CMPSCI 370: Intro to Computer Vision

Image processing [quantization, color maps, image enhancement

> University of Massachusetts, Amherst February 9, 2016

> > Instructor: Subhransu Maji

Overview

· Announcements:

- Homework 1 due today
- Homework 2 will be posted soon
- Honors section will meet today at 4pm

• Today's lecture:

- Review color constancy
- Image processing
 - signal quantization
 - color representation
 - enhancing images intro

Slides credit: Erik Learned-Miller and others

Color constancy

• The ability of the human visual system to perceive color relatively constant despite changes in illumination conditions

We perceive the same color both in shadow and sunlight

Color constancy causes A and B to look different although the pixel values are the same

3

http://en.wikipedia.org/wiki/Color constancy

Color constancy problem

1.0 energy

0.6

0.4

0.2

Relative

0.

Reflected color is the result of interaction between the light source spectrum and the reflection surface reflectance

2

Color constancy

#1 white and gold or #2 blue and black

1 light is blue so white is tinted blue and gold doesn't really change

2 light is yellow, so black reflects the yellow and the blue is unaffected

6

COIOT CONStancy

http://xkcd.com/1492/

7

Color constancy

Chromatic adaptation

- The visual system changes its sensitivity depending on the luminances prevailing in the visual field
 - The exact mechanism is poorly understood
- Adapting to different brightness levels
 - Changing the size of the iris opening (i.e., the aperture) changes the amount of light that can enter the eye
 - Think of walking into a building from full sunshine
- Adapting to different color temperature
 - The receptive cells on the retina change their sensitivity
 - For example: if there is an increased amount of red light, the cells receptive to red decrease their sensitivity until the scene looks white again
 - We actually adapt better in brighter scenes: This is why candlelit scenes still look yellow

http://www.schorsch.com/kbase/glossary/adaptation.html

White balance

- When looking at a picture on screen or print, our eyes are adapted to the illuminant of the room, not to that of the scene in the picture
- When the white balance is not correct, the picture will have an unnatural color "cast"

incorrect white balance

correct white balance

http://www.cambridgeincolour.com/tutorials/white-balance.htm

White balance

· Film cameras:

• Different types of film or different filters for different illumination conditions

Digital cameras:

- Automatic white balance
- White balance settings corresponding to several common illuminants
- Custom white balance using a reference object

White balance

- Von Kries adaptation
 - Multiply each channel by a gain factor
- Best way: gray card
 - Take a picture of a neutral object (white or gray)
 - Deduce the weight of each channel
 - If the object is recoded as $r_{\rm w},\,g_{\rm w},\,b_{\rm w}$ use weights $1/r_{\rm w},\,1/g_{\rm w},\,1/b_{\rm w}$

10

9

White balance

- Without gray cards: we need to "guess" which pixels correspond to white objects
- Gray world assumption
 - The image average $r_{ave},\,g_{ave},\,b_{ave}\,is\,gray$
 - Use weights $1/r_{ave}$, $1/g_{ave}$, $1/b_{ave}$
- Brightest pixel assumption
 - Highlights usually have the color of the light source
 - Use weights inversely proportional to the values of the brightest pixels
- Gamut mapping
 - Gamut: convex hull of all pixel colors in an image
 - Find the transformation that matches the gamut of the image to the gamut of a "typical" image under white light
- Use image statistics, learning techniques

Source: L. Lazebnik 13

Image formation

Pre-digitization image

- What is an image before you digitize it?
 - Continuous range of wavelengths
 - 2-dimensional extent
 - Continuous range of power at each point

Brightness images

- To simplify, consider only a brightness image
 - Two-dimensional (continuous range of locations)
 - Continuous range of brightness values
- This is equivalent to a two-dimensional function over a plane

An image as a surface

Discretization

- Sampling strategies
 - Spatial sampling
 - How many pixels?
 - What arrangement of pixels?
 - Brightness sampling
 - How many brightness values?
 - Spacing of brightness values?
 - For video, also the question of time sampling.

Signal quantization

• **Goal:** determine a mapping from a continuous signal (e.g. analog video signal) to one of K discrete (digital) levels.

Quantization

- $I(x,y) = \text{continuous signal: } 0 \le I \le M$
- Want to quantize to K values 0,1,....K-1
- K usually chosen to be a power of 2:

K: #Levels	#Bits
2	1
4	2
8	3
16	4
32	5
64	6
128	7
256	8

- Mapping from input signal to output signal is to be determined.
- Several types of mappings: uniform, logarithmic, etc.

False contours problem

original image

16 colors

with random noise

"Dithering" adds random noise to reduce false contours

https://en.wikipedia.org/wiki/Dither

Choice of the function: uniform

- Uniform sampling divides the signal range [0-M] into K equal-sized intervals.
- The integers 0,...K-1 are assigned to these intervals.
- All signal values within an interval are represented by the associated integer value.
- Defines a mapping:

Logarithmic quantization

- Signal is: log I(x,y)
- Effect is:

• Detail enhanced in the low signal values at expense of detail in high signal values.

Logarithmic quantization

٥

ОК Cancel

Color displays

- Given a 24 bit color image (8 bits for R, G, B)
- Turn on 3 subpixels with power proportional to RGB values

"White" text on color display

http://en.wikipedia.org/wiki/Subpixel_rendering

Lookup tables

- 8 bit image: 256 different values.
- Simplest way to display: map each number to a gray value:
 - $0 \rightarrow (0.0, 0.0, 0.0)$ or (0, 0, 0)
 - 1 \rightarrow (0.0039, 0.0039, 0.0039) or (1,1,1)
 - 2 \rightarrow (0.0078, 0.0078, 0.0078) or (2,2,2)
 - ...
 - $255 \rightarrow (1.0, 1.0, 1.0)$ or (255, 255, 255)
- This is called a grayscale mapping.

Lookup tables

>>	im =	imread	('mnms.jpeg');
>>	figur	e;	
>>	image	sc(im);	;
>>	size(im)	
an	в =		
	376	406	3
>>	<pre>im8 = rgb2gray(im);</pre>		
>>	size(im8)	
an	s =		
	376	406	
>>	figur	e;	
>>	<pre>imagesc(im8); colormap(gray);</pre>		
>>			

Non-gray lookup tables

- We can also use other mappings:
 - $0 \rightarrow (17, 25, 89)$
 - 1 → (45, 32, 200)
 - ...
 - 255 → (233,1,4)
- These are called lookup tables.

More colormaps

colormap jet;

colormap winter;

30

Fun with Matlab

Colormap Name	Color Scale
parula	
jet	
hsv	
hot	
cool	
spring	
summer	
autumn	
winter	
gray	
bone	
copper	
pink	
lines	
colorcube	
prism	
flag	
white	

Enhancing images

- What can we do to "enhance" an image after it has already been digitized?
 - We can make the information that is there easier to visualize.
 - We can guess at data that is not there, but we cannot be sure, in general.

deblurring

Contrast enhancement

- Two methods:
 - Normalize the data (contrast stretching)
 - Transform the data (histogram equalization)

Contrast stretching

Contrast stretching

• Basic idea: scale the brightness range of the image to occupy the full range of values

37

- Issues:
 - What happens if there is one bright pixel?
 - What happens if there is one dark pixel?

Matlab demo

<figure><figure><complex-block>

