
CMPSCI 370: Intro. to Computer Vision
Deep learning

University of Massachusetts, Amherst 
April 19/21, 2016

Instructor: Subhransu Maji

• Finals (everyone) 
• Thursday, May 5, 1-3pm, Hasbrouck 113 — Final exam 
• Tuesday, May 3, 4-5pm, Location: TBD (Review?) 
• Syllabus includes everything taught after and including SIFT 

features. Lectures March 03 onwards. 

• Honors section 
• Tuesday, April 26, 4-5pm — 20 min presentation 
• Friday, May 6, midnight — writeup of 4-6 pages

Administrivia
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• Shallow vs. deep architectures 
• Background 

• Traditional neural networks 
• Inspiration from neuroscience 

• Stages of CNN architecture 
• Visualizing CNNs 
• State-of-the-art results 
• Packages

Overview

3Many slides are by Rob Fergus and S. Lazebnik

Traditional Recognition Approach
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• Features are not learned 
• Trainable classifier is often generic (e.g. SVM)
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• Features are key to recent progress in recognition 
• Multitude of hand-designed features currently in use 

• SIFT, HOG, …………. 
• Where next? Better classifiers? Or keep building more features?

Traditional Recognition Approach
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Felzenszwalb,  Girshick,  
McAllester and Ramanan, PAMI 2007

Yan & Huang  
(Winner of PASCAL 2010 classification competition)

• Learn a feature hierarchy all the way from pixels to classifier 
• Each layer extracts features from the output of previous layer 
• Train all layers jointly

What about learning the features?

6

Layer 1 Layer 2 Layer 3 Simple  
Classifier

Image/ 
Video 
Pixels

“Shallow” vs. “deep” architectures
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Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

… • Artificial neural network is a group of interconnected nodes 
• Circles here represent artificial “neurons” 
• Note the directed arrows (denoting the flow of information)

Artificial neural networks
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image credit wikipedia



Inspiration: Neuron cells

9http://en.wikipedia.org/wiki/Neuron

• D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981) 
• Visual cortex consists of a hierarchy of simple, complex, and 

hyper-complex cells 

Hubel/Wiesel Architecture 
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Basic unit of computation
‣ Input are feature values 
‣ Each feature has a weight 
‣ Sum in the activation 

If the activation is:
‣ > b, output class 1 
‣ otherwise, output class 2

Perceptron: a single neuron
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Imagine 3 features (spam is “positive” class):
‣ free (number of occurrences of “free”) 
‣ money (number of occurrences of “money”) 
‣ BIAS (intercept, always has value 1)

Example: Spam
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In the space of feature vectors
‣ examples are points (in D dimensions) 
‣ an weight vector is a hyperplane (a D-1 dimensional object) 
‣ One side corresponds to y=+1 
‣ Other side corresponds to y=-1 
Perceptrons are also called as linear classifiers

Geometry of the perceptron
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Two-layer network architecture
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Non-linearity is important
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Can a single neuron learn the XOR function?
Exercise: come up with the parameters of a two layer network with 
two hidden units that computes the XOR function
‣ Here is a table for the XOR function

The XOR function
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• Back-propagate the gradients to match the outputs 
• Were too impractical till computers became faster

Training ANNs

16

we know the 
desired output

df(g(x))/dx = (df/dg)(dg/dx)

“Chain rule” of gradient

http://page.mi.fu-berlin.de/rojas/neural/chapter/K7.pdf



• In the 1990s and early 2000s, simpler and faster learning 
methods such as linear classifiers, nearest neighbor 
classifiers, and decision trees were favored over ANNs. 

• Why? 
• Need many layers to learn good features — many parameters 

need to be learned 
• Needs vast amounts of training data (related to the earlier point) 
• Training using gradient descent is slow, get stuck in local minima

Issues with ANNs
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The neocognitron, by Fukushima (1980)
(But he didn’t propose a way to learn these models)

ANNs for vision
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• Neural network with specialized 
connectivity structure 

• Stack multiple stages of feature 
extractors 

• Higher stages compute more 
global, more invariant features 

• Classification layer at the end

Convolutional Neural Networks
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Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 
recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

• Feed-forward feature extraction:  
1. Convolve input with learned filters 
2. Non-linearity  
3. Spatial pooling  
4. Normalization 

• Supervised training of convolutional  
filters by back-propagating  
classification error

Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Convolutional Neural Networks
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Feature maps



• Dependencies are local  
• Translation invariance 
• Few parameters (filter weights) 
• Stride can be greater than 1  

(faster, less memory) 

1. Convolution

21Input Feature Map

.

.

.

• Per-element (independent) 
• Options: 

• Tanh 
• Sigmoid: 1/(1+exp(-x)) 
• Rectified linear unit  (ReLU) 

- Simplifies backpropagation 
- Makes learning faster 
- Avoids saturation issues  

à Preferred option

2. Non-Linearity
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• Sum or max
• Non-overlapping / overlapping regions
• Role of pooling:

• Invariance to small transformations 
• Larger receptive fields (see more of input)

3. Spatial Pooling

23

Max

Sum

• Within or across feature maps 
• Before or after spatial pooling

4. Normalization
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Feature Maps 
Feature Maps  

After Contrast Normalization



Compare: SIFT Descriptor
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Lowe  
[IJCV 2004]

• Handwritten text/digits 
• MNIST (0.17% error [Ciresan et al. 2011]) 
• Arabic & Chinese   [Ciresan et al. 2012] 

• Simpler recognition benchmarks 
• CIFAR-10 (9.3% error [Wan et al. 2013]) 
• Traffic sign recognition 

- 0.56% error vs 1.16% for humans  
[Ciresan et al. 2011] 

• But until recently, less good at more  
complex datasets 
• Caltech-101/256 (few training examples) 

CNN successes
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ImageNet Challenge 2012
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[Deng et al. CVPR 2009] 

• 14+ million labeled images, 20k classes 
• Images gathered from Internet 
• Human labels via Amazon Turk  
• The challenge: 1.2 million training 

images, 1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012

ImageNet Challenge 2012
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• Similar framework to LeCun’98 but: 
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) 
• More data (106 vs. 103 images) 
• GPU implementation (50x speedup over CPU) 

• Trained on two GPUs for a week 
• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012



Krizhevsky et al. -- 16.4% error (top-5) 
Next best (SIFT + Fisher vectors) – 26.2% error

ImageNet Challenge 2012
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SuperVision ISI Oxford INRIA Amsterdam

Visualizing CNNs
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M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks,  
arXiv preprint, 2013

Layer 1 Filters
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Similar to the filter banks used for texture recognition
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• Patches from validation images that give maximal activation of a given feature map 

Layer 1: Top-9 Patches
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Layer 2: Top-9 Patches
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Layer 3: Top-9 Patches
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Layer 4: Top-9 Patches
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Layer 5: Top-9 Patches



Evolution of Features During Training
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Evolution of Features During Training
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• Mask parts of input with occluding square 

• Monitor output (class probability)

Occlusion Experiment
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Total activation in most  
active 5th layer feature map

Other activations from  
same feature map
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p(True class) Most probable class
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Total activation in most  
active 5th layer feature map

Other activations from  
same feature map
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p(True class) Most probable class
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Total activation in most  
active 5th layer feature map

Other activations from  
same feature map



http://www.image-net.org/challenges/LSVRC/2013/results.php

ImageNet Classification 2013 Results
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ImageNet 2014 - Test error at 0.07 (Google & Oxford groups)
http://image-net.org/challenges/LSVRC/2014/results

• Take model trained on ImageNet 
• Take outputs of 6th or 7th layer before or after nonlinearity as 

features 
• Train linear SVMs on these features (like retraining the last 

layer of the network) 
• Optionally back-propagate: fine-tune features and/or 

classifier on new dataset

CNNs for small datasets
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Tapping off features at each Layer
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Plug features from each layer into linear SVM

Higher layers are better

Results on benchmarks
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[1] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition, arXiv preprint, 2014

[1] SUN 397 dataset (DeCAF)[1] Caltech-101 (30 samples per class)

[2] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, CNN Features off-the-shelf: an Astounding Baseline for 
Recognition, arXiv preprint, 2014

[2] MIT-67 Indoor Scenes dataset 
(OverFeat)[1] Caltech-UCSD Birds (DeCAF)



R-CNN achieves mAP of 53.7% on PASCAL VOC 2010 
For comparison, Uijlings et al. (2013) report 35.1% mAP using the same region 
proposals, but with a spatial pyramid and bag-of-visual-words approach.  
Part-based model with HOG (DPM, Poselets) ~ 33.5%

CNN features for detection
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R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate Object 
Detection and Semantic Segmentation, CVPR 2014 

CNN features for face verification
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Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level 
Performance in Face Verification, CVPR 2014, to appear.

• Cuda-convnet (Alex Krizhevsky, Google) 
• High speed convolutions on the GPU 

• Caffe (Y. Jia, Berkeley) 
• Replacement of deprecated Decaf 
• High performance CNNs 
• Flexible CPU/GPU computations 

• Overfeat (NYU) 
• MatConvNet (Andrea Vedaldi, Oxford) 

• An easy to use toolbox for CNNs from MATLAB 
• Comparable performance/features with Caffe

Open-source CNN software
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