How the Kinect Works

Subhransu Maji Slides credit: Derek Hoiem, University of Illinois Photo frame-grabbed from: <u>http://www.blisteredthumbs.net/2010/11/dance-central-angv-review.</u>

Kinect Device

What the Kinect does

Application (e.g., game)

1

How Kinect Works: Overview

Part 1: Stereo from projected dots

- 1. Overview of depth from stereo
- 2. How it works for a projector/sensor pair
- 3. Stereo algorithm used by Primesense (Kinect)

Depth from Stereo Images

Some of following slides adapted from Steve Seitz and Lana Lazebnik

Depth from Stereo Images

• Goal: recover depth by finding image coordinate x' that corresponds to x

Stereo and the Epipolar constraint

Potential matches for x have to lie on the corresponding line *l*'.

Potential matches for x' have to lie on the corresponding line *I*.

Simplest Case: Parallel images

Basic stereo matching algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information

Depth from disparity $\frac{x-x'}{O-O'} = \frac{f}{z}$ $\frac{x}{f}$ $\frac{x}{O}$ Baseline O' Baseline

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity x-x' and set depth(x) = fB/(x-x')

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

Correspondence search

Results with window search

Window-based matching

Add constraints and solve with graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: <u>http://www.middlebury.edu/stereo/</u>

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Dot Projections

http://www.youtube.com/ watch?v=28JwgxbQx8w

Depth from Projector-Sensor

Only one image: How is it possible to get depth?

Same stereo algorithms apply

Example: Book vs. No Book

Source: http://www.futurepicture.org/?p=97

Source: http://www.futurepicture.org/?p=97

Example: Book vs. No Book

Region-growing Random Dot Matching

- 1. Detect dots ("speckles") and label them unknown
- 2. Randomly select a region anchor, a dot with unknown depth
 - a. Windowed search via normalized cross correlation along scanline
 - Check that best match score is greater than threshold; if not, mark as "invalid" and go to 2
 - b. Region growing
 - 1. Neighboring pixels are added to a queue
 - 2. For each pixel in queue, initialize by anchor's shift; then search small local neighborhood; if matched, add neighbors to queue
 - 3. Stop when no pixels are left in the queue
- Stop when all dots have known depth or are marked "invalid"

http://www.wipo.int/patentscope/search/en/WO2007043036

Projected IR vs. Natural Light Stereo

- What are the advantages of IR?
 - Works in low light conditions
 - Does not rely on having textured objects
 - Not confused by repeated scene textures
 - Can tailor algorithm to produced pattern
- What are advantages of natural light?
 - Works outside, anywhere with sufficient light
 - Uses less energy
 - Resolution limited only by sensors, not projector
- Difficulties with both
 - Very dark surfaces may not reflect enough light
 - Specular reflection in mirrors or metal causes trouble

Part 2: Pose from depth

Goal: estimate pose from depth image

Real-Time Human Pose Recognition in Parts from a Single Depth Image Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, and Andrew Blake **CVPR 2011**

Goal: estimate pose from depth image

http://research.microsoft.com/apps/video/ default.aspx?id=144455

Challenges

- Lots of variation in bodies, orientation, poses
- Needs to be very fast (their algorithm runs at 200 FPS on the Xbox 360 GPU)

Extract body pixels by thresholding depth

Basic learning approach

• Very simple features

• Flexible classifier

• Lots of data

Body models

Get lots of training data

- Capture and sample 500K mocap frames of people kicking, driving, dancing, etc.
- Get 3D models for 15 bodies with a variety of weight, height, etc.
- Synthesize mocap data for all 15 body types

Features

• Difference of depth at two offsets – Offset is scaled by depth at center

Part prediction with random forests

- Randomized decision forests: collection of independently trained trees
- Each tree is a classifier that predicts the likelihood of a pixel belonging to each part
 - Node corresponds to a thresholded feature
 - The leaf node that an example falls into corresponds to a conjunction of several features
 - In training, at each node, a subset of features is chosen randomly, and the most discriminative is selected

Joint estimation

- Joints are estimated using mean-shift (a fast mode-finding algorithm)
- Observed part center is offset by preestimated value

Results

More results

input inferred		inferred joint proposals front side ton			input denth image	inferred	inferred joint proposals front side top		
	South Parts	(Ŕ			M.	ł	
+	-	-	44	<i>∩</i> ∰.	1	1	12	N	' ¥
K.	<u>.</u>	* -	P	2	K	1	Λ	X	ser,
1	Ŷ			ŝ.	1		7	R.	Ą.
	T.	\uparrow	-	and the second	1	1	1	A	1. 4
4	1	Mjs	\$	78%	F	7	2	No.	×.
1	1	5	Ť	3	*	1		A.	Mr.

Accuracy vs. Number of Training Examples

To learn more

- Warning: lots of wrong info on web
- Great site by Daniel Reetz: <u>http://www.futurepicture.org/?p=97</u>
- Kinect patents:

http://www.faqs.org/patents/app/20100118123 http://www.faqs.org/patents/app/20100020078 http://www.faqs.org/patents/app/20100007717

Uses of Kinect

- Mario: http://www.youtube.com/watch?v=8CTJL5IUjHg
- Robot Control: http://www.youtube.com/watch?v=w8BmgtMKFbY
- Capture for holography: <u>http://www.youtube.com/watch?v=4LW8wgmfpTE</u>
- Virtual dressing room: <u>http://www.youtube.com/watch?v=1jbvnk1T4vQ</u>
- Fly wall: <u>http://vimeo.com/user3445108/kiwibankinteractivewall</u>
- 3D Scanner: http://www.youtube.com/watch?v=V7LthXRoESw

Next week

- Tues
 - ICES forms (important!)
 - Wrap-up, proj 5 results
- Normal office hours + feel free to stop by other times on Tues, Thurs
 - Try to stop by instead of e-mail except for one-line answer kind of things
- Final project reports due Thursday at midnight
- Friday
 - Final project presentations at 1:30pm
 - If you're in a jam for final project, let me know early