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• Homework 2 due today 

• Homework 3 will be posted later this week 
• will be due March 10  

• No class or honors section next Tuesday, 3/1 
• I am out of town to attend a CVPR program committee meeting 

• Honors section will meet today

Administrivia
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• Edge detection
• Derivative filters 

• Corner detection [today]
• What are corners? 
• Why detect corners? 
• Harris corner detector

Overview
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Feature extraction: Corners
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9300 Harris Corners Pkwy, Charlotte, NC

Slide credit: L. Lazebnik
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• Motivation: panorama stitching 
• We have two images – how do we combine them?

Why extract features?

5Slide credit: L. Lazebnik
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• Motivation: panorama stitching 
• We have two images – how do we combine them?

Why extract features?

6

Step 1: extract features
Step 2: match features

Slide credit: L. Lazebnik
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• Motivation: panorama stitching 
• We have two images – how do we combine them?

Why extract features?
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Step 1: extract features
Step 2: match features
Step 3: align images

Slide credit: L. Lazebnik
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• Repeatability 
• The same feature can be found in several images despite geometric and photometric 

transformations  
• Saliency 

• Each feature is distinctive 
• Compactness and efficiency 

• Many fewer features than image pixels 
• Locality 

• A feature occupies a relatively small area of the image; robust to clutter and occlusion

Characteristics of good features

8Slide credit: L. Lazebnik
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Feature points are used for: 
• Image alignment  
• 3D reconstruction 
• Motion tracking 
• Robot navigation 
• Indexing and database retrieval 
• Object recognition

Applications  

9Slide credit: L. Lazebnik
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A hard feature matching problem
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NASA Mars Rover images
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NASA Mars Rover images 
with SIFT feature matches 

Figure by Noah Snavely

Answer below (look for tiny colored squares…)
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• A corner is the intersection of two edges 
• We know how to detect edges 

• Corner detector v1 
• Detect edges in images (Gx and Gy) 
• Find places where both Gx and Gy are high

Corner detection: Attempt one
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• Problem: this also finds slanted edges
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• We should easily recognize the corners by looking through 
a small window 

• Shifting a window in any direction should give a large 
change in intensity at a corner

Corner detection: Attempt two
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“edge”: 
no change along 
the edge 
direction

“corner”: 
significant 
change in all 
directions

“flat” region: 
no change in 
all directions
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• We should easily recognize the corners by looking through 
a small window 

• Shifting a window in any direction should give a large 
change in intensity at a corner

Corner detection: Attempt two
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“edge”: 
no change along 
the edge 
direction

“corner”: 
significant 
change in all 
directions

“flat” region: 
no change in 
all directions
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• Implementing a corner detector 
• Fix the size of the patch (window size) 

• What happens if the window is too small? or too large? 

• Consider eight directions, and measure how much does a patch 
change in each direction for each location of the image

Corner detection: Attempt two
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• One way to measure change is to consider the sum of 
squared-differences. Thus, the change for a shift u, v 
and for an image window W is

Corner detection: details
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E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2
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W (u, v)

W
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• Assume for now that the window size W  is one pixel 
• How can we compute E(u,v) for every pixel in the image? 

• As an example consider E(1, 0), i.e. image shifted by one 
pixel to the right. This can be computed as convolution with 
f and squaring the result,

Corner detection: details
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E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

D(1, 0) = I ⇤

2

4
0 0 0
0 �1 1
0 0 0

3

5 Matlab: imfilter(I, f, ‘same’)

f
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• Generalize to any window size W 
• Given D(1,0) for each pixel, how can you compute the sum- 

of-squared-differences within a window? 
• Answer: filter the output with a box kernel 

• Better version: Convolve with a Gaussian kernel 
• More emphasis on the center than the boundary for each window

Corner detection: details
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EdgeScore(1, 0) = fW
box

⇤D(1, 0)2
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• Corner detector v2 
• Input: image I, window size W 
• Output: corner score for each pixel 
• Initialize: score = zeros(size(I)) 
• for u = -1:1 % horizontal shifts 

• for v = -1:1 % vertical shifts 

• imdiff = imfilter(I, f(u,v), ‘same’); % compute difference 

• score = score + imfilter(imdiff.^2, ones(W), ‘same’); % weighted 
squared difference 

• Here, f(u,v) is the filter to compute difference between a pixel and 
another shifted by (u,v)

Corner detection: algorithm
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Corner score example
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W = 5 W = 10

� = 2 � = 5

Gaussian filter 

Box filter image
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• Threshold the score (user specified) 
• Find the peaks of responses: a pixel is a peak if it has a 

higher value than all the pixels in its neighborhood 
• 4 connectivity, 8 connectivity, etc 

• The Matlab command imregionalmax computes a binary 
image which is 1 at the peak and 0 elsewhere 

• Note that there can be multiple pixels at each peak. We can 
simply pick one for each connected component.

Corner detection: remaining steps
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peak
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• Corner detector v2 
• Input: image I, window size W, threshold T 
• Output: corner score for each pixel 
• Initialize: score = zeros(size(I)) 
• for u = -1:1 % horizontal shifts 

• for v = -1:1 % vertical shifts 
• imdiff = imfilter(I, f(u,v), ‘same’); % compute difference 

• score = score + imfilter(imdiff.^2, ones(W), ‘same’); % weighted 
squared difference 

• score = nms(score > T); % perform non-maximum suppression 
• locs = find(score > 0);  % indices of the corners 
• [cy, cx] = ind2sub(size(score), lots)); % their x, y locations

Corner detection: complete algorithm
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• The algorithm presented is the basis for the Harris corner 
detector 

• One weakness is that we only considered only 8 directions 
for computing the differences. Why not 16? or 32? 

• The Harris detector generalizes this to “all” directions 
• More directions improve performance 
• Can be thought of the limit of the earlier algorithm as the number 

of directions approach infinity! 
• However, it does this without explicitly enumerating directions. To 

understand how we need some math.

Corner detection: summary

23

23

Corner detection: Mathematics
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Recall that the change in appearance of window W for the 
shift [u,v]:

E(3,2)

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

I(x, y)

E(u, v)
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Corner detection: Mathematics
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E(0,0)

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

I(x, y)

E(u, v)

Recall that the change in appearance of window W for the 
shift [u,v]:
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Corner detection: Mathematics
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We want to find out how this function behaves for 
small shifts

E(u, v) =
X

(x,y)2W

[I(x+ u, y + v)� I(x, y)]2

E(u, v)

Recall that the change in appearance of window W for the 
shift [u,v]:
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• First-order Taylor approximation for small motions [u, v]: 

• Let’s plug this into E(u,v)

Corner detection: Mathematics
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Corner Detection: Mathematics
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The quadratic approximation can be written as

where M is a second moment matrix computed from image 
derivatives:
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(the sums are over all the pixels in the window W)
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• The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape. 

• Specifically, in which directions  
does it have the smallest/greatest 
change?

Interpreting the second moment matrix
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First, consider the axis-aligned case 
(gradients are either horizontal or vertical)

If either a or b is close to 0, then this is not a corner, so 
look for locations where both are large.

Interpreting the second moment matrix

30

!
"

#
$
%

&
=

b
a
0
0

!
!
!

"

#

$
$
$

%

&

=
∑∑

∑∑

yx
y

yx
yx

yx
yx

yx
x

III

III
M

,

2

,

,,

2

30

Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix
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This is the equation of an ellipse.
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Interpreting the second moment matrix
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This is the equation of an ellipse.
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The axis lengths of the ellipse are determined by the 
eigenvalues and the orientation is determined by R 

direction of the 
slowest change

direction of the 
fastest change

(λmax)-1/2

(λmin)-1/2

Diagonalization of M:
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Visualization of second moment matrices
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Visualization of second moment matrices
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Interpreting the eigenvalues
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λ1

λ2

“Corner” 
λ1 and λ2 are large,  
 λ1 ~ λ2; 
E increases in all 
directions

λ1 and λ2 are small;  
E is almost constant 
in all directions

“Edge”  
λ1 >> λ2

“Edge”  
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues of M:
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Corner response function
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“Corner” 
R > 0

“Edge”  
R < 0

“Edge”  
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR
α: constant (0.04 to 0.06)

λ2

λ1
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1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a Gaussian window 

around each pixel: 

The Harris corner detector

37

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  
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1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a Gaussian window 

around each pixel  
3. Compute corner response function R

The Harris corner detector
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C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  
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Harris Detector: Steps
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Harris Detector: Steps
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Compute corner response R
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1. Compute partial derivatives at each pixel 
2. Compute second moment matrix M in a Gaussian window 

around each pixel  
3. Compute corner response function R 

4. Threshold R
5. Find local maxima of response function (non-maximum 

suppression)

The Harris corner detector
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C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  
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Harris Detector: Steps
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Find points with large corner response: R > threshold
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Harris Detector: Steps
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Take only the points of local maxima of R
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Harris Detector: Steps
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• We want corner locations to be invariant to photometric 
transformations and covariant to geometric transformations 
• Invariance: image is transformed and corner locations do not change 
• Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations

Invariance and covariance
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Image translation
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•  Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation
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• Original corner detector paper 
• C.Harris and M.Stephens, “A Combined Corner and Edge Detector.” 

Proceedings of the 4th Alvey Vision Conference,1988 

• Other corner functions
• Can you think of other                        that work for finding corners?

Further thoughts and readings…
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f(�1,�2)
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