
CMPSCI 370: Intro to Computer Vision
Image processing 

Scale Invariant Feature Transform (SIFT)
University of Massachusetts, Amherst 

March 03, 2015

Instructor: Subhransu Maji

• Exam review session in next class 

• Midterm in class (Thursday) 
• All topics covered till Feb 25 lecture (corner detection) 
• Closed book 

• Grading issues 
• Include all the information needed to grade the homework 
• Keep the grader happy :-) 

• Candy wrapper extra credit for participation (5%)

Administrivia
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Scale invariant features

3Source: L. Lazebnik

“blob detection”
• Motivation: panorama stitching 

• We have two images – how do we combine them?

Why extract features?

4Slide credit: L. Lazebnik



• Motivation: panorama stitching 
• We have two images – how do we combine them?

Why extract features?
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Step 1: extract features
Step 2: match features

Slide credit: L. Lazebnik

• Motivation: panorama stitching 
• We have two images – how do we combine them?

Why extract features?
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Step 1: extract features
Step 2: match features
Step 3: align images

Slide credit: L. Lazebnik

• We want to extract features with characteristic scale that 
matches the image transformation such as scaling and 
translation (a.k.a. covariance)

Feature detection with scale selection
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Matching regions across scales

Source: L. Lazebnik

Scaling
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All points will be 
classified as 
edges

Corner

Corner detection is sensitive to the image scale!
Source: L. Lazebnik



• Convolve the image with a “blob filter” at multiple scales  
• Look for extrema (maxima or minima) of filter response in 

the resulting scale space 
• This will give us a scale and space covariant detector

Blob detection: basic idea

9Source: L. Lazebnik

Find maxima and minima of blob filter response in space 
and scale

Blob detection: basic idea
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* =

maxima

minima

Source: N. Snavely

Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D

Blob filter
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Source: L. Lazebnik

Recall: sharpening filter
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Gaussian
unit impulse

Laplacian of Gaussian

I = blurry(I) + sharp(I) sharp(I) = I � blurry(I)

= I ⇤ e� I ⇤ g�

= I ⇤ (e� g�)



Recall: edge detection

13Source: S. Seitz
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edge filter, e.g. 
Derivative of a  
Gaussian

edge response

Edge detection using a Laplacian
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Edge

Second derivative 
of Gaussian  
(Laplacian)

Edge = zero crossing 
of second derivative

Source: S. Seitz

• edge = ripple 
• blob = superposition of two ripples

From edges to blobs
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Spatial selection: the magnitude of the Laplacian 
response will achieve a maximum at the center of 
the blob, provided the scale of the Laplacian is 
“matched” to the scale of the blob

maximum

Source: L. Lazebnik

• We want to find the characteristic scale of the blob by 
convolving it with Laplacians at several scales and looking 
for the maximum response 

• However, Laplacian response decays as scale increases:

Scale selection
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increasing σoriginal signal 
(radius=8)

Source: L. Lazebnik



• The response of a derivative of Gaussian filter to a perfect 
step edge decreases as σ increases

Scale normalization
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πσ 2
1

Source: L. Lazebnik

• The response of a derivative of Gaussian filter to a perfect 
step edge decreases as σ increases 

• To keep response the same (scale-invariant), must multiply 
Gaussian derivative by σ 

• Laplacian is the second Gaussian derivative, so it must be 
multiplied by σ2

Scale normalization

18Source: L. Lazebnik

Effect of scale normalization
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Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum
Source: L. Lazebnik

Laplacian of Gaussian: Circularly symmetric operator for 
blob detection in 2D

Blob detection in 2D
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norm y
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g σScale-normalized:

Source: L. Lazebnik



• At what scale does the Laplacian achieve a maximum 
response to a binary circle of radius r?

Scale selection
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r

image Laplacian
Source: L. Lazebnik

• At what scale does the Laplacian achieve a maximum 
response to a binary circle of radius r? 

• To get maximum response, the zeros of the Laplacian have to 
be aligned with the circle 

• The Laplacian is given by (up to scale):  
 

• Therefore, the maximum response occurs at 

Scale selection
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r

image

222 2/)(222 )2( σσ yxeyx +−−+
.2/r=σ

circle

Laplacian

0

Source: L. Lazebnik

• We define the characteristic scale of a blob as the scale 
that produces peak of Laplacian response in the blob 
center

Characteristic scale
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characteristic scale
T. Lindeberg (1998). "Feature detection with automatic scale 
selection." International Journal of Computer Vision 30 (2): pp 77--116. 

Source: L. Lazebnik

1. Convolve image with scale-normalized Laplacian at 
several scales

Scale-space blob detector

24Source: L. Lazebnik



Scale-space blob detector: Example
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Scale-space blob detector: Example
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1. Convolve image with scale-normalized Laplacian at 
several scales 

2. Find maxima of squared Laplacian response in scale-
space

Scale-space blob detector

27Source: L. Lazebnik

Scale-space blob detector: Example

28Source: L. Lazebnik



• Approximating the Laplacian with a difference of 
Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian)

(Difference of Gaussians)

Efficient implementation

29Source: L. Lazebnik

Is the Laplacian separable?

222 2/)(222 )2( σσ yxeyx +−−+

Efficient implementation
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David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

• Scaled and rotated versions of the same neighborhood will 
give rise to blobs that are related by the same transformation 

• What to do if we want to compare the appearance of these 
image regions? 

• Normalization: transform these regions into same-size 
circles 

• Problem: rotational ambiguity

From feature detection to description

31Source: L. Lazebnik

• To assign a unique orientation to circular image windows: 
• Create histogram of local gradient directions in the patch 
• Assign canonical orientation at peak of smoothed histogram

Eliminating rotation ambiguity
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0 2 π

Source: L. Lazebnik



• Detected features with characteristic scales and 
orientations:

SIFT features
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David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Source: L. Lazebnik

From feature detection to description

34Source: L. Lazebnik

how should we represent the patches?


