

1

Overview

Administrivia

- Homework 2 due today
- Homework 3 will be posted later this week
 - will be due March 10
- No class or honors section next Tuesday, 3/1
 - I am out of town to attend a CVPR program committee meeting
- Honors section will meet today

2

2

· Edge detection • Derivative filters

 $-1 \ 0 \ +1$]

 $G_x = \begin{bmatrix} -1 & 0 & +1 \end{bmatrix}$ $* \mathbf{A}$ $-1 \quad 0 \quad +1$ -1 -10 0 $\mathbf{G}_{\mathbf{v}} =$ 0 $* \mathbf{A}$ +1 +1 +1

image

3

- Corner detection [today]
 - What are corners?
 - Why detect corners?
 - Harris corner detector

3

4

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features

Slide credit: L. Lazebnik 6

Why extract features?

5

- Motivation: panorama stitching
 - We have two images how do we combine them?

Step 1: extract features Step 2: match features Step 3: align images

Slide credit: L. Lazebnik 7

Slide credit: L. Lazebnik 5

Characteristics of good features

6

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Slide credit: L. Lazebnik 8

Applications

Feature points are used for:

- Image alignment
- 3D reconstruction
- Motion tracking
- Robot navigation
- Indexing and database retrieval
- Object recognition

Slide credit: L. Lazebnik 9

11

9

10

10

Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

Corner detection: Attempt one

- A corner is the intersection of two edges
- We know how to detect edges
- Corner detector v1
 - Detect edges in images (G_x and G_y)
 - Find places where both G_x and G_y are high
- Problem: this also finds slanted edges

Corner detection: Attempt two

- We should easily recognize the corners by looking through a small window
- Shifting a window in *any direction* should give *a large* change in intensity at a corner

"flat" region: no change in all directions

"edge": no change along the edge direction

directions

13

15

13

Corner detection: Attempt two

- We should easily recognize the corners by looking through a small window
- Shifting a window in *any direction* should give *a large* change in intensity at a corner

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

14

16

Corner detection: Attempt two

- Implementing a corner detector
 - Fix the size of the patch (window size)
 - What happens if the window is too small? or too large?
 - Consider eight directions, and measure how much does a patch change in each direction for each location of the image

Corner detection: details

14

• One way to measure change is to consider the sum of squared-differences. Thus, the change for a shift *u*, *v* and for an image window W is

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

Corner detection: details

- Assume for now that the window size *W* is one pixel
- How can we compute E(u,v) for every pixel in the image?

$$E(u, v) = \sum_{(x,y) \in W} [I(x+u, y+v) - I(x, y)]^2$$

• As an example consider E(1, 0), i.e. image shifted by one pixel to the right. This can be computed as convolution with **f** and squaring the result,

$$D(1,0) = I * \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 Matlab: imfilter(I, f, 'same')
f

17

Corner detection: details

- Generalize to any window size W
- Given D(1,0) for each pixel, how can you compute the sumof-squared-differences within a window?
- Answer: filter the output with a box kernel

 $\mathrm{EdgeScore}(1,0) = f_{\mathrm{box}}^W * D(1,0)^2$

- Better version: Convolve with a Gaussian kernel
 - More emphasis on the center than the boundary for each window

18

18

Corner detection: algorithm

- Corner detector v2
 - Input: image I, window size W
 - Output: corner score for each pixel
 - Initialize: score = zeros(size(I))
 - for u = -1:1 % horizontal shifts
 - for v = -1:1 % vertical shifts
 - imdiff = imfilter(I, f(u,v), 'same'); % compute difference
 - score = score + imfilter(imdiff.^2, ones(**W**), 'same'); % weighted squared difference

19

 Here, f(u,v) is the filter to compute difference between a pixel and another shifted by (u,v)

Corner detection: remaining steps

- Threshold the score (user specified)
- Find the peaks of responses: a pixel is a peak if it has a higher value than all the pixels in its neighborhood
 - 4 connectivity, 8 connectivity, etc
- The Matlab command imregionalmax computes a binary image which is 1 at the peak and 0 elsewhere
- Note that there can be multiple pixels at each peak. We can simply pick one for each connected component.

23

Corner detection: complete algorithm

• Corner detector v2

- Input: image I, window size W, threshold T
- Output: corner score for each pixel
- Initialize: score = zeros(size(I))
- for u = -1:1 % horizontal shifts
 - for v = -1:1 % vertical shifts
 - imdiff = imfilter(**I**, **f**(**u**,**v**), 'same'); % compute difference
 - score = score + imfilter(imdiff.^2, ones(W), 'same'); % weighted squared difference

22

- score = nms(score > T); % perform non-maximum suppression
- locs = find(score > 0); % indices of the corners
- [cy, cx] = ind2sub(size(score), lots)); % their x, y locations

22

21

Corner detection: summary

- The algorithm presented is the basis for the Harris corner detector
- One weakness is that we only considered only 8 directions for computing the differences. Why not 16? or 32?
- The Harris detector generalizes this to "all" directions
 - More directions improve performance
 - Can be thought of the limit of the earlier algorithm as the number of directions approach infinity!
 - However, it does this without explicitly enumerating directions. To understand how we need some math.

Corner detection: Mathematics

Recall that the change in appearance of window W for the shift [u, v]:

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

Corner detection: Mathematics

Recall that the change in appearance of window W for the shift [u, v]:

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

25

27

25

Corner detection: Mathematics

Recall that the change in appearance of window W for the shift [u,v]:

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

26

28

26

Corner detection: Mathematics

• First-order Taylor approximation for small motions [*u*, *v*]:

$$I(x+u, y+v) = I(x, y) + I_x u + I_y v$$

• Let's plug this into *E*(*u*,*v*)

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

$$\simeq \sum_{(x,y)\in W} [I(x,y) + I_x u + I_y v - I(x,y)]^2$$

$$= \sum_{(x,y)\in W} [I_x u + I_y v]^2$$

$$= \sum_{(x,y)\in W} [I_x^2 u^2 + I_x I_y u v + I_y I_x u v + I_y^2 v^2]$$

Corner Detection: Mathematics

The quadratic approximation can be written as

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a *second moment matrix* computed from image derivatives:

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

(the sums are over all the pixels in the window W)

Interpreting the second moment matrix

- The surface E(u,v) is locally approximated by a quadratic form. Let's try to understand its shape.
 - Specifically, in which directions ٠ does it have the smallest/greatest change?

 $E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$

$$M = \begin{bmatrix} \sum_{x,y} I_x^2 & \sum_{x,y} I_x I_y \\ \sum_{x,y} I_x I_y & \sum_{x,y} I_y^2 \end{bmatrix}$$

29

Interpreting the second moment matrix

If either a or b is close to 0, then this is **not** a corner, so look for locations where both are large.

30

30

Interpreting the second moment matrix Consider a horizontal "slice" of E(u, v): $[u \ v] M$ = const This is the equation of an ellipse. 0 b31

Interpreting the second moment matrix

Visualization of second moment matrices

Visualization of second moment matrices

33

35

34

34

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

Corner response function $R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$ *α*: constant (0.04 to 0.06) λ_2 Edge $R \leq 0$ "Corner R > 0œ " |R| small "Edge" R < 0 "Flat region λ_1 36

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel:

$$M = \begin{bmatrix} \sum_{x,y} w(x,y) I_{x}^{2} & \sum_{x,y} w(x,y) I_{x} I_{y} \\ \sum_{x,y} w(x,y) I_{x} I_{y} & \sum_{x,y} w(x,y) I_{y}^{2} \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

37

37

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function R

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

38

38

Harris Detector: Steps

Harris Detector: Steps Compute corner response R

The Harris corner detector

- 1. Compute partial derivatives at each pixel
- 2. Compute second moment matrix *M* in a Gaussian window around each pixel
- 3. Compute corner response function *R*
- 4. Threshold R
- 5. Find local maxima of response function (non-maximum suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

41

Harris Detector: Steps

Find points with large corner response: R > threshold

42

Harris Detector: Steps

41

Take only the points of local maxima of *R*

Harris Detector: Steps

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

45

45

47

Further thoughts and readings...

- Original corner detector paper
 - C.Harris and M.Stephens, <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference, 1988
- Other corner functions
 - Can you think of other $f(\lambda_1,\lambda_2)$ that work for finding corners?

Image translation

· Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

46

46