Pinhole camera

- Captures **pencil of rays** - all rays through a single point: aperture, center of projection, focal point, camera center
- The image is formed on the **image plane**

Shrink the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects

Campus of Massachusetts, Amherst

January 28, 2016

Instructor: Subhransu Maji
Adding a lens

• A lens focuses light on to the film
 • Thin lens model:
 - Rays passing through the center are not deviated (pinhole projection model still holds)

Slide by F. Durand

Thin lens formula

• What is the relation between the focal length (f), the distance of the object from the optical center (D) and the distance at which the object will be in focus (D')?

image plane lens object

Slide by F. Durand
Thin lens formula

\[\frac{1}{D'} + \frac{1}{D} = \frac{1}{f} \]

Any point satisfying the thin lens equation is in focus

Depth of Field

DOF is the distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image.

Miniature faking

"Jodhpur rooftops" by Paul Goyette

Miniature faking

http://www.wallcoo.net/photography/Tilt-shift_Photography_Wallpapers_1920x1080/wallpapers/1600x900/Tallinn_old_town_1920x1080.html
Miniature faking

http://www.wallcoo.net/photography/Tilt-shift_Photography_Wallpapers_1920x1080/wallpapers/1366x768/Tilt_Shift_Wallpaper_20_by_leiyagami.html

Changing the aperture size affects the depth of field

- A smaller aperture increases the range in which the object is approximately in focus
- But small aperture reduces the amount of light — need to increase the exposure for contrast
- Pinhole camera has an infinite depth of field

Controlling depth of field

Pinhole glasses

- Your eye has a lens which is out of focus — adding a pinhole makes the aperture small so everything stays in focus!
- You can make one with your own hand!
Field of view

• Field of view (FOV) depends on the focal length and the size of the camera retina

\[\phi = \tan^{-1} \left(\frac{d}{2f} \right) \]

Larger focal length = smaller FOV

Field of view, focal length

Large FOV, small \(f \) — Camera close to the car

\(\tan(\phi) \times 2f = d \)

\(\sim (\phi) \times 2f = d \)

Small FOV, large \(f \) — Camera far from the car
Same effect for faces

- wide-angle (short focus)
- standard
- telephoto (long focus)

Approximating an orthographic camera

The dolly zoom
- Continuously adjusting the camera focal length while the camera moves away from (or towards) the subject
- Also called as “Vertigo shot” or the “Hitchcock shot”

Example of dolly zoom from Goodfellas
Example of dolly zoom from La Haine
Lens flaws: Chromatic aberration

- Lens have different refractive indices (Snell’s law) for different wavelengths: causes color fringing

![Near lens center and near lens outer images](image)

Lens flaws: Spherical aberration

- Spherical lenses don’t focus light perfectly (thin lens model)
 - Rays farther from the optical axis are focused closer

![Spherical aberration diagram](image)

Lens flaws: Vignetting

- Reduction of image brightness in the periphery

![Vignetting diagram](image)

Lens flaws: Radial distortion

- Caused by asymmetry of lenses
 - Deviations are most noticeable near the periphery

![Radial distortion examples](image)

http://parkingandyou.com

http://clanegesselphotography.blogspot.com
Real photographic lens

- Many uses: cameras, telescopes, microscopes, etc
 - Fixed focal length
 - Adjustable zoom

Example of a prime lens - Carl Zeiss Tessar

Example of a zoom lens - Nikkor 28-200 mm zoom lens, extended to 200 mm at left and collapsed to 28 mm focal length at right.

Measuring light

- Photographic film — strip of transparent plastic film base coated on one side with a gelatin emulsion containing light-sensitive materials
- Creates a latent image when exposed to light for short duration
- Films are then chemically developed to form a photograph
- **Question:** how do we get color?

Early color photography

- Sergey Prokudin-Gorskii (1863-1944)
- Photographs of the Russian empire (1909-1916)

Only problem!

- Homework 1: fix this by aligning the channels
Fix one channel (say red). For the homework we will assume that channels are only translated, i.e., no rotation, scaling, etc.

For each shift: \(x \in (-15,15), y \in (-15,15) \)
- Measure similarity, e.g. angle between the vectors (reshape image to a vector)
- Pick the shift that maximizes similarity
- Repeat for the blue channel

A digital camera replaces the film with a sensor array
- Each cell in the array is a light-sensitive diode that converts photons to electrons
- Two common types
 - Charge Coupled Device (CCD)
 - Complementary Metal Oxide Semiconductor (CMOS)

Basic idea for alignment

Digital camera

Color sensing in the camera

Demosaicing

Why more green?
Interpolation

![Image](gt)

nearest neighbor
- copy one of your neighbors
- ? ← gl

![Image](gl)

linear interpolation
- average values of your neighbors
- ? ← (gt+gl+gr+gb)/4

![Image](gb)

adaptive gradient
- average based on local structure
- if |gt-gb| > |gl-gr|
- ? ← (gl+gr)/2
- else
- ? ← (gt+gb)/2

Similarly for the blue and red channels

Homework 1: implement nearest neighbor

Problem with demosaicing: color moiré

![Image](Problem with demosaicing: color moiré)

The cause of color moiré

![Image](The cause of color moiré)

Fine black and white detail in the image scene is misinterpreted as color information

Historic milestones

- **Pinhole model:** Mozi (470-390 BCE), Aristotle (384-322 BCE)
- **Principles of optics (including lenses):** Alhacen (965-1039 CE)
- **Camera obscura:** Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- **First photo:** Joseph Nicephore Niepce (1822)
- **Daguerréotypes:** first widely used photographic process (1839)
- **Photographic film:** Eastman (1889)
- **Cinema:** Lumière Brothers, 1895
- **Color Photography:** Lumière Brothers, 1908
- **Television:** Baird, Farnsworth, Zworykin, 1920s
- **First consumer camera with CCD:** Sony Mavica (1981)
- **First fully digital camera:** Kodak DCS100 (1990)
First digitally scanned photo

- 1957, 176x176 pixels

More reading & thought problems

- Richard Szeliski's book, Sections 2.2.3 - 2.3.2