text {nd }}$ ed., sec. 2.2.4

Homework 2: Photometric stereo

Input

Estimated albedo

Estimated normals

X

y

Integrated height map

Z

Application

GELSiGHT

https://www.youtube.com/watch?v=S7gXih4XS7A

Linear filtering

-

Motivation: Image de-noising

- How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a weighted average of its neighborhood
- The weights are called the filter kernel
- What are the weights for the average of a 3×3 neighborhood?

"box filter"

Defining convolution

- Let f be the image and g be the kernel. The output of convolving f with g is denoted $f^{*} g$.

$$
(f * g)[m, n]=\sum_{k, l} f[m-k, n-l] g[k, l]
$$

Convention: kernel is "flipped"

- MATLAB functions: conv2, filter2, imfilter

Key properties

- Linearity: $\operatorname{filter}\left(f_{1}+f_{2}\right)=\operatorname{filter}\left(f_{1}\right)+\operatorname{filter}\left(f_{2}\right)$
- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Theoretical result: any linear shift-invariant operator can be represented as a convolution

Properties in more detail

- Commutative: a * $b=b^{*} a$
- Conceptually no difference between filter and signal
- Associative: $a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c$
- Often apply several filters one after another: $\left(\left(\left(a^{*} b_{1}\right){ }^{*} b_{2}\right)^{*} b_{3}\right)$
- This is equivalent to applying one filter: a * $\left(b_{1}{ }^{*} b_{2}{ }^{*} b_{3}\right)$
- Distributes over addition: $a^{*}(b+c)=\left(a^{*} b\right)+\left(a^{*} c\right)$
- Scalars factor out: $k a{ }^{*} b=a * k b=k(a * b)$
- Identity: unit impulse $e=[\ldots, 0,0,1,0,0, \ldots]$, $a{ }^{*} e=a$

Annoying details

What is the size of the output?

- MATLAB: filter2(g, f, shape)
- shape = 'full': output size is sum of sizes of f and g
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g

same

valid

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):
- clip filter (black): imfilter(f, g, 0)
- wrap around: imfilter(f, g, 'circular’)
- copy edge: imfilter(f, g, 'replicate')
- reflect across edge: imfilter(f, g, ‘symmetric’)

Practice with linear filters

?

Original

Practice with linear filters

Original

Filtered (no change)

Practice with linear filters

?

Original

Practice with linear filters

Original

Shifted left
By 1 pixel

Practice with linear filters

?

Original

Practice with linear filters

Original

Blur (with a box filter)

Practice with linear filters

Original

(Note that filter sums to 1)
?

Practice with linear filters

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before

after

Sharpening

What does blurring take away?

Let's add it back:

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
- To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

Gaussian Kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

- Constant factor at front makes volume sum to 1 (can be ignored when computing the filter values, as we should renormalize weights to sum to 1 in any case)

Gaussian Kernel

$$
G_{\sigma}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{\left(x^{2}+y^{2}\right)}{2 \sigma^{2}}}
$$

- Standard deviation σ : determines extent of smoothing

Choosing kernel width

- The Gaussian function has infinite support, but discrete filters use finite kernels

Choosing kernel width

- Rule of thumb: set filter half-width to about 3σ

Effect of σ

Gaussian vs. box filtering

Gaussian filters

- Remove high-frequency components from the image (lowpass filter)
- Convolution with self is another Gaussian
- So can smooth with small-o kernel, repeat, and get same result as larger-o kernel would have
- Convolving two times with Gaussian kernel with std. dev. σ is same as convolving once with kernel with std. dev.
$\sigma \sqrt{2}$
- Separable kernel
- Factors into product of two 1D Gaussians
- Discrete example:

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right]
$$

Separability of the Gaussian filter

$$
\begin{aligned}
\mathcal{G}_{\sigma}(x, y) & =\frac{1}{2 \pi \sigma^{2}} \exp ^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \\
& =\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{\left.-\frac{x^{2}}{2 \sigma^{2}}\right)\left(\frac{1}{\sqrt{2 \pi} \sigma} \exp ^{-\frac{y^{2}}{2 \sigma^{2}}}\right)}\right.
\end{aligned}
$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y In this case, the two functions are the (identical) 1D Gaussian

Why is separability useful?

- Separability means that a 2D convolution can be reduced to two 1D convolutions (one among rows and one among columns)
- What is the complexity of filtering an $n \times n$ image with an $\mathrm{m} \times \mathrm{m}$ kernel?
- $O\left(n^{2} m^{2}\right)$
-What if the kernel is separable?
- $O\left(n^{2} m\right)$

Noise

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Reducing Gaussian noise

Smoothing with larger standard deviations suppresses noise, but also blurs the image

Reducing salt-and-pepper noise

3×3

5×5

What's wrong with the results?

Alternative idea: Median filtering

- A median filter operates over a window by selecting the median intensity in the window

- Is median filtering linear?

Median filter

- What advantage does median filtering have over Gaussian filtering?
- Robustness to outliers
filters have width 5 :

Median filter

MATLAB: medfilt2(image, [h w])

