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• Homework 5 posted 
• Due April 26, 5:00 PM (note the change in time) 
• Last day of class (don’t skip class to do the homework) 

• No HH section today 

• In the remaining five classes 
• Image representations (this week) 
• Convolutional neural networks (next week +) 
• Some other topic (if time permits) — tracking, optical flow, 

computational photography, etc.

Administrivia
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Recall the machine learning approach
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Slide credit: D. Hoiem

This week
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Most learning methods are invariant to feature permutation
‣ E.g., patch vs. pixel representation of images

The importance of good features
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can you recognize the digits?

permute pixels

bag of pixels

permute patches

bag of patches
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Consider matching with image patches
‣ What could go wrong?

The importance of good features
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template

image
match quality

e.g., cross correlation
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Any transformation of an image into a new representation
Example: transform an image into a binary edge map

What is a feature map?

6

Image source: wikipedia
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Introduce invariance to nuisance factors
‣ Illumination changes 
‣ Small translations, rotations, scaling, shape deformations 

Preserve larger scale spatial structure

Feature map goals

7

Image: [Fergus05]
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Two popular image features
‣ Histogram of Oriented Gradients (HOG) 
‣ Bag of Visual Words (BoVW) 

Applications of these features

We will discuss …
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Introduced by Dalal and Triggs (CVPR 2005)
An extension of the SIFT feature
HOG properties:
‣ Preserves the overall structure of the image 
‣ Provides robustness to illumination and small deformations

Histogram of Oriented Gradients
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HOG feature
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Divide the image into blocks
Compute histograms of gradients for each regions

HOG feature: basic idea
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Gradient normimage HOG feature

spatial  
and  

orientation 
binning

gradient 
magnitude 

and  
orientation
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HOG feature: full pipeline
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additional 
invariance
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Smaller bin-size: better spatial resolution 
Larger bin-size: better invariance to deformations 
Optimal value depends on the object category being modeled 
‣ e.g. rigid vs. deformable objects

Effect of bin-size
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10x10	cells	

20x20	cells	

12



Subhransu Maji (UMASS)CMPSCI 370

Compute the HOG feature map for the image
Convolve the template with the feature map to get score
Find peaks of the response map (non-max suppression)
What about multi-scale?

Template matching with HOG
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TemplateHOG feature map Detector response map
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• Compute HOG of the whole image at multiple resolutions 

• Score each sub-windows of the feature pyramid

(a) (b) (c) (d) (e) (f) (g)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
Acknowledgments. This work was supported by the Euro-
pean Union research projects ACEMEDIA and PASCAL. We
thanks Cordelia Schmid for many useful comments. SVM-
Light [10] provided reliable training of large-scale SVM’s.
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Multi-scale template matching
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Example detections
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Introduction

Detect & localize upright people
in static images

Challenges
Wide variety of articulated poses
Variable appearance/clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Applications
Pedestrian detection for smart cars
Film & media analysis
Visual surveillance

Histograms of Oriented Gradients for Human Detection – p. 2/13
N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
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Example detections
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N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005
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Two popular image features
‣ Histogram of Oriented Gradients (HOG) 
‣ Bag of Visual Words (BoVW)

We will discuss …
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 

• Learning a dictionary — clustering using k-means 

• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers

Bag of visual words

18Figure from Chatfield et al.,2011
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Bag of features
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Properties:  
• Spatial structure is not preserved 
• Invariance to large translations 

Compare this to the HOG feature
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• Texture is characterized by the repetition of basic elements 
or textons 

• For stochastic textures, it is the identity of the textons, not 
their spatial arrangement, that matters

Origin 1: Texture recognition
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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Origin 1: Texture recognition
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Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003
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• Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)

Origin 2: Bag-of-words models
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• Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models
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• Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models
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• Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)

US Presidential Speeches Tag Cloud 
http://chir.ag/projects/preztags/

Origin 2: Bag-of-words models
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 

• Learning a dictionary — clustering using k-means 

• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers

Lecture outline

26Figure from Chatfield et al.,2011
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• Regular grid or interest regions

Local feature extraction
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corner detector

27

Normalize patch

Detect patches

Compute 
descriptor

Slide credit: Josef Sivic 28

Local feature extraction

Choices of descriptor: 
• SIFT 
• The patch itself 
• …

28



…

Slide credit: Josef Sivic

Local feature extraction

Extract features from many images
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 

• Learning a dictionary — clustering using k-means 

• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers

Lecture outline

30Figure from Chatfield et al.,2011
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…

Learning a dictionary

Slide credit: Josef Sivic
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Clustering

…

Slide credit: Josef Sivic

Learning a dictionary
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Clustering

…
Visual vocabulary

Learning a dictionary

Slide credit: Josef Sivic
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Basic idea: group together similar instances
Example: 2D points

Clustering

34
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Basic idea: group together similar instances
Example: 2D points

Clustering

35

dist(x,y) = ||x� y||22

What could similar mean?
‣ One option: small Euclidean distance (squared) 

‣ Clustering results are crucially dependent on the measure of 
similarity (or distance) between points to be clustered
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Simple clustering: organize 
elements into k groups
‣ K-means 
‣ Mean shift 
‣ Spectral clustering 

Hierarchical clustering: organize 
elements into a hierarchy
‣ Bottom up - agglomerative 
‣ Top down - divisive

Clustering algorithms
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Image segmentation: break up the image into similar regions

Clustering examples
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image credit: Berkeley segmentation benchmark
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Clustering news articles

Clustering examples
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Clustering queries

Clustering examples
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Clustering people by space and time

Clustering examples
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image credit: Pilho Kim
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Given (x1, x2, …, xn) partition the n observations into k (≤ n) sets 
S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of 
squared distances 

The objective is to minimize:

Clustering using k-means

41

argmin
S

kX

i=1

X

x2Si

||x� µi||2

cluster center
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Initialize k centers by picking k points randomly among all the points
Repeat till convergence (or max iterations)
‣ Assign each point to the nearest center (assignment step) 

‣ Estimate the mean of each group (update step)

Lloyd’s algorithm for k-means
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argmin
S

kX

i=1

X

x2Si

||x� µi||2

argmin
S

kX

i=1

X

x2Si

||x� µi||2
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k-means in action
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http://simplystatistics.org/2014/02/18/k-means-clustering-in-a-gif/
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k-means for image segmentation
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Grouping pixels based 
 on intensity similarity

feature space: intensity value (1D)

K=2

K=3
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Example codebook
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…

Source: B. Leibe

Appearance codebook
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Another codebook
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Appearance codebook
…

Source: B. Leibe
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 

• Learning a dictionary — clustering using k-means 

• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers

Lecture outline

47Figure from Chatfield et al.,2011
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• Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3

…

partition of space

Also called hard assignment
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• Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3

partition of space large quantization error

similar features

different words

hard assignment

1 0 0 0 0 1
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• Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3

partition of space

soft assignment

↵i / e�f(d(x,ci))

assign high weights to 
centers that are close

in practice non-zero to 
only k-nearest neighbors
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• Assigning words to features

Encoding methods
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Visual vocabulary

1

2 3
partition of space

similar features

soft assignment

0.6 0 0.4 0.4 0 0.6

soft assignment

hard assignment

1 0 0 0 0 1

↵i / e�f(d(x,ci))
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• What should be the size of the dictionary? 
• Too small: don’t capture the variability of the dataset 
• Too large: have too few points per cluster 

• Speed of embedding 
• Exact nearest neighbor is slow if the dictionary is large 
• Approximate nearest neighbor techniques 

- Search trees — organize data in a tree 
- Hashing — create buckets in the feature space

Encoding considerations

52
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 

• Learning a dictionary — clustering using k-means 

• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers

Lecture outline

53Figure from Chatfield et al.,2011
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Spatial pyramids

54

level 0

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region
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Spatial pyramids
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level 0 level 1

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region

Same motivation as SIFT — keep coarse layout information
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Spatial pyramids
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level 0 level 1 level 2

Lazebnik, Schmid & Ponce (CVPR 2006)

pooling: sum embeddings of local features within a region

Same motivation as SIFT — keep coarse layout information
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 

• Learning a dictionary — clustering using k-means 

• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers

Lecture outline

57Figure from Chatfield et al.,2011
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Bags of features representation
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I

image similarity = feature similarity

h = �(I)
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• Euclidean distance: 

• L1 distance:  

Comparing features
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• Decision trees 

• Nearest neighbor classifiers

Classifiers
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Test 
example

Training 
examples 

from class 1

Training 
examples 

from class 2
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• Origin and motivation of the “bag of words” model 
• Algorithm pipeline 

• Extracting local features 

• Learning a dictionary — clustering using k-means 

• Encoding methods — hard vs. soft assignment 
• Spatial pooling — pyramid representations 
• Similarity functions and classifiers

Lecture outline

61Figure from Chatfield et al.,2011

Putting it all 
 together
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Results: scene category dataset
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Multi-class classification results 
(100 training images per class)
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Results: Caltech-101 dataset
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Multi-class classification results (30 training images per class)
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• All about embeddings (detailed experiments and code) 
• K. Chatfield et al., The devil is in the details: an evaluation of 

recent feature encoding methods, BMVC 2011 
• http://www.robots.ox.ac.uk/~vgg/research/encoding_eval/ 

• Includes discussion of advanced embeddings such as Fisher 
vector representations and locally linear coding (LLC) 

Further thoughts and readings …
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