CMPSCI 370: Intro. to Computer Vision The machine learning framework

University of Massachusetts, Amherst April 5/7, 2016

Instructor: Subhransu Maji

Administrivia

- Homework 4 due this Thursday, April 07
- Additional OH today (3-4 pm, CS 274)
- Honors section will meet today
 - We will discuss how the Microsoft Kinect works
 - Non HH students are welcome (CS 142, 4:00-5:00 pm)

2

Today and tomorrow

- The machine learning framework
- Common datasets in computer vision
- An example: decision tree classifiers

Classification

- How would you write a program to distinguish a picture of me from a picture of someone else?
- How would you write a program to determine whether a sentence is grammatical or not?
- How would you write a program to distinguish cancerous cells from normal cells?

CMPSCI 370

Classification

- How would you write a program to distinguish a picture of me from a picture of someone else?
- Provide examples pictures of me and pictures of other people and let a classifier learn to distinguish the two.
- How would you write a program to determine whether a sentence is grammatical or not?
- Provide examples of grammatical and ungrammatical sentences and let a classifier learn to distinguish the two.
- How would you write a program to distinguish cancerous cells from normal cells?
- Provide examples of cancerous and normal cells and let a classifier learn to distinguish the two.

CMPSCI 370

Subhransu Maji (UMASS)

5

Data ("weather" prediction)

Data ("weather" prediction)

|--|

Class	Outlook	Temperature	Windy?
Play	Sunny	Low	Yes
No play	Sunny	High	Yes
No play	Sunny	High	No
Play	Overcast	Low	Yes
Play	Overcast	High	No
Play	Overcast	Low	No
No play	Rainy	Low	Yes
Play	Rainy	Low	No

Three principal components

- 1. Class label (aka "label", denoted by y)
- 2. Features (aka "attributes")
- 3. Feature values (aka "attribute values", denoted by *x*)
 - → Feature values can be binary, nominal or continuous

Subhransu Maji (UMASS)

6

♦ A labeled dataset is a collection of (x, y) pairs

CMPSCI 370

Unsupervised learning: Clustering

- Two types of clustering
 - 1. Clustering into distinct components

2. Hierarchical clustering

15

Unsupervised learning: Clustering

1. Clustering into distinct components

- How many clusters are there?
- What is important? Person? Expression? Lighting?

Subhransu Maji (UMASS)

- 2. Hierarchical clustering
 - What is important?How will we use this?

CMPSCI 370

Learning to recognize

16

Apply a prediction function to a feature representation of the image to get the desired output:

f() = "apple" f() = "tomato" f() = "cow"

How well does a learned model generalize from the data it was trained on to a new test set?

Diagnosing generalization ability

Training error: how well does the model perform at prediction on the data on which it was trained?Test error: how well does it perform on a never before seen test set?

Training and test error are both high: underfitting

- Model does an equally poor job on the training and the test set
- Either the training procedure is ineffective or the model is too "simple" to represent the data

Training error is low but test error is high: overfitting

- Model has fit irrelevant characteristics (noise) in the training data
- Model is too complex or amount of training data is insufficient

Today and tomorrow

- The machine learning framework
- Common datasets in computer vision
- An example: decision trees

Caltech-101: Intra-class variability

The PASCAL Visual Object Classes Challenge (2005-2012)

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Challenge classes:

Person: person *Animal:* bird, cat, cow, dog, horse, sheep *Vehicle:* aeroplane, bicycle, boat, bus, car, motorbike, train *Indoor:* bottle, chair, dining table, potted plant, sofa, tv/ monitor

Dataset size (by 2012):

11.5K training/validation images, 27K bounding boxes, 7K segmentations

PASCAL competitions

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Classification: For each of the twenty classes, predicting presence/absence of an example of that class in the test image

Detection: Predicting the bounding box and label of each object from the twenty target classes in the test image

PASCAL competitions

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Segmentation: Generating pixel-wise segmentations giving the class of the object visible at each pixel, or "background" otherwise

Person layout: Predicting the bounding box and label of each part of a person (head, hands, feet)

PASCAL competitions

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Action classification (10 action classes)

Today and tomorrow

- The machine learning framework
- Common datasets in computer vision
- An example: decision tree classifiers

The decision tree model of learning

- Classic and natural model of learning
- Question: Will an unknown user enjoy an unknown course?
 - You: Is the course under consideration in Systems?
 - Me: Yes
 - You: Has this student taken any other Systems courses?
- Me: Yes
- You: Has this student liked most previous Systems courses?
- Me: No
- You: I predict this student will not like this course.
- Goal of learner: Figure out what questions to ask, and in what order, and what to predict when you have answered enough questions

Learning a decision tree

- Recall that one of the ingredients of learning is training data
- ▶ I'll give you (x, y) pairs, i.e., set of (attributes, label) pairs
- We will simplify the problem by
 - ◄ {0,+1, +2} as "liked"
- ➡ {-1,-2} as "hated"
- ♦ Here:
 - Questions are features
 - Responses are feature values
 - Rating is the label
- + Lots of possible trees to build
- Can we find good one quickly?

```
Rating
       Easy?
             AI?
                 Sys?
                       Thy?
                             Morning?
 +2
        у
              y
                   n
                         y
                                 n
 +2
        у
              y
                   n
                                 n
                         y
 +2
        n
                   n
                         n
                                 n
              v
 +2
        n
                                 n
 +2
        n
                                у
 +1
        у
                                 n
 +1
                                 n
        y
 +1
        n
                                 n
 0
        n
                                y
 0
        v
                         v
                                у
 0
        n
                                 n
                         v
 0
 -1
        у
                         n
                                 y
 -1
        n
                                 n
 -1
                                y
 -1
                                y
 -2
                                 n
 -2
        n
                                у
 -2
                                 n
 -2
```

Course ratings dataset

37

CMPSCI 370

Subhransu Maji (UMASS)

question would I ask? You want a feature that is most

useful in predicting the rating of the course

If I could ask one question, what

Greedy decision tree learning

 A useful way of thinking about this is to look at the histogram of the labels for each feature

Kating	Easy?	AI?	Sys?	Thy?	Morning?
+2	у	у	n	у	n
+2	у	у	n	у	n
+2	n	у	n	n	n
+2	n	n	n	у	n
+2	n	у	у	n	У
+1	у	у	n	n	n
+1	у	у	n	У	n
+1	n	у	n	У	n
0	n	n	n	n	У
0	у	n	n	У	у
0	n	у	n	У	n
0	у	у	у	У	у
-1	у	у	у	n	у
-1	n	n	у	У	n
-1	n	n	у	n	у
-1	у	n	у	n	У
-2	n	n	у	У	n
-2	n	у	у	n	У
-2	у	n	у	n	n
-2	у	n	у	n	у

What attribute is useful? Rating Easy? AI? Sys? Thy? Morning? Attribute = Easy? +2 у +2 у +2 n +2 n +2 n +1 у +1 у +1 n 0 n 0 у 0 n 0 -1 у -1 n -1 n -1 v -2 n -2 n -2 y -2 CMPSCI 370 Subhransu Maji (UMASS) 39

What attribute is useful?

What attribute is useful?

What attribute is useful? Rating Easy? AI? Sys? Thy? Morning? Attribute = Sys? +2 n +2 n +2 n +2 n +2 v +1 n +1 n +1 n 0 n 0 n 0 n 0 -1 -1 -1 v -1 y -2 y -2 у -2 y -2 v CMPSCI 370 Subhransu Maji (UMASS) 43

What attribute is useful?

What attribute is useful?

Decision tree training

Training procedure

- 1. Find the feature that leads to best prediction on the data
- 2.Split the data into two sets {feature = Y}, {feature = N}
- 3.Recurse on the two sets (Go back to Step 1)

4.Stop when some criteria is met

- When to stop?
 - When the data is unambiguous (all the labels are the same)
- When there are no questions remaining
- When maximum depth is reached (e.g. limit of 20 questions)
- Testing procedure
- Traverse down the tree to the leaf node
- Pick the majority label

Decision tree train	n				
Algorithm 1 DecisionTreeTrain	N(data, remaining features)				
$_{1:}$ guess \leftarrow most frequent answer in	n data // default answer for this data				
² if the labels in <i>data</i> are unambigu	ious then				
3: return LEAF(guess)	<pre>// base case: no need to split further</pre>				
4: else if remaining features is empty	/ then				
5: return LEAF(guess)	<pre>// base case: cannot split further</pre>				
6: else	// we need to query more features				
$_{7:}$ for all $f \in remaining features do$)				
$NO \leftarrow$ the subset of <i>data</i> or	$NO \leftarrow$ the subset of <i>data</i> on which $f=no$				
$_{9}$: $YES \leftarrow$ the subset of <i>data</i> or	$YES \leftarrow$ the subset of <i>data</i> on which <i>f</i> =yes				
$score[f] \leftarrow # of majority vote$	score[f] \leftarrow # of majority vote answers in NO				
+ # of majority vote	+ # of majority vote answers in YES				
// the	accuracy we would get if we only queried on f				
12: end for					
$_{13:}$ $f \leftarrow$ the feature with maximal	score(f)				
$_{14:}$ NO \leftarrow the subset of <i>data</i> on w	$_{14:}$ NO \leftarrow the subset of <i>data</i> on which <i>f</i> = <i>no</i>				
$_{15:} YES \leftarrow \text{ the subset of } data \text{ on } v$	$YES \leftarrow$ the subset of <i>data</i> on which <i>f</i> =yes				
$_{16:} left \leftarrow \text{DecisionTreeTrain}($	left \leftarrow DecisionTreeTrain(NO, remaining features $\setminus \{f\}$)				
$_{17:}$ right \leftarrow DecisionTreeTrain	right \leftarrow DECISIONTREETRAIN(YES, remaining features $\setminus \{f\}$)				
18: return Node(<i>f</i> , <i>left</i> , <i>right</i>)					
19: end if					
CMPSCI 370 Subhrans	u Maii (UMASS) 49				

Algorithm 2 DECISIONTREETEST(tree, test point) : if tree is of the form LEAF(guess) then : if tree is of the form NODE(f, left, right) then : if f = yes in test point then : return DECISIONTREETEST(left, test point) : else : return DECISIONTREETEST(right, test point) : end if

Model, parameters and hyperparameters

Subhransu Maji (UMASS)

Model: decision tree

CMPSCI 370

- Parameters: learned by the algorithm
- Hyperparameter: depth of the tree to consider
- · A typical way of setting this is to use validation data
- Usually set 2/3 training and 1/3 testing
 - Split the training into 1/2 training and 1/2 validation
 - Estimate optimal hyperparameters on the validation data

52

DTs in action: Face detection

- Application: Face detection [Viola & Jones, 01]
 - Features: detect light/dark rectangles in an image

DTs in action: Digits classification

• Early proponents of random forests: "Joint Induction of Shape Features and Tree Classifiers", Amit, Geman and Wilder, PAMI 1997

Single tree: 7.0% error

Subhransu Maji (UMASS)

Combination of 25 trees: 0.8% error

Features: arrangement of tags

CMPSCI 370

A subset of all the 62 tags

54

#Features: 62x62x8 = 30,752

DT in action: Kinect pose estimation

Homework 5

- Classify digits 3 vs. 8
- Decision node: is pixel (x,y) is 0 or 1

Slides credit

- Decision tree learning and material are based on CIML book by Hal Daume III (<u>http://ciml.info/dl/v0_9/ciml-v0_9-ch01.pdf</u>)
- Bias-variance figures <u>https://theclevermachine.wordpress.com/</u> tag/estimator-variance/
- Figures for random forest classifier on MNIST dataset Amit, Geman and Wilder, PAMI 1997 — <u>http://www.cs.berkeley.edu/~malik/cs294/</u> <u>amitgemanwilder97.pdf</u>
- Figures for Kinect pose "Real-Time Human Pose Recognition in Parts from Single Depth Images", J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, R. Moore, A. Kipman, A. Blake, CVPR 2011
- Credit for many of these slides go to Alyosha Efros, Shvetlana Lazebnik, Hal Daume III, Alex Berg, etc