
CMPSCI 370: Intro. to Computer Vision
Image alignment

University of Massachusetts, Amherst 
March 22/24, 2016

Instructor: Subhransu Maji

• And now the winners of homework #3 hybrid images 
• as decided by the graders … 

Administrivia
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Winner (#3): John Williams
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Winner (#2): Joshua Espinosa
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Winner (#1): Alan Rusell
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Honorable mention: Matthew Lydigsen
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lighthouse + dalek

Honorable mention: Makenzie Schwartz 
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hillary + trump

Honorable mention: Nathan Greenberg
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?? + simon pegg



Honorable mention: David Carlson
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snoop dogg + dog • But first are there any questions?

Image alignment
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• Matching local features 
• Local information used, can contain outliers 
• But hopefully enough of these matches are good

A framework for alignment
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• Matching local features 
• Local information used, can contain outliers 
• But hopefully enough of these matches are good 

• Consensus building 
• Aggregate the good matches and find a transformation that 

explains these matches

A framework for alignment
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Generating putative correspondences
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?

• Need to find regions and compare their feature descriptors 

Generating putative correspondences
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descriptor
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• We want to extract features with characteristic scale that 
matches the image transformation such as scaling and 
translation (a.k.a. covariance)

Feature detection with scale selection
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Matching regions across scales

Source: L. Lazebnik

Scaling
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All points will be 
classified as 
edges

Corner

Corner detection is sensitive to the image scale!
Source: L. Lazebnik



• Convolve the image with a “blob filter” at multiple scales  
• Look for extrema (maxima or minima) of filter response in 

the resulting scale space 
• This will give us a scale and space covariant detector

Blob detection: basic idea

17Source: L. Lazebnik

Find maxima and minima of blob filter response in space 
and scale

Blob detection: basic idea
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minima

Source: N. Snavely

Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D

Blob detection in 2D
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norm y
g

x
g

g σScale-normalized:

Source: L. Lazebnik

• At what scale does the Laplacian achieve a maximum 
response to a binary circle of radius r? 

• To get maximum response, the zeros of the Laplacian have to 
be aligned with the circle 

• The Laplacian is given by (up to scale):  
 

• Therefore, the maximum response occurs at 

Scale selection
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Source: L. Lazebnik



• We define the characteristic scale of a blob as the scale 
that produces peak of Laplacian response in the blob 
center

Characteristic scale
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characteristic scale
T. Lindeberg (1998). "Feature detection with automatic scale 
selection." International Journal of Computer Vision 30 (2): pp 77--116. 

Source: L. Lazebnik

1. Convolve image with scale-normalized Laplacian at 
several scales

Scale-space blob detector

22Source: L. Lazebnik

Scale-space blob detector: Example
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Scale-space blob detector: Example
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1. Convolve image with scale-normalized Laplacian at 
several scales 

2. Find maxima of squared Laplacian response in scale-
space

Scale-space blob detector

25Source: L. Lazebnik

Scale-space blob detector: Example

26Source: L. Lazebnik

• Need to find regions and compare their feature descriptors 

Generating putative correspondences
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• Scaled and rotated versions of the same neighborhood will 
give rise to blobs that are related by the same transformation 

• What to do if we want to compare the appearance of these 
image regions? 

• Normalization: transform these regions into same-size 
circles 

• Problem: rotational ambiguity

From feature detection to description

28Source: L. Lazebnik



• To assign a unique orientation to circular image windows: 
• Create histogram of local gradient directions in the patch 
• Assign canonical orientation at peak of smoothed histogram

Eliminating rotation ambiguity
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0 2 π

Source: L. Lazebnik

• Detected features with characteristic scales and 
orientations:

SIFT features
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David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Source: L. Lazebnik

From feature detection to description

31Source: L. Lazebnik

how should we represent the patches?

• Simplest descriptor: vector of raw intensity values 
• How to compare two such vectors? 

• Sum of squared differences (SSD) — this is a distance measure  
 
 

- Not invariant to intensity change 

• Normalized correlation — this is a similarity measure  
 
 
 
 
 

- Invariant to affine (translation + scaling) intensity change

Feature descriptors
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• Small deformations can affect the matching score a lot 
 
 
 
 
 
 
 

Problem with intensity vectors as descriptors
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• Descriptor computation: 
• Divide patch into 4x4 sub-patches 
• Compute histogram of gradient orientations (8 reference angles) inside 

each sub-patch 
• Resulting descriptor: 4x4x8 = 128 dimensions

Feature descriptors: SIFT
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David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 
pp. 91-110, 2004. 

• Descriptor computation: 
• Divide patch into 4x4 sub-patches 
• Compute histogram of gradient orientations (8 reference angles) inside 

each sub-patch 
• Resulting descriptor: 4x4x8 = 128 dimensions  

• Advantage over raw vectors of pixel values 
• Gradients less sensitive to illumination change 
• Pooling of gradients over the sub-patches achieves robustness to small 

shifts, but still preserves some spatial information

Feature descriptors: SIFT
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David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 
pp. 91-110, 2004. 

Problem: Ambiguous putative matches

36Source: Y. Furukawa



• How can we tell which putative matches are more reliable? 
• Heuristic: compare distance of nearest neighbor to that of 

second nearest neighbor 
• Ratio of closest distance to second-closest distance will be high  

for features that are not distinctive

Rejection of unreliable matches
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David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 
pp. 91-110, 2004. 

Threshold of 0.8 provides 
good separation

• Random Sample Consensus 
• Choose a small subset of points uniformly at random 
• Fit a model to that subset 
• Find all remaining points that are “close” to the model and 

reject the rest as outliers 
• Do this many times and choose the best model 

• For rigid transformation we can estimate the parameters of 
the transformation, e.g., rotation angle, scaling, 
translation, etc, from putative correspondence matches 

• Lets see how RANSAC works for a simple example.

RANSAC

38

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with 
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 
381-395, 1981. 

RANSAC for line fitting example

39Source: R. Raguram

RANSAC for line fitting example
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Least-squares	fit

Source: R. Raguram
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• Data: 
• Line equation:

Least-squares line fitting
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1. Randomly	select	
minimal	subset	of	
points	

Source: R. Raguram

RANSAC for line fitting example
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1. Randomly	select	
minimal	subset	of	
points	

2. Hypothesize	a	
model

Source: R. Raguram

RANSAC for line fitting example
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1. Randomly	select	
minimal	subset	of	
points	

2. Hypothesize	a	
model	

3. Compute	error	
function

Source: R. Raguram

RANSAC for line fitting example
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1. Randomly	select	
minimal	subset	of	
points	

2. Hypothesize	a	
model	

3. Compute	error	
function	

4. Select	points	
consistent	with	
model	

Source: R. Raguram

RANSAC for line fitting example
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1. Randomly	select	
minimal	subset	of	
points	

2. Hypothesize	a	
model	

3. Compute	error	
function	

4. Select	points	
consistent	with	
model	

5. Repeat	hypothesize-
and-verify	loop	

Source: R. Raguram

RANSAC for line fitting example
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1. Randomly	select	
minimal	subset	of	
points	

2. Hypothesize	a	
model	

3. Compute	error	
function	

4. Select	points	
consistent	with	
model	

5. Repeat	hypothesize-
and-verify	loop	

Source: R. Raguram

RANSAC for line fitting example
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1. Randomly	select	
minimal	subset	of	
points	

2. Hypothesize	a	
model	

3. Compute	error	
function	

4. Select	points	
consistent	with	
model	

5. Repeat	hypothesize-
and-verify	loop	

Uncontaminated	sample

Source: R. Raguram

RANSAC for line fitting example
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1. Randomly	select	
minimal	subset	of	
points	

2. Hypothesize	a	
model	

3. Compute	error	
function	

4. Select	points	
consistent	with	
model	

5. Repeat	hypothesize-
and-verify	loop	

Source: R. Raguram

RANSAC for line fitting example
Repeat N times: 
• Draw s points uniformly at random 

• Fit line to these s points 
• Find inliers to this line among the remaining points (i.e., points 

whose distance from the line is less than t) 
• If there are d or more inliers and the number of inliers is higher 

than the previous best, accept the line and refit using all inliers.

RANSAC for line fitting
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• Given a number of putative matches, select inliers based on 
their agreement with an underlying transformation 

• How do we represent image transformations?

RANSAC for image matching
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Families of transformation

52



• Think about moving coordinates, not pixels.

How do we move pixels?
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Points in 2D
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Translation

55

Scaling
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Rotation
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Shear
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Arbitrary linear transformation
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Families of linear transforms

60



• Affine = linear + translation 

• Approximates viewpoint changes for roughly planar objects 
and roughly orthographic cameras 

• Can be used to initialize fitting for more complex models

Affine transformations
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x ! Mx+ t

• Assume we know the correspondences, how do we get the 
transformation?

Fitting an affine transformation
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• Assume we know the correspondences, how do we get the 
transformation?

Fitting an affine transformation

63

),( ii yx !!
),( ii yx

!
"

#
$
%

&
+!
"

#
$
%

&
!
"

#
$
%

&
=!

"

#
$
%

&
'

'

2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i

!
!
!
!

"

#

$
$
$
$

%

&

'

'
=

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

!

!

!

!

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

• Linear system with six unknowns 
• Each match gives us two linearly independent equations: 

need at least three to solve for the transformation 
parameters

Fitting an affine transformation

64

!
!
!
!

"

#

$
$
$
$

%

&

'

'
=

!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

!

!

!

!

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100



Application: Panorama stitching

65Source: Hartley & Zisserman

• Approach
• Local feature matching 
• RANSAC for alignment

Panoramic stitching
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?

Panoramic stitching
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• Extract features 
• corner/blob detector

Panoramic stitching

68



• Extract features 
• Compute putative matches

Panoramic stitching
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• Extract features 
• Compute putative matches 

• Loop: 
• Hypothesize transformation T

Panoramic stitching
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• Extract features 
• Compute putative matches 

• Loop: 
• Hypothesize transformation T 
• Verify transformation (search for other matches consistent with T)

Panoramic stitching
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To shift an image (dx, dy)
• Let (ox, oy) be the coordinates of a pixel in the original 

image with a particular appearance 
• Let (nx, ny) be the new coordinates, i.e., where we want that 

pixel 
• For each pixel 

nx = ox + dx
ny = oy + dy
newIm(ny, nx) = im(oy, ox);

Warping images

72



Mechanics of transformation
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• Problems with this transformation 
• Leaves gaps in the target image 
• Interpolation less intuitive

Mechanics of transformation
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• Rotation by 45 degrees

Example of forward warp
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Mechanics of transformation

76



• Rotation by 45 degrees

Example of inverse warp
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Panoramic stitching warping
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