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• Homework 2 due Tue., Feb. 23 before class 
• Linearity of light  

• Color constancy 

• Hybrid images 

• Today’s lecture 

• Review of last lecture 

• Edge detection

Administrivia
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Joys of computer vision research

3

http://xkcd.com/1425/

3

• How can we reduce noise in a photograph?

Motivation: Image de-noising
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• Let’s replace each pixel with a weighted average of its 
neighborhood 

• The weights are called the filter kernel 

• What are the weights for the average of a 3x3 
neighborhood?

Moving average
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“box filter”

Source: D. Lowe
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• Let f be the image and g be the kernel. The output of 
convolving f with g is denoted f * g.
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Convolution

6Source: F. Durand

•   MATLAB functions: conv2, filter2, imfilter

Convention:  
kernel is “flipped” 

for convolution

f
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Gaussian vs. box filtering
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Gaussian smoothing fails to get rid of salt-and-pepper noise

Reducing salt-and-pepper noise
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3x3 5x5 7x7
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• A median filter operates over a window by selecting the 
median intensity in the window

Alternative idea: Median filtering
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   The median filtering is not linear
Source: K. Grauman
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• What advantage does median filtering have over Gaussian 
filtering? 

• Answer: Robustness to outliers

Median filter

10Source: K. Grauman
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MATLAB: medfilt2(image, [h w])

Salt-and-pepper noise Median filtered

Source: M. Hebert

Median filter
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Gaussian vs. median filtering
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3x3 5x5 7x7

Gaussian

Median
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What does blurring take away?

Sharpening revisited
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original smoothed (5x5)

–

detail
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sharpened
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Let’s add it back:

original detail

+ α
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Sharpening filter
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Gaussian
unit impulse

Laplacian of Gaussian

I = blurry(I) + sharp(I) sharp(I) = I � blurry(I)

= I ⇤ e� I ⇤ g�

= I ⇤ (e� g�)
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A. Oliva, A. Torralba, P.G. Schyns,  
“Hybrid Images,” SIGGRAPH 2006

Application: Hybrid Images
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Gaussian Filter

Laplacian Filter
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motorcycle and bicycle
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dolphin and car
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Homework 2, part 3
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Next: edge detection

20

Winter in Kraków photographed by Marcin Ryczek

But first, any questions?

20



• Goal:  Identify sudden changes 
(discontinuities) in an image 
• Intuitively, most semantic and shape 

information from the image can be 
encoded in the edges 

• More compact than pixels  

• Ideal: artist’s line drawing (but 
artist is also using object-level 
knowledge)

Edge detection

21Source: D. Lowe

Attneave's Cat (1954)
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Edges are caused by a variety of factors:

Origin of edges
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depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz
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• An edge is a place of rapid change in the image intensity 
function

Edge detection
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image
intensity function 

(along horizontal scanline) first derivative

edges correspond to 
extrema of derivative
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One dimensional derivatives
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y = f(x) m =
�y

�x

m =
f(x+ h)� f(x)

(x+ h)� x

=
f(x+ h)� f(x)

h

Gradient

https://en.wikipedia.org/wiki/Derivative
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For 2D function f(x), one can compute a derivative for each 
direction v 

Directional derivatives of the function along the axes are called 
partial derivatives. For example the partial derivative with 
respect to x is:

Two dimensional derivatives
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Source: K. Grauman
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For 2D function f(x,y), the partial derivative is: 

For discrete data, we can approximate using finite differences: 

To implement the above as convolution, what would be  
the associated filter?

Partial derivatives with convolutions
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Partial derivatives of an image
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Which one shows changes with respect to x?
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Other approximations of derivative filters exist:

Finite difference filters

28Source: K. Grauman
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The gradient points in the direction of most rapid increase 
in intensity 
 
 

The gradient of an image:  

 

Image gradient
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The gradient direction is given by

Source: Steve Seitz

The edge strength is given by the gradient magnitude

• How does this direction relate to the direction of the edge?
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Edge detection example

30https://en.wikipedia.org/wiki/Prewitt_operator

edge magnitudeimage
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Edge detection in Matlab
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Consider a single row or column of the image

Effects of noise
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Where is the edge?
Source: S. Seitz
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Solution: smooth first
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• To find edges, look for peaks in )( gf
dx
d
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Source: S. Seitz
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Smoothed derivative removes noise, but blurs edge. Also 
finds edges at different “scales”

1 pixel 3 pixels 7 pixels

34Source: D. Forsyth

Scale of smoothing
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Smoothing filters 
• Gaussian: remove “high-frequency” components;  

“low-pass” filter 
• Can the values of a smoothing filter be negative? 
• What should the values sum to? 

- One: constant regions are not affected by the filter 

 

Derivative filters 
• Prewitt filter 
• Can the values of a derivative filter be negative? 
• What should the values sum to?  

- Zero: no response in constant regions 
• High absolute value at points of high contrast

Smoothing vs derivative filters
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