

Administrivia

- And now the winners of homework #3 hybrid images
 - as decided by the graders ...

Winner (#3): John Williams

Bernie Sanders + Hillary Clinton

Bernie Clinton

Winner (#2): Joshua Espinosa

Brain & Coral

<image>

Honorable mention: Matthew Lydigsen

lighthouse + dalek

Honorable mention: Makenzie Schwartz

hillary + trump

7

Honorable mention: Nathan Greenberg

6

8

?? + simon pegg

<section-header><section-header><section-header>

A framework for alignment

- Matching local features
 - Local information used, can contain outliers
 - But hopefully enough of these matches are good

Image alignment

• But first are there any questions?

A framework for alignment

10

- Matching local features
 - Local information used, can contain outliers
 - But hopefully enough of these matches are good
- Consensus building
 - Aggregate the good matches and find a transformation that explains these matches

<section-header><section-header><section-header><section-header><image><image><image>

Generating putative correspondences

Feature detection with scale selection

• We want to extract features with characteristic scale that matches the image transformation such as scaling and translation (a.k.a. covariance)

Matching regions across scales

Source: L. Lazebnik 15

Blob detection: basic idea

- Convolve the image with a "blob filter" at multiple scales
- Look for extrema (maxima or minima) of filter response in the resulting *scale space*
- This will give us a scale and space covariant detector

Blob detection: basic idea

Find maxima *and minima* of blob filter response in space *and scale* minima

Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

Scale selection

Source: N. Snavely 18

- At what scale does the Laplacian achieve a maximum response to a binary circle of radius r?
- To get maximum response, the zeros of the Laplacian have to be aligned with the circle
- The Laplacian is given by (up to scale):

Characteristic scale

• We define the characteristic scale of a blob as the scale that produces peak of Laplacian response in the blob center

Scale-space blob detector

1. Convolve image with scale-normalized Laplacian at several scales

Source: L. Lazebnik 22

24

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector

- 1. Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scalespace

Source: L. Lazebnik 25

27

Scale-space blob detector: Example

Source: L. Lazebnik 26

From feature detection to description

- Scaled and rotated versions of the same neighborhood will give rise to blobs that are related by the same transformation
- What to do if we want to compare the appearance of these image regions?
 - Normalization: transform these regions into same-size circles
 - Problem: rotational ambiguity

Source: L. Lazebnik 28

Eliminating rotation ambiguity

• To assign a unique orientation to circular image windows:

- Create histogram of local gradient directions in the patch
- Assign canonical orientation at peak of smoothed histogram

SIFT features

• Detected features with characteristic scales and orientations:

From feature detection to description

how should we represent the patches?

Feature descriptors

- Simplest descriptor: vector of raw intensity values
- How to compare two such vectors?
 - Sum of squared differences (SSD) this is a distance measure

$$SSD(\mathbf{u}, \mathbf{v}) = \sum_{i} (u_i - v_i)^2$$

- Not invariant to intensity change
- Normalized correlation this is a similarity measure

$$\rho(\mathbf{u}, \mathbf{v}) = \frac{(\mathbf{u} - \overline{\mathbf{u}})}{\|\mathbf{u} - \overline{\mathbf{u}}\|} \cdot \frac{(\mathbf{v} - \overline{\mathbf{v}})}{\|\mathbf{v} - \overline{\mathbf{v}}\|} = \frac{\sum_{i} (u_{i} - \overline{\mathbf{u}})(v_{i} - \overline{\mathbf{v}})}{\sqrt{\left(\sum_{j} (u_{j} - \overline{\mathbf{u}})^{2}\right)\left(\sum_{j} (v_{j} - \overline{\mathbf{v}})^{2}\right)}}$$

32

- Invariant to affine (translation + scaling) intensity change

Source: L. Lazebnik 31

Problem with intensity vectors as descriptors

• Small deformations can affect the matching score a lot

Feature descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4x4 sub-patches
 - Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Feature descriptors: SIFT

- Descriptor computation:
 - Divide patch into 4x4 sub-patches
 - Compute histogram of gradient orientations (8 reference angles) inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions
- Advantage over raw vectors of pixel values
 - Gradients less sensitive to illumination change
 - Pooling of gradients over the sub-patches achieves robustness to small shifts, but still preserves some spatial information

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

35

Problem: Ambiguous putative matches

Source: Y. Furukawa 36

Rejection of unreliable matches

- How can we tell which putative matches are more reliable?
- Heuristic: compare distance of **nearest** neighbor to that of **second** nearest neighbor
- Ratio of closest distance to second-closest distance will be *high* for features that are *not* distinctive

RANSAC

- Random Sample Consensus
 - · Choose a small subset of points uniformly at random
 - · Fit a model to that subset
 - Find all remaining points that are "close" to the model and reject the rest as outliers
 - · Do this many times and choose the best model
- For rigid transformation we can estimate the parameters of the **transformation**, e.g., rotation angle, scaling, translation, etc, from **putative** correspondence matches
- Lets see how RANSAC works for a simple example.

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with</u> <u>Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC for line fitting example

RANSAC for line fitting example

RANSAC for line fitting example

RANSAC for line fitting example

RANSAC for line fitting

Repeat N times:

- Draw s points uniformly at random
- Fit line to these **s** points
- Find *inliers* to this line among the remaining points (i.e., points whose distance from the line is less than *t*)
- If there are *d* or more inliers and the number of inliers is higher than the *previous best*, accept the line and refit using all inliers.

RANSAC for image matching

• Given a number of putative matches, select **inliers** based on their agreement with an underlying **transformation**

• How do we represent image transformations?

Families of transformation

Figure 2.4 Basic set of 2D planar transformations.

From Computer Vision: Algorithms and Applications, by Rick Szeliski

51

How do we move pixels?

• Think about moving coordinates, not pixels.

Points in 2D

56

Identity: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Uniform scaling: $\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$ Scaling in x: $\left[\begin{array}{cc} s_x & 0 \\ 0 & 1 \end{array} ight]$ Rotation by θ radians: $\cos(\theta) - \sin(\theta)$ $\sin(\theta) \quad \cos(\theta)$

 $\begin{bmatrix} 1 & sh_x \\ 0 & 1 \end{bmatrix}$

 $a \quad b$ c d

Shearing in x:

Arbitrary linear transformation:

Families of linear transforms

Affine transformations

• Affine = linear + translation

 $\mathbf{x} \to \mathbf{M} \mathbf{x} + \mathbf{t}$

- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models

Fitting an affine transformation

• Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

• Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

62

$$\begin{bmatrix} & \cdots & & & \\ x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & \cdots & & & & 1 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} \cdots \\ x'_i \\ y'_i \\ \cdots \end{bmatrix}$$

- Linear system with six unknowns
- Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Application: Panorama stitching

Panoramic stitching

• Approach

- Local feature matching
- RANSAC for alignment

Panoramic stitching

Panoramic stitching

- Extract features
 - corner/blob detector

Panoramic stitching

- Extract features
- Compute *putative matches*

Panoramic stitching

- Extract features
- Compute *putative matches*
- Loop:
 - *Hypothesize* transformation *T*

Panoramic stitching

- Extract features
- Compute *putative matches*
- Loop:
- *Hypothesize* transformation *T*
- Verify transformation (search for other matches consistent with T)

Warping images

70

72

To shift an image (dx, dy)

- Let (ox, oy) be the coordinates of a pixel in the original image with a particular appearance
- Let (nx, ny) be the new coordinates, i.e., where we want that pixel
- For each pixel
 - nx = ox + dx
 - ny = oy + dy
 - newIm(ny, nx) = im(oy, ox);

Mechanics of transformation

procedure forwardWarp(f, h, out g):

For every pixel \boldsymbol{x} in $f(\boldsymbol{x})$

- 1. Compute the destination location x' = h(x).
- 2. Copy the pixel f(x) to g(x').

From Computer Vision: Algorithms and Applications, by Rick Szeliski

Mechanics of transformation

procedure forwardWarp(f, h, out g):

For every pixel \boldsymbol{x} in $f(\boldsymbol{x})$

- 1. Compute the destination location x' = h(x).
- 2. Copy the pixel f(x) to g(x').
- Problems with this transformation
 - Leaves gaps in the target image
 - Interpolation less intuitive

Example of forward warp

Rotation by 45 degrees

Mechanics of transformation

74

76

procedure inverseWarp(f, h, out g):

For every pixel \pmb{x}' in $g(\pmb{x}')$

- 1. Compute the source location $\boldsymbol{x} = \boldsymbol{\hat{h}}(\boldsymbol{x}')$
- 2. Resample f(x) at location x and copy to g(x')

From Computer Vision: Algorithms and Applications, by Rick Szeliski

Panoramic stitching warping

