

Enhancing images

- What can we do to "enhance" an image after it has already been digitized?
 - We can make the information that is there easier to visualize.
 - We can guess at data that is not there, but we cannot be sure, in general.

contrast enhancement

deblurring

Motivation: Image de-noising

• How can we reduce noise in a photograph?

Moving average

- Let's replace each pixel with a *weighted* average of its neighborhood
- The weights are called the *filter*
- What are the weights for the average of a 3x3 neighborhood?

"box filter"

Source: D. Lowe 6

8

Convolution

• Let *f* be the image and *g* be the kernel. The output of convolving *f* with *g* is denoted *f* * *g*.

$$(f * g)[m, n] = \sum_{k, l} f[m - k, n - l]g[k, l]$$

Convention: kernel is "flipped"

MATLAB functions: conv2, filter2, imfilter

Source: F. Durand 7

5

Some properties

- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)
- Scalars factor out: filter(k f₁) = k filter(f₁)

Annoying details

What is the size of the output?

- MATLAB: filter2(g, f, *shape*) or conv2(g, f, *shape*)
 - *shape* = 'full': output size is sum of sizes of f and g
 - *shape* = 'same': output size is same as f
 - *shape* = 'valid': output size is difference of sizes of f and g

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods:
 - clip filter (black)
 - wrap aroundcopy edge
 - reflect across edge

Source: S. Marschner 10

Annoying details

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, 'circular')
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')

Source: S. Marschner 11

Practice with linear filters Practice with linear filters 0 0 0 0 0 0 ? 1 0 0 0 0 1 0 0 0 0 0 0 Original Original Filtered (no change) Source: D. Lowe 13 Source: D. Lowe 14

Practice with linear filters

Original

Shifted *left* By 1 pixel

Source: D. Lowe 15

Practice with linear filters

Source: D. Lowe 19

Original

 $= \frac{1}{9} \frac{1}{1} \frac{1}{1} \frac{1}{1}$

Sharpening filter - Accentuates differences with local average

Sharpening

before

after

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?

Source: D. Forsyth21

Smoothing with box filter revisited

- What's wrong with this picture?
- What's the solution?
 - To eliminate edge effects, weight contribution of neighborhood pixels according to their closeness to the center

"fuzzy blob"

22

Gaussian Kernel

Source: C. Rasmussen 23

Choosing kernel width

• Rule of thumb: set filter half-width to about 3σ Effect of σ

Matlab command	>> fspecial('gaussian', 5, 1)				
fspecial('gaussian', hsize, sigma)	ans =				
	0.0030	0.0133	0.0219	0.0133	0.0030
	0.0133	0.0596	0.0983	0.0596	0.0133
	0.0219	0.0983	0.1621	0.0983	0.0219
	0.0133	0.0596	0.0983	0.0596	0.0133
	0.0030	0.0133	0.0219	0.0133	0.0030 26

Gaussian vs. box filtering

Noise

Salt and pepper noise

Impulse noise

27

- Salt and pepper noise: contains random occurrences of black and white pixels
- Impulse noise: contains random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Gaussian noise

- Mathematical model: sum of many independent factors
- Good for small standard deviations
- Assumption: independent, zero-mean noise

Provide the second sec

Smoothing with larger standard deviations suppresses noise, but also blurs the image

30

Reducing salt-and-pepper noise

Alternative idea: Median filtering

• A **median filter** operates over a window by selecting the median intensity in the window

29

Median filter

- What advantage does median filtering have over Gaussian filtering?
 - Robustness to outliers

<figure>

Source: M. Hebert 34

<section-header><section-header>Sharpening take away?Image: Sharpening take away?<td

37

Sad _____

Surprised

