

Administrivia

- Homework 1 due on Tuesday, Feb 9
 - Submit pdf via moodle or printout in class
- Late day policy
 - 3 days total (use wisely)
 - No credit for homework beyond late days
- Honors section will meet in CS 142 @ 4pm today

2

Overview

1

- Recap of last lecture
- Color
 - Spectral basis of light
 - Color perception in the human eye
 - Tristimulus theory and color spaces
 - Color phenomena

Early color photography

- Sergey Prokudin-Gorskii (1863-1944)
- Photographs of the Russian empire (1909-1916)

2

Only problem!

Homework 1: fix this by aligning the channels

5

Basic idea for alignment

red

homework we will assume that channels are only translated, i.e., no rotation, scaling, etc. • For each shift: $x \in (-15, 15), y \in (-15, 15)$

green

6

- Measure similarity, e.g. angle between the vectors (reshape image to a vector)
- Pick the shift that maximizes similarity
- Repeat for the blue channel

6

Slide by S.Seitz 7

Interpolation gt g gt gl**→**? gr gr gl g g gb gb gb nearest neighbor linear interpolation adaptive gradient copy one of your average values of average based on neighbors your neighbors local structure ? ←gl ? \leftarrow (gt+gl+gr+gb)/4 if |gt-gb| > |gl-gr|? ← (gl+gr)/2 else ? ← (gt+gb)/2 Similarly for the blue and red channels Homework 1: implement nearest neighbor 10 10

Overview

- Recap of last lecture
- Color perception
 - Spectral basis of light
 - Color perception in the human eye
 - Tristimulus theory and color spaces
 - Color phenomena

11

Questions?

XXXXXX	GREEN	GREEN
XXXXXX	BLUE	BLUE
XXXXXX	YELLOW	YELLOW
XXXXXX	PURPLE	PURPLE
XXXXXX	ORANGE	ORANGE
XXXXXX	RED	RED
XXXXXX	WHITE	WHITE
XXXXXX	PURPLE	PURPLE
XXXXXX	ORANGE	ORANGE
XXXXXX	BLUE	BLUE
XXXXXX	RED	RED
XXXXXX	GREEN	GREEN
XXXXXX	WHITE	WHITE
XXXXXX	YELLOW	YELLOW
XXXXXX	PURPLE	PURPLE
XXXXXX	RED	RED
XXXXXX	GREEN	GREEN
XXXXXX	BLUE	BLUE

What is color?

- "Color is the result of interaction between light in the environment and our visual system"
- "Color is a psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights" — S. Palmer, Vision Science: Photons to Phenomenology

14

16

14

13

Newton's theory of light

Newton's sketch of his crucial experiment in which light from the sun is refracted through a prism. One color is then refracted through a second prism to show that it undergoes no further change. Light is then shown to be composed of the colors refracted in the second prisms.

Image credit: Warden and Fellows

15

The electromagnetic spectrum

Interaction of light and surfaces

• Reflected color is the result of interaction between the light source spectrum and the reflection surface reflectance

Interaction of light and surfaces

• What is the observed color of any surface under monochromatic light?

Room for one color, Olafur Eliasson

21

The eye

- The human eye is a sophisticated camera!
 - Lens changes the shape by using ciliary muscles (to focus on objects at different distances)
 - Pupil the hole (aperture) whose size is controlled by iris
 - Iris colored annulus with radial muscles
 - Retina photoreceptor cells

21

Slide by S. Seitz 22

- containing the highest density of cones and no rods
- There are about 5 million cones and 100 million rods in each eye
 Slide by S. Seitz 23

26

Physiology of color vision: fun facts

- "M" and "L" pigments are encoded on the X-chromosome
 - That's why men are more likely to be color blind
 - "L" gene has high variation, so some women may be *tetra-chromatic*
- Some animals have one (night animals), two (e.g. dogs), four (fish, birds), five (pigeons, some reptiles/amphibians), or even 12 (mantis shrimp) types of cones
 - http://www.mezzmer.com/blog/how-animals-see-the-world/

http://en.wikipedia.org/wiki/Color_vision

Color perception

Rods and cones act as filters on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
 - Each cone yields one number
- How can we represent an entire spectrum with 3 numbers?
- We can't! A lot of the information is lost
 - As a result, two different spectra may appear indistinguishable
 - Such spectra are known as metamers

30

30

Copyright Dr. Klaus Schmitt 32

Spectra of some real-world surfaces

0.9 0.8

0.7

0.6

0.5

0.4 0.3

0.2

0.1

450

Standardizing color experience

- We would like to understand which spectra produce the same color sensation in people under similar viewing conditions
- Color matching experiments

33

34

Color matching experiment 1

Color matching experiment 2

Color matching experiment 2

41

Trichromacy

- In color matching experiments, most people can match any given light with three primaries
 - Primaries must be *independent*
- For the same light and same primaries, most people select the same weights
 - Exception: color blindness
- Trichromatic color theory
 - Three numbers seem to be sufficient for encoding color
 - Dates back to 18th century (Thomas Young)

42

42

44

Grassman's Laws (1853)

- Color matching appears to be linear
- If two test lights can be matched with the same set of weights, then they match each other:
 - Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$ and $B = u_1 P_1 + u_2 P_2 + u_3 P_3$. Then A = B.
- If we mix two test lights, then mixing the matches will match the result:
 - Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$ and $B = v_1 P_1 + v_2 P_2 + v_3 P_3$. Then $A + B = (u_1+v_1) P_1 + (u_2+v_2) P_2 + (u_3+v_3) P_3$.
- If we scale the test light, then the matches get scaled by the same amount:
 - Suppose $A = u_1 P_1 + u_2 P_2 + u_3 P_3$. Then $kA = (ku_1) P_1 + (ku_2) P_2 + (ku_3) P_3$.

Example

- · Bob walks into a room and sees the following spectra
 - How many tungsten and led bulbs are there?

Linear color spaces

- Defined by a choice of three primaries
- The coordinates of a color are given by the weights of the primaries used to match it

45

Linear color spaces How to compute the weights of the primaries to match any spectral signal? Find: weights of the Given: a choice of primaries needed to three primaries and a match the color signal target color signal p_1 p_2 p_3 400 500 600 70 Wavelength (nm) 46 46

Color matching function: primary colors

We know that a monochromatic light λ_i of wavelength will be matched by the amounts $c_1(\lambda_i), c_2(\lambda_i), c_3(\lambda_i)$ of each primary.

45

47

And any spectral signal can be thought of as a linear combination of very many monochromatic lights, with the linear coefficient given by the spectral power at each wavelength.

Color matching functions: any color

Store the color matching functions in the rows of the matrix, C

	$(c_1(\lambda_1))$		$c_1(\lambda_N)$
<i>C</i> =	$c_2(\lambda_1)$	•••	$c_2(\lambda_N)$
	$c_3(\lambda_1)$	•••	$c_3(\lambda_N)$

Let the new spectral signal be described by the vector t.

Then the amounts of each primary needed to match t are: $\vec{e} = C\vec{t}$ $\vec{t} =$ $t(\lambda_N)$

The components e_1 , e_2 , e_3 describe the color of t. If you have some other spectral signal, s, and s matches t perceptually, then e1, e2, e3, will also match s (by Grassman's Laws)

RGB space

- Primaries are monochromatic lights (for monitors, they correspond to the three types of phosphors)
- Subtractive matching required for some wavelengths

49

Comparison of RGB matching functions with best linear transformation of cone responses

50

Linear color spaces: CIE XYZ

- Matching functions are positive everywhere
- Y parameter corresponds to brightness or *luminance* of a color
- Z corresponds to blue simulation

Uniform color spaces

- Unfortunately, differences in x,y coordinates do not reflect perceptual color differences
- CIE u'v' is a transform of x,y to make the ellipses more uniform

Nonlinear color spaces: HSV

- Perceptually meaningful dimensions: Hue, Saturation, Value (Intensity)
- RGB cube on its vertex

53

Some early attempts in color spaces

Philipp Otto Runge's Farbenkugel (color sphere), 1810

Munsell's balanced color sphere, 1900, from A Color Notation, 1905

54

56

54

Color constancy

• The ability of the human visual system to perceive color relatively constant despite changes in illumination conditions

We perceive the same color both in shadow and sunlight

Color constancy causes A and B to look different although the pixel values are the same

55

http://en.wikipedia.org/wiki/Color_constancy

Color constancy

#1 white and gold or #2 blue and black

1 light is blue so white is tinted blue and gold doesn't really change

2 light is yellow, so black reflects the yellow and the blue is unaffected

<section-header>

57

Chromatic adaptation

- The visual system changes its sensitivity depending on the luminances prevailing in the visual field
 - The exact mechanism is poorly understood
- Adapting to different brightness levels
 - Changing the size of the iris opening (i.e., the aperture) changes the amount of light that can enter the eye
 - Think of walking into a building from full sunshine
- Adapting to different color temperature
 - The receptive cells on the retina change their sensitivity
 - For example: if there is an increased amount of red light, the cells receptive to red decrease their sensitivity until the scene looks white again
 - We actually adapt better in brighter scenes: This is why candlelit scenes still look yellow

their consitivity

57

59

Color constancy

58

White balance

- When looking at a picture on screen or print, our eyes are adapted to the illuminant of the room, not to that of the scene in the picture
- When the white balance is not correct, the picture will have an unnatural color "cast"

incorrect white balance

correct white balance

60

http://www.cambridgeincolour.com/tutorials/white-balance.htm

White balance

Film cameras:

• Different types of film or different filters for different illumination conditions

Digital cameras:

- Automatic white balance
- White balance settings corresponding to several common illuminants
- Custom white balance using a reference object

61

http://www.cambridgeincolour.com/tutorials/white-balance.htm

61

White balance

- Von Kries adaptation
 - Multiply each channel by a gain factor
- Best way: gray card
 - Take a picture of a neutral object (white or gray)
 - Deduce the weight of each channel
 - If the object is recoded as $r_{w},\,g_{w},\,b_{w}$ use weights $1/r_{w},\,1/g_{w},\,1/b_{w}$

Source: L. Lazebnik 62

62

White balance

- Without gray cards: we need to "guess" which pixels correspond to white objects
- Gray world assumption
 - The image average r_{ave} , g_{ave} , b_{ave} is gray
 - Use weights 1/r_{ave}, 1/g_{ave}, 1/b_{ave}
- Brightest pixel assumption
 - Highlights usually have the color of the light source
 - Use weights inversely proportional to the values of the brightest pixels
- Gamut mapping
 - Gamut: convex hull of all pixel colors in an image
 - Find the transformation that matches the gamut of the image to the gamut of a "typical" image under white light
- Use image statistics, learning techniques

Further readings and thoughts ...

- Color matching applet
 - <u>http://graphics.stanford.edu/courses/cs178/applets/</u> colormatching.html
- D.A. Forsyth, A novel algorithm for color constancy
 - Gamut based approach
 - http://luthuli.cs.uiuc.edu/~daf/papers/colorconst.pdf