

CMPSCI 670: Computer Vision Light and shading

University of Massachusetts, Amherst September 17, 2014

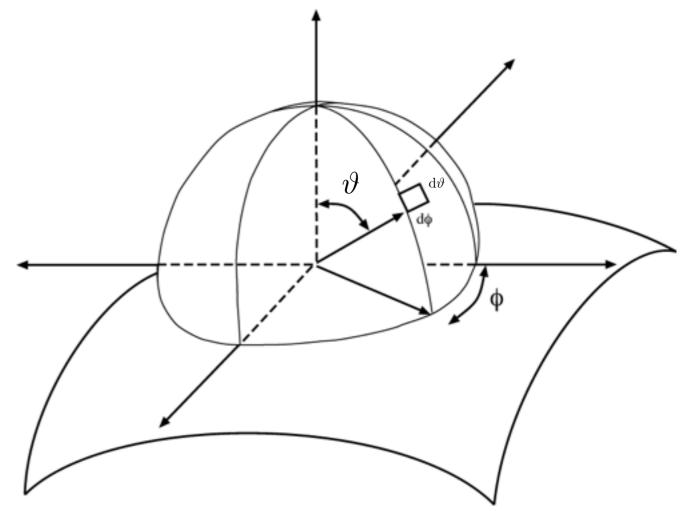
Instructor: Subhransu Maji

Administrivia

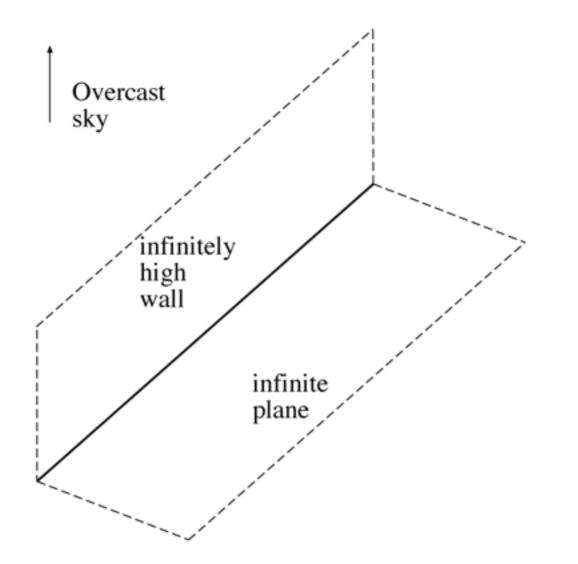
- Homework #1 is due on Monday (Sept. 22) before class
- Submission via *edlab* accounts
 - Create a **hw1.zip** file on the top level directory
 - /courses/cs600/cs670/<username>/hw1.zip
 - where **hw1.zip** looks like this:
 - alignChannels.m
 - demosaicImage.m
 - report.pdf
- Also include additional code (e.g. for extra credit) and explain it in the report what each file does
- If all else fails email it to me before class <u>smaji@cs.umass.edu</u>

Radiometry

- Questions:
 - how "bright" will surfaces be?
 - what is "brightness"?
 - measuring light
 - interactions between light and surfaces
- Core idea think about light arriving at a surface around any point is a hemisphere of directions
- Simplest problems can be dealt with by reasoning about this hemisphere



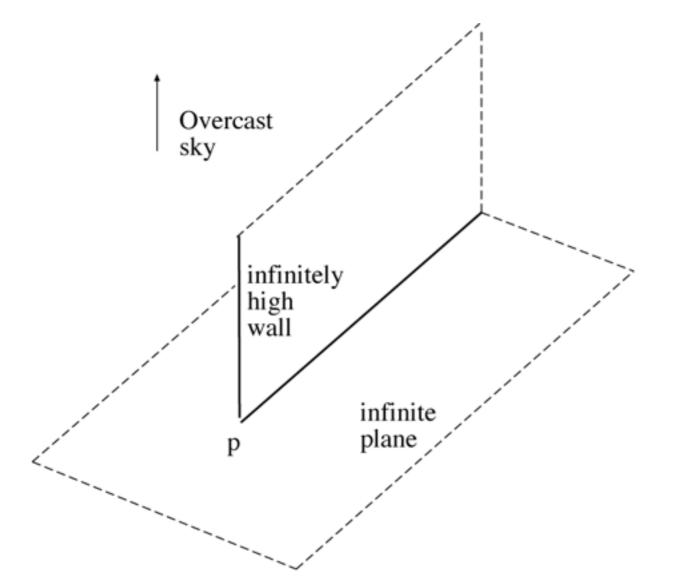
Lambert's wall



What is the distribution of brightness on the ground?

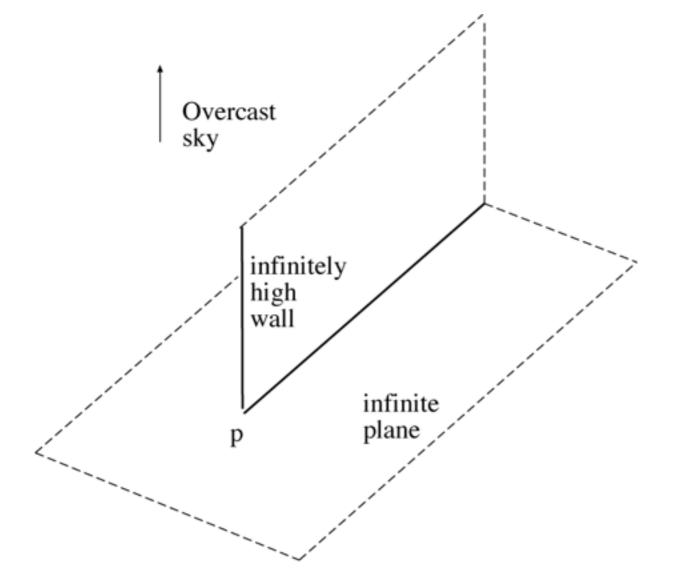
Computer Vision - A Modern Approach Set: Radiometry Slides by D.A. Forsyth

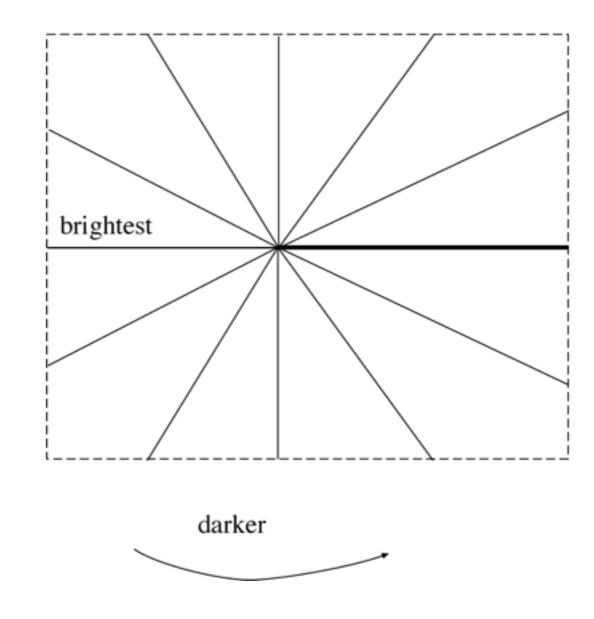
More complex wall



Computer Vision - A Modern Approach Set: Radiometry Slides by D.A. Forsyth

More complex wall





Computer Vision - A Modern Approach Set: Radiometry Slides by D.A. Forsyth

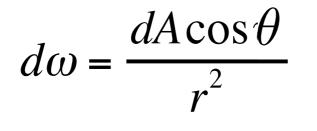
Foreshortening

- **Principle:** two sources that look the same to a receiver must have the same effect on the receiver.
- **Principle:** two receivers that look the same to a source must receive the same amount of energy.
- "look the same" means produce the same input hemisphere (or output hemisphere)

- Reason: what else can a receiver know about a source but what appears on its input hemisphere? (ditto, swapping receiver and source)
- Crucial consequence: a big source (resp. receiver), viewed at a glancing angle, must produce (resp. experience) the same effect as a small source (resp. receiver) viewed frontally.

Solid Angle

- By analogy with angle (in radians), the solid angle subtended by a region at a point is the area projected on a unit sphere centered at that point
- The solid angle subtended by a patch area dA is given by



• Another useful expression:

 $d\omega = \sin\vartheta (d\vartheta) (d\phi)$

Computer Vision - A Modern Approach Set: Radiometry Slides by D.A. Forsyth

Measuring Light in Free Space

- **Desirable property:** in a vacuum, the relevant unit does not go down along a straight line.
- How do we get a unit with this property? Think about the power transferred from an infinitesimal source to an infinitesimal receiver.

• We have

total power leaving s to r = total power arriving at r from s

• Also:

Power arriving at r is proportional to:

- solid angle subtended by s at r (because if s looked bigger from r, there'd be more)
- foreshortened area of r (because a bigger r will collect more power

Radiance

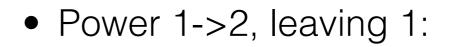
• All this suggests that the light transferred from source to receiver should be measured as:

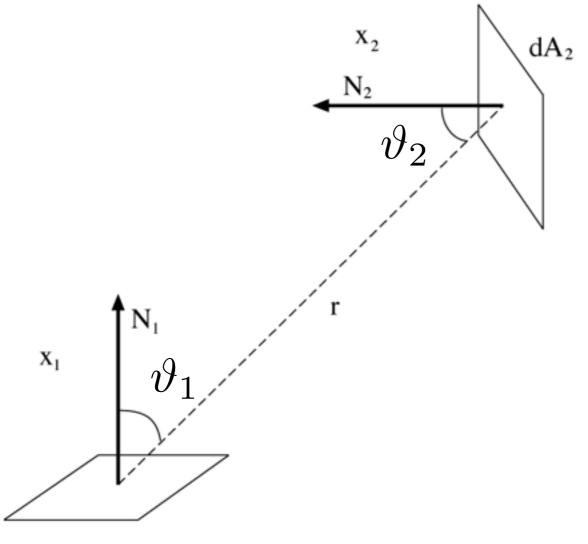
Radiant power per unit foreshortened area per unit solid angle

- This is **radiance**
- Units: watts per square meter per steradian (wm⁻²sr⁻¹)
- Usually written as:

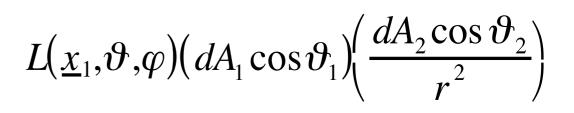
- **Crucial property:** In a vacuum, radiance leaving p in the direction of q is the same as radiance arriving at q from p
 - which was how we got to the unit

Radiance is constant along straight lines





 dA_1



• Power 1->2, arriving at 2:

$$L(\underline{x}_2,\vartheta,\varphi)(dA_2\cos\vartheta_2)\left(\frac{dA_1\cos\vartheta_1}{r^2}\right)$$

 But these must be the same, so that the two radiances are equal

Irradiance

- How much light is arriving at a surface?
- Sensible unit is Irradiance
- Incident power per unit area not foreshortened
- This is a function of incoming angle.
- A surface experiencing radiance L(x,θ,φ) coming in from dω experiences irradiance

 $L(\underline{x},\vartheta,\varphi)\cos\vartheta d\omega$

• Crucial property:

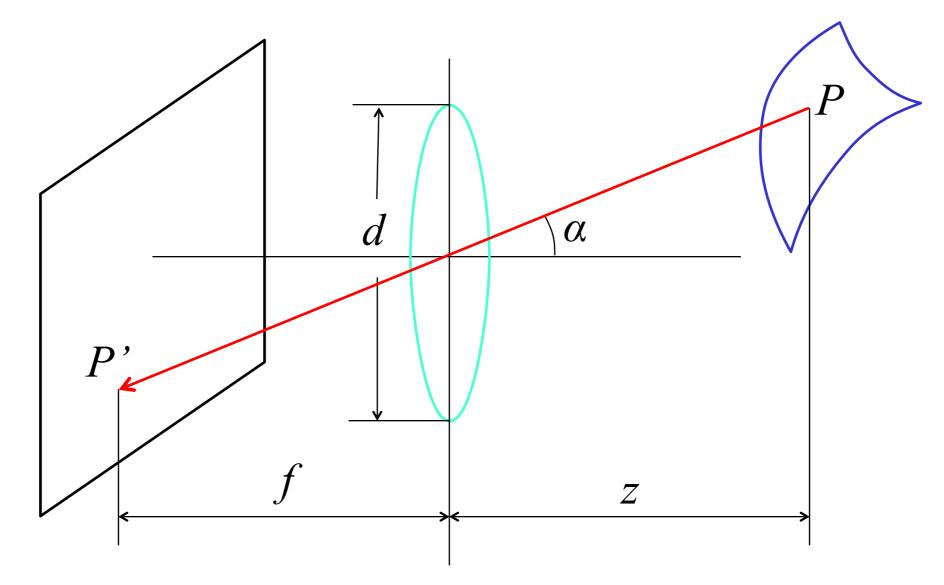
Total power arriving at the surface is given by adding irradiance over all incoming angles — this is why it's a natural unit

• Total power is :

 $\int_{\Omega} L(\underline{x},\vartheta,\varphi) \cos \vartheta \sin \vartheta d\vartheta d\varphi$

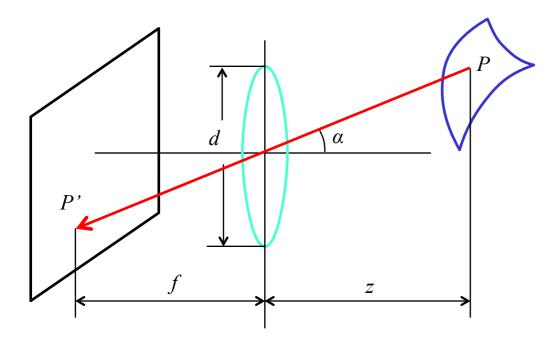
Fundamental radiometric relation

- L: Radiance emitted from P toward P'
- E: Irradiance falling on P' from the lens



What is the relationship between *E* and *L*?

Fundamental radiometric relation



$$E = \left[\frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha \right] L$$

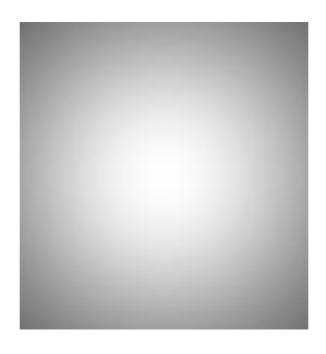
(exercise - derive this)

- Image irradiance is linearly related to scene radiance
- Irradiance is proportional to the area of the lens and inversely proportional to the squared distance between the lens and the image plane
- The irradiance falls off as the angle between the viewing ray and the optical axis increases

Fundamental radiometric relation

$$E = \left[\frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha \right] L$$

- Application:
 - S. B. Kang and R. Weiss, <u>Can we calibrate a camera using an image of</u> <u>a flat, textureless Lambertian surface?</u> ECCV 2000.



Light at surfaces

What happens when a light ray hits a point on an object?

- Some of the light gets **absorbed**
 - converted to other forms of energy (e.g., heat)
- Some gets **transmitted** through the object
 - possibly bent, through refraction
 - or scattered inside the object (subsurface scattering)
- Some gets reflected
 - possibly in multiple directions at once
- Really complicated things can happen
 - fluorescence

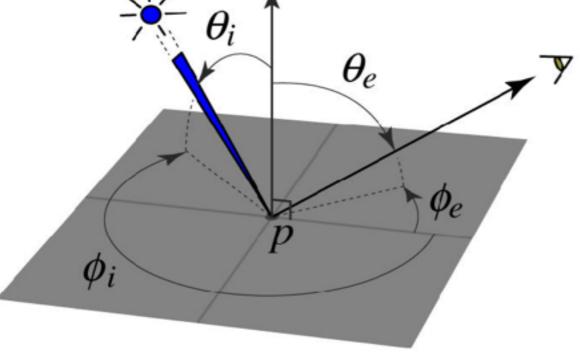
Fluorescence

Modeling surface reflectance

Bidirectional reflectance distribution function (BRDF)

- How bright a surface appears when viewed from one direction when light falls on it from another
- **Definition**: ratio of the radiance in the emitted direction to irradiance in the incident direction

$$\rho_{bd}(\underline{x}, \vartheta_o, \varphi_o, \vartheta_i, \varphi_i) = \frac{L_o(\underline{x}, \vartheta_o, \varphi_o)}{L_i(\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d}$$



Simplifying assumptions locality, no fluorescence, does not generate light

Gonioreflectometer

The University of Virginia spherical gantry, an example of a modern image-based gonioreflectometer

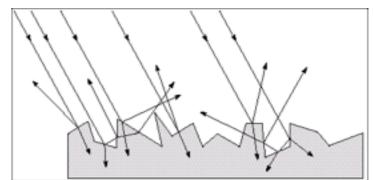
BRDFs can be incredibly complicated...

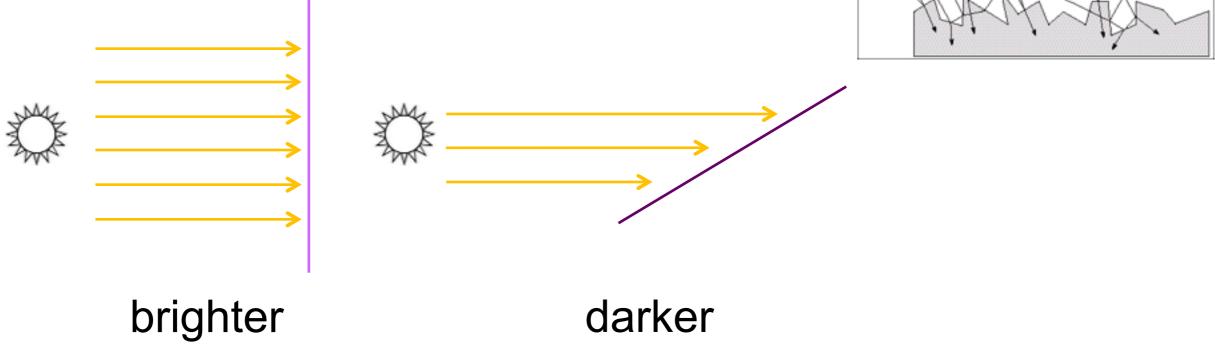
Suppressing the angles in the BRDF

- BRDF is a very general notion
 - some surfaces need it (underside of a CD; tiger eye; etc)
 - very hard to measure
 - illuminate from one direction, view from another, repeat
 - very unstable
 - minor surface damage can change the BRDF
 - e.g. ridges of oil left by contact with the skin can act as lenses
- for many surfaces, light leaving the surface is largely independent of exit angle
 - surface roughness is one source of this property

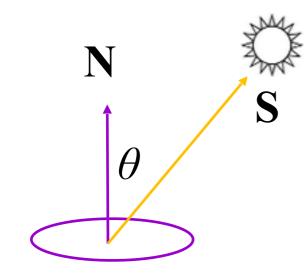
Special cases: Diffuse reflection

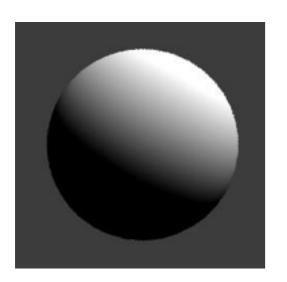
- Light is reflected equally in all directions
 - Dull, matte surfaces like chalk or cotton cloth
 - Microfacets scatter incoming light randomly
 - Effect is that light is reflected (approximately) equally in all directions
- Brightness of the surface depends on the incidence of illumination





Diffuse reflection: Lambert's law



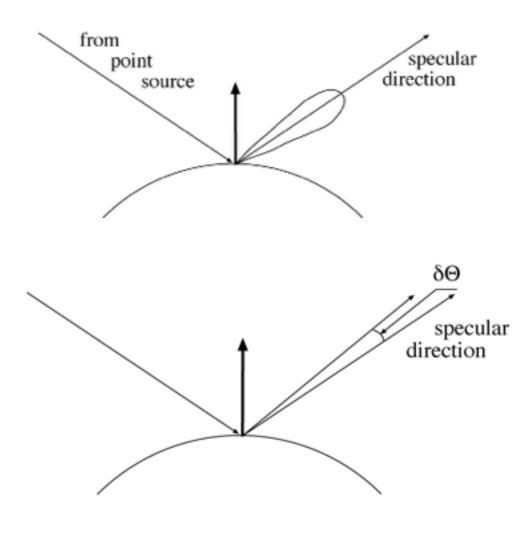


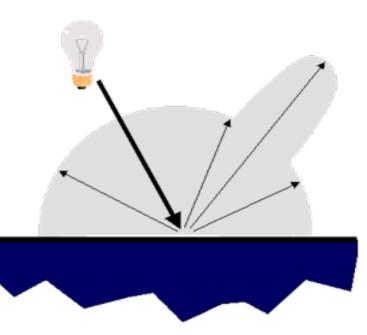
 $B = \rho(\mathbf{N} \cdot \mathbf{S})$ $= \rho \|\mathbf{S}\| \cos \theta$

B: radiosity (total power leaving the surface per unit area)
ρ: albedo (fraction of incident irradiance reflected by the surface)
N: unit normal
S: source vector (magnitude proportional to intensity of the source)

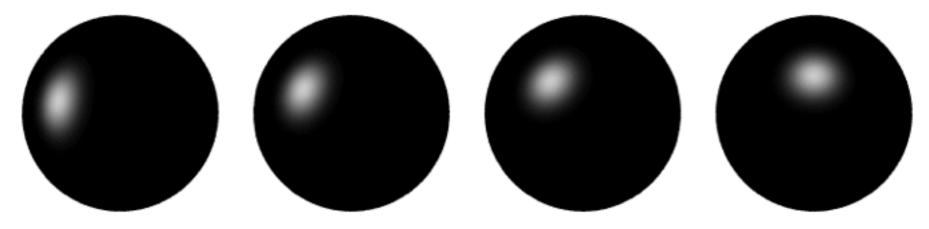
Specular reflection

- Radiation arriving along a source direction leaves along the specular direction (source direction reflected about normal)
- Some fraction is absorbed, some reflected
- On real surfaces, energy usually goes into a lobe of directions
- Phong model: reflected energy falls of with $\cos^{n}(\delta\theta)$
- Lambertian + specular model: sum of diffuse and specular term
 - a reasonable approximation to lot of surfaces we see

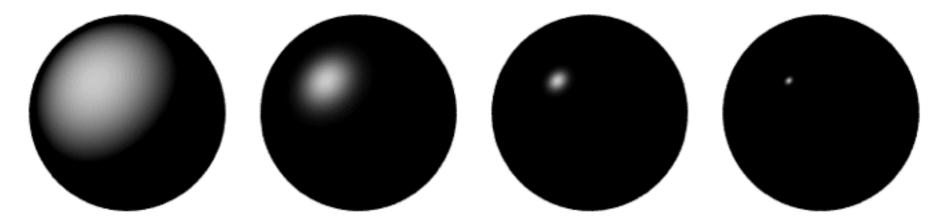




Specular reflection



Moving the light source

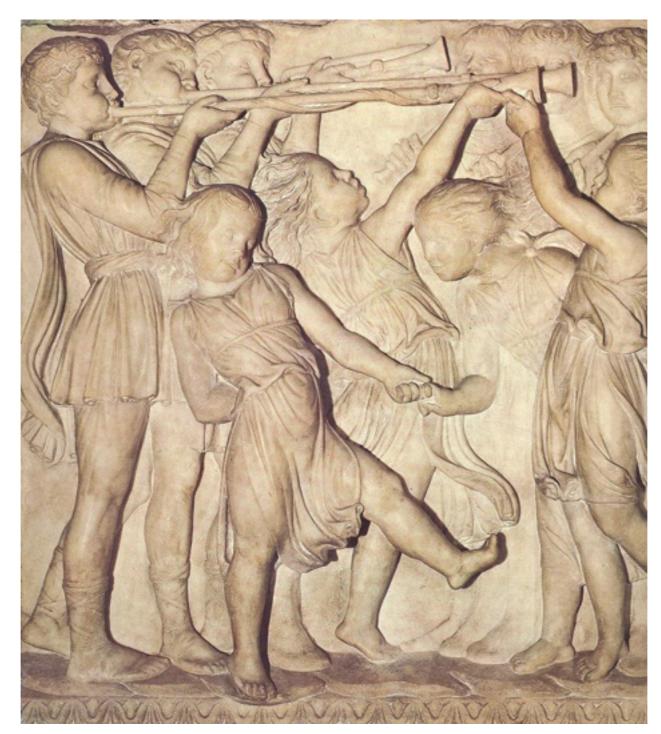


Changing the exponent

Role of specularity in computer vision

Photometric stereo (shape from shading)

 Can we reconstruct the shape of an object based on shading cues?



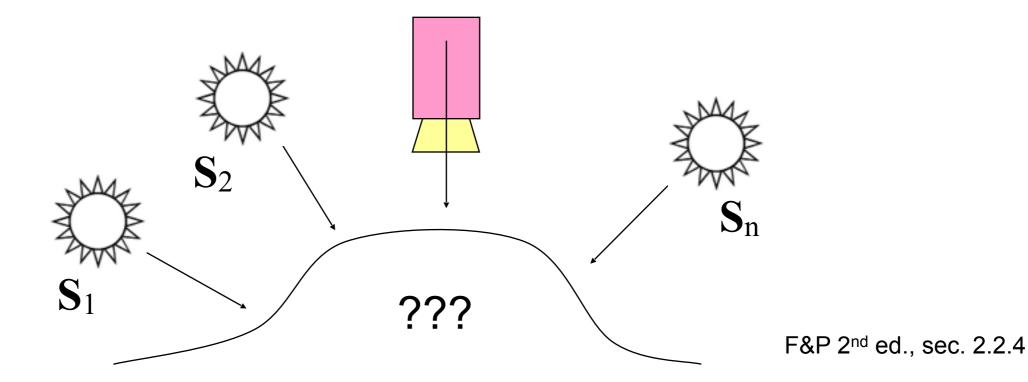
Luca della Robbia, *Cantoria*, 1438

Photometric stereo

Assume:

- A Lambertian object
- A *local shading model* (each point on a surface receives light only from sources visible at that point)
- A set of *known* light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- Orthographic projection

Goal: reconstruct object shape and albedo



Surface model: Monge patch

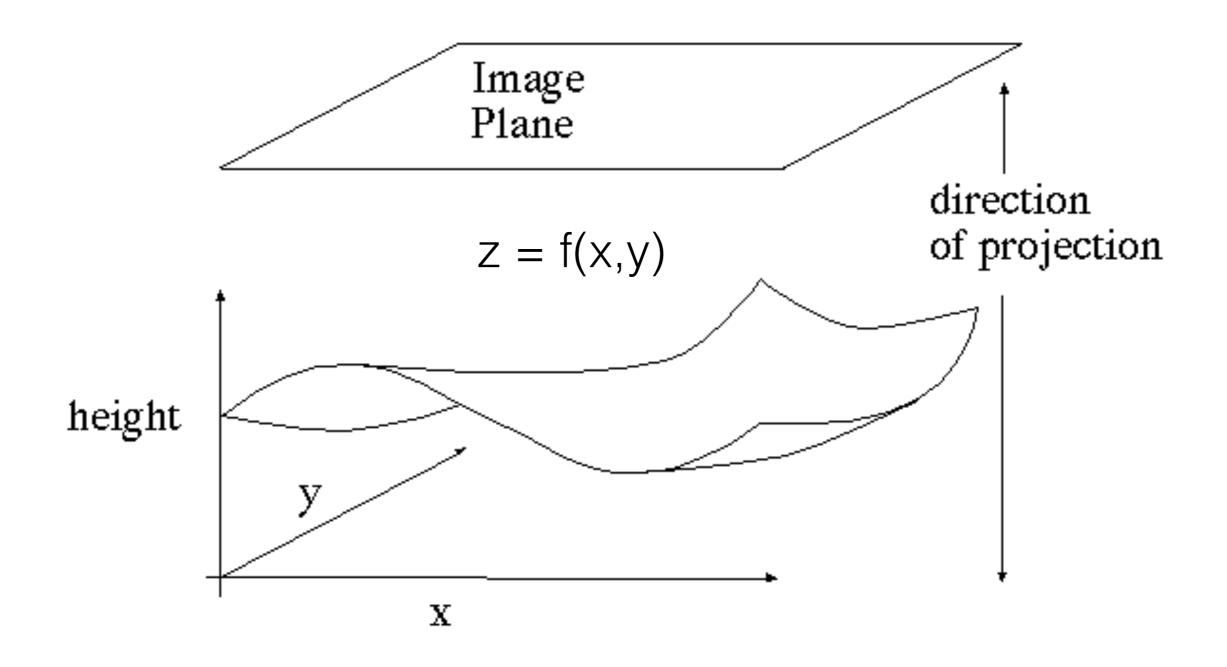


Image model

- **Known:** source vectors S_j and pixel values $I_j(x,y)$
- **Unknown:** surface normal N(x,y) and albedo $\rho(x,y)$
- Assume that the response function of the camera is a linear scaling by a factor of k
- Lambert's law:

$$I_{j}(x, y) = k \rho(x, y) (\mathbf{N}(x, y) \cdot \mathbf{S}_{j})$$
$$= (\rho(x, y) \mathbf{N}(x, y)) \cdot (k\mathbf{S}_{j})$$
$$= \mathbf{g}(x, y) \cdot \mathbf{V}_{j}$$

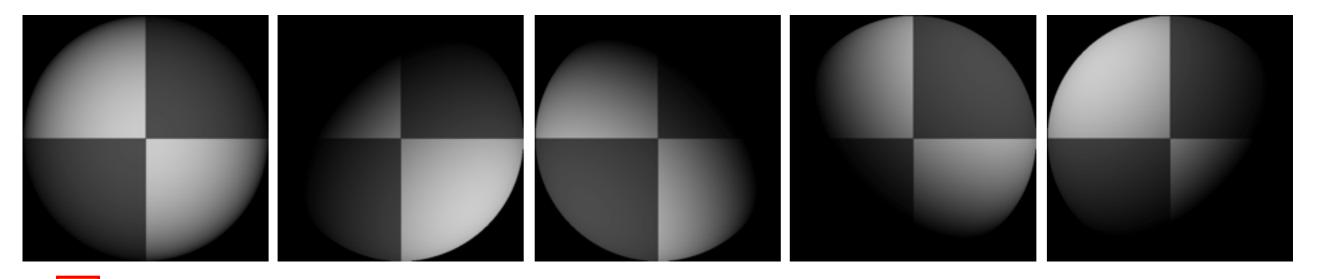
Least squares problem

• For each pixel, set up a linear system:

$$\begin{bmatrix} I_1(x, y) \\ I_2(x, y) \\ \vdots \\ I_n(x, y) \end{bmatrix} = \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \\ \vdots \\ \mathbf{V}_n^T \\ \mathbf{V}_n^T \end{bmatrix} \mathbf{g}(x, y)$$
$$\begin{vmatrix} & & & \\$$

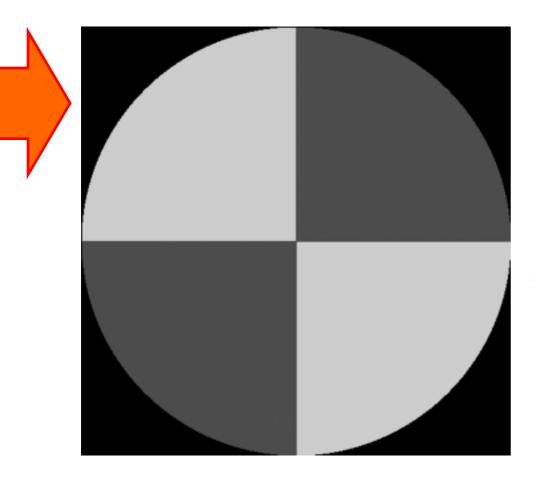
- Obtain least-squares solution for g(x,y) (which we defined as $N(x,y) \rho(x,y)$)
- Since N(x,y) is the unit normal, $\rho(x,y)$ is given by the magnitude of g(x,y)
- Finally, $N(x,y) = g(x,y) / \rho(x,y)$

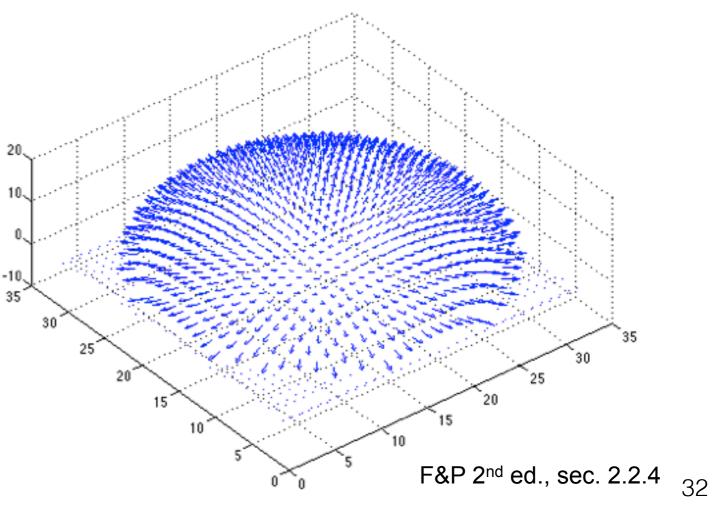
Example



Recovered albedo

Recovered normal field



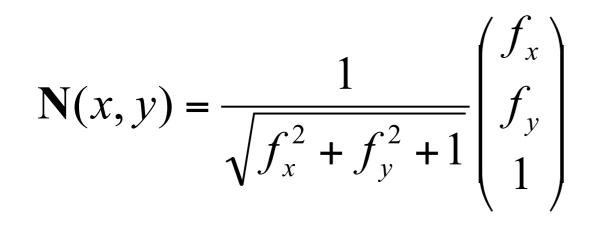


Recovering a surface from normals

Recall the surface is written as

$$(x, y, f(x, y))$$

This means the normal has the form:



If we write the estimated vector *g* as

$$\mathbf{g}(x, y) = \begin{pmatrix} g_1(x, y) \\ g_2(x, y) \\ g_3(x, y) \end{pmatrix}$$

Then we obtain values for the partial derivatives of the surface:

$$f_x(x, y) = \frac{g_1(x, y)}{g_3(x, y)}$$
$$f_y(x, y) = \frac{g_2(x, y)}{g_3(x, y)}$$

Recovering a surface from normals

Integrability: for the surface *f* to exist, the mixed second partial derivatives must be equal:

$$\frac{\partial}{\partial y}(g_1(x,y)/g_3(x,y)) =$$

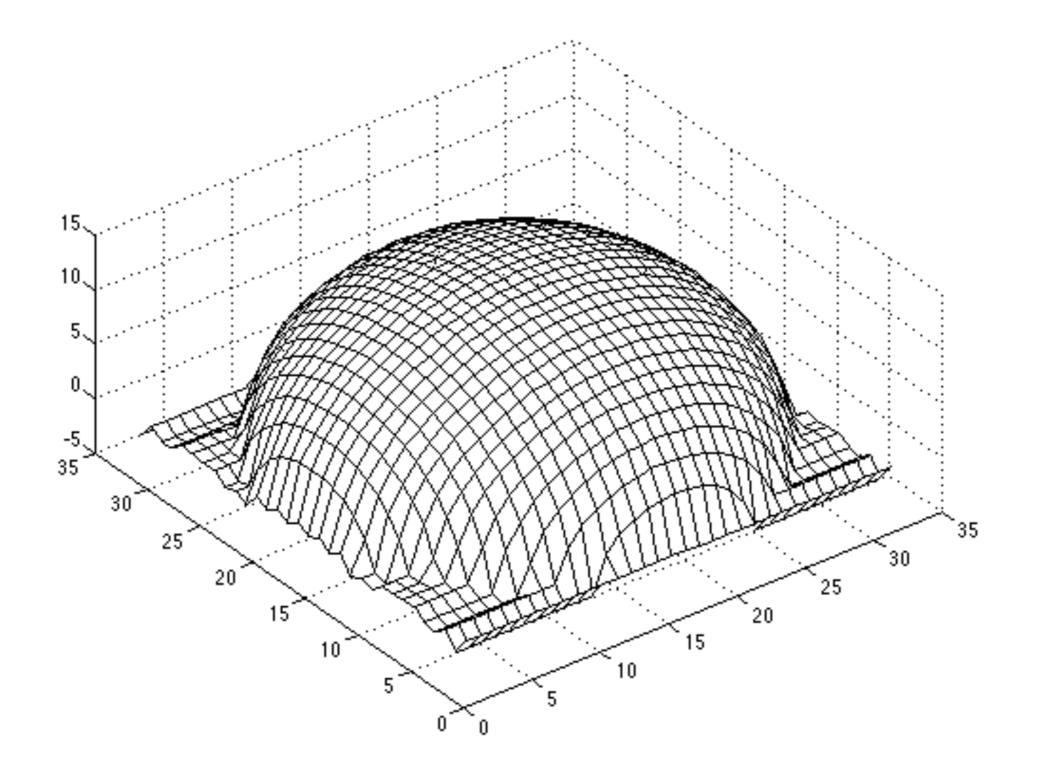
$$\frac{\partial}{\partial x}(g_2(x,y)/g_3(x,y))$$

(in practice, they should at least be similar) We can now recover the surface height at any point by integration along some path, e.g.

$$f(x, y) = \int_{0}^{x} f_x(s, y) ds + \int_{0}^{y} f_y(x, t) dt + C$$

(for robustness, should take integrals over many different paths and average the results)

Surface recovered by integration



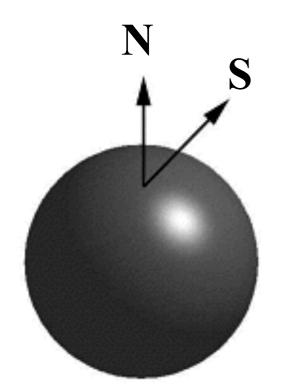
Limitations

- Orthographic camera model
- Simplistic reflectance and lighting model
- No shadows
- No interreflections
- No missing data
- Integration is tricky

Finding the direction of the light source

$$I(x,y) = \mathbf{N}(x,y) \cdot \mathbf{S}(x,y) + A$$

Full 3D case:



$$\begin{pmatrix} N_x(x_1, y_1) & N_y(x_1, y_1) & N_z(x_1, y_1) & 1 \\ N_x(x_2, y_2) & N_y(x_2, y_2) & N_z(x_2, y_2) & 1 \\ \vdots & \vdots & \vdots & \vdots \\ N_x(x_n, y_n) & N_y(x_n, y_n) & N_z(x_n, y_n) & 1 \end{pmatrix} \begin{pmatrix} S_x \\ S_y \\ S_z \\ A \end{pmatrix} = \begin{pmatrix} I(x_1, y_1) \\ I(x_2, y_2) \\ \vdots \\ I(x_n, y_n) \end{pmatrix}$$

For points on the *occluding contour*:

$$\begin{pmatrix} N_x(x_1, y_1) & N_y(x_1, y_1) & 1 \\ N_x(x_2, y_2) & N_y(x_2, y_2) & 1 \\ \vdots & \vdots & \vdots \\ N_x(x_n, y_n) & N_y(x_n, y_n) & 1 \end{pmatrix} \begin{pmatrix} S_x \\ S_y \\ A \end{pmatrix} = \begin{pmatrix} I(x_1, y_1) \\ I(x_2, y_2) \\ \vdots \\ I(x_n, y_n) \end{pmatrix}$$

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Finding the direction of the light source

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

Application: Detecting composite photos

Real photo

Fake photo

M. K. Johnson and H. Farid, Exposing Digital Forgeries by Detecting Inconsistencies in Lighting, ACM Multimedia and Security Workshop, 2005.

More readings and thoughts ...

• Derive the fundamental radiometric relation in lenses:

$$E = \left[\frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha\right] L$$

- Derive the formula for the BRDF for a mirror
- People can perceive reflectance
 - Surface reflectance estimation and natural illumination statistics, R.O. Dror, E.H. Adelson, and A.S. Willsky, Workshop on Statistical and Computational Theories of Vision 2001
- HDR photography
 - <u>Recovering High Dynamic Range Radiance Maps from Photographs</u>, Paul E. Devebec and Jitendra Malik, SIGGRAPH 1997