

2

1

The importance of good features Most learning methods are invariant to feature permutation E.g., patch vs. pixel representation of images

can you recognize the digits?

bag of patches

bag of pixels

CMPSCI 370

What is a feature map?

- Any transformation of an image into a new representation
- Example: transform an image into a binary edge map

Image source: wikipedia

Subhransu Maji (UMASS)

6

Feature map goals

- Introduce invariance to nuisance factors
 - Illumination changes
 - > Small translations, rotations, scaling, shape deformations

Figure 1.3: Variation in appearance due to a change in illumination

CMPSCI 370

We will discuss ...

- Two popular image features
 - Histogram of Oriented Gradients (HOG)
- Bag of Visual Words (BoVW)
- Applications of these features

7

CMPSCI 370

Subhransu Maji (UMASS)

Histogram of Oriented Gradients

- Introduced by Dalal and Triggs (CVPR 2005)
- An extension of the SIFT feature
- ♦ HOG properties:
 - Preserves the overall structure of the image
 - Provides robustness to illumination and small deformations

CMPSCI 370

HOG feature: basic idea

- Divide the image into blocks
- Compute histograms of gradients for each regions

Effect of bin-size

9

- Smaller bin-size: better spatial resolution
- Larger bin-size: better invariance to deformations
- Optimal value depends on the object category being modeled
- e.g. rigid vs. deformable objects

Multi-scale template matching

• Score each sub-windows of the feature pyramid

14

Example detections

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Example detections

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

15

We will discuss ...

- Two popular image features
 - Histogram of Oriented Gradients (HOG)
- Bag of Visual Words (BoVW)

CMPSCI 370 Subhransu Maji (UMASS) 17 17

Bag of features

19

Properties:

- Spatial structure is not preserved
- Invariance to large translations

Compare this to the HOG feature

Bag of visual words

- Origin and motivation of the "bag of words" model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary clustering using k-means
 - Encoding methods hard vs. soft assignment
 - Spatial pooling pyramid representations
 - Similarity functions and classifiers

18

Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

22

22

24

Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

2007-01-23: State of the Union Address	George W. Bush (2001-)
	nbar armed army baghdad bless challenges chamber chaos dent confront congressman constitution corps debates deduction
deficit deliver democratic deploy dikembe diplomacy disrupt expand extremists failing faithful families freedom fue	ions earmarks ECONOMY einstein elections eliminates el funding god haven ideology immigration impose
nsurgents iran iran iran iulie lebanon love madam m	arine math medicare moderation neighborhoods nuclear offensive
palestinian payroll province pursuing qaeda radical regime	
violence violent War washington weapons wesley	territories terrorists threats uphold victory

Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

idon a c <mark>es c</mark> i	1962-10-22: Soviet Missiles in Cuba John F. Kennedy (1961-63)
cit de and 6	abandon achieving adversarie s aggression agricultural appropriate armaments ATMS assessments atlantic balistic berlin
rgen stinia emb enc	buildup burdens cargo college commitment communist constitution consumers cooperation crisis CUDa dangers declined defensive deficit depended disarmament divisions domination doubled economic education elimination emergence endangered equals europe expand exports fact fase family forum freedom fulfill grom/ko halt hazards hemisphere hospitals ideals independent industries inflation labor latin limiting minister missiles modernization neglect Nuclear cas obligation observer Offensive per predoper predicted purchasing quarantine quote
	recession rejection republics retailatory safeguard sites solution Soviet space spur stability standby Strength surveillance tax territory treaty undertakings unemployment WAP warhead Weapons welfare western widen withdraw

Origin 2: Bag-of-words models

 Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

Lecture outline

- Origin and motivation of the "bag of words" model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary clustering using k-means
 - Encoding methods hard vs. soft assignment
 - Spatial pooling pyramid representations
 - Similarity functions and classifiers

26

Local feature extraction

• Regular grid or interest regions

corner detector

27

Local feature extraction

Clustering

- Basic idea: group together similar instances
- ◆ Example: 2D points

34

Clustering

- Basic idea: group together similar instances
- ◆ Example: 2D points

• What could similar mean?

CMPSCI 370

• One option: small Euclidean distance (squared)

 $\operatorname{dist}(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_2^2$

· Clustering results are crucially dependent on the measure of similarity (or distance) between points to be clustered

Subhransu Maji (UMASS)

Clustering algorithms

- Simple clustering: organize elements into k groups
- K-means
- Mean shift
- Spectral clustering

- Hierarchical clustering: organize elements into a hierarchy
 - Bottom up agglomerative
 - Top down divisive

CMPSCI 370

35

Subhransu Maji (UMASS)

36

Clustering examples

Image segmentation: break up the image into similar regions

37

Clustering examples

Clustering news articles

37

38

Clustering examples

Clustering examples

• Clustering people by space and time

Clustering using k-means

- Given (x₁, x₂, ..., x_n) partition the n observations into k (≤ n) sets
 S = {S₁, S₂, ..., S_k} so as to minimize the within-cluster sum of squared distances
- The objective is to minimize:

Lloyd's algorithm for k-means

- Initialize k centers by picking k points randomly among all the points
- ◆ Repeat till convergence (or max iterations)

CMPSCI 370

• Assign each point to the nearest center (assignment step)

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} ||\mathbf{x} - \mu_i||^2$$

• Estimate the mean of each group (update step)

$$\arg\min_{\mathbf{S}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in S_i} \frac{||\mathbf{x} - \mu_i||^2}{|\mathbf{x} - \mu_i||^2}$$

42

k-means for image segmentation

Lecture outline

- Origin and motivation of the "bag of words" model
- Algorithm pipeline
 - Extracting local features
 - Learning a dictionary clustering using k-means
 - Encoding methods hard vs. soft assignment
 - Spatial pooling pyramid representations
 - Similarity functions and classifiers

Encoding methods

• Assigning words to features

Encoding methods

 Assigning words to features different words Visual vocabulary similar features hard assignment 0 0 0 0 2 1 3 1 partition of space large quantization error 49 49

<complex-block> Assigning words to features Soft assignment Visual vocabulary φ_i ∝ e^{-f(d(x,c_i))} assign high weights to centers that are close in practice non-zero to only k-nearest neighbors

50

Encoding considerations

- What should be the size of the dictionary?
 - Too small: don't capture the variability of the dataset
 - Too large: have too few points per cluster
- Speed of embedding
 - Exact nearest neighbor is slow if the dictionary is large
 - Approximate nearest neighbor techniques
 - Search trees organize data in a tree
 - Hashing create buckets in the feature space

Spatial pyramids

pooling: sum embeddings of local features within a region

Spatial pyramids

pooling: sum embeddings of local features within a region

54

Spatial pyramids

pooling: sum embeddings of local features within a region

Comparing features

• Euclidean distance:

$$D(\mathbf{h}_1, \mathbf{h}_2) = \sqrt{\sum_{i=1}^{N} (\mathbf{h}_1(i) - \mathbf{h}_2(i))^2}$$

• L1 distance:

$$D(\mathbf{h}_1, \mathbf{h}_2) = \sum_{i=1}^N |\mathbf{h}_1(i) - \mathbf{h}_2(i)|$$

Bags of features representation

57

59

Ι

58

 $\mathbf{h} = \Phi(I)$

image similarity = feature similarity

Results: scene category dataset

Multi-class classification results (100 training images per class)

	Weak features		Strong features	
	(vocabulary size: 16)		(vocabulary size: 200)	
Level	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6	
$1(2 \times 2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ± 0.3
$3(8 \times 8)$	63.3 ± 0.8	66.8 ±0.6	77.2 ± 0.4	80.7 ± 0.3

62

62

64

Results: Caltech-101 dataset

Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	$15.5\pm\!0.9$		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	$52.2\pm\!0.8$	$\textbf{54.0} \pm 1.1$	60.3 ± 0.9	$64.6\pm\!0.7$

Further thoughts and readings ...

- All about embeddings (detailed experiments and code)
 - K. Chatfield et al., The devil is in the details: an evaluation of recent feature encoding methods, BMVC 2011
 - <u>http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/</u>
 - Includes discussion of advanced embeddings such as Fisher vector representations and locally linear coding (LLC)