4/27/16

Basic Problem

Making the Sky Searchable: * | show you a picture of the-night sky.
Fast Geometric Hashing for s LT TR
Automated Astrometry

Sam Roweis, Dustin Lang & Keir Mierle
University of Toronto

David Hogg & Michael Blanton
New York University

* You tell rhé where on the sky it came from.

http://astrometry.net

Rules of the game Rules of the game

» We start with a catalogue of stars in the sky, » We start with a catalogue of stars in the sky,
and from it build an index which is used to and from it build an index which is used to
assist us in locating (‘solving’) new test assist us in locating (‘solving’) new test
'mages. TN I WE85R-spend as NS

much time as we want
building the index but
solving should be fast.
Challenges:

1) The sky is

2) Both catalogues
and pictures are

http://astrometry.net

4/27/16

Bad news:
Query images may contain
some extra stars that are not
in your index catalogue, and
some catalogue stars may
from the image.
These “distractors” & “ ” mean
that naive matching techniques will not Find this “field” on this
work. sky”

http://astrometry.net http://astrometry.net

You try You try

Hint #1: Missing stars. Hint #1: Missing stars.
F Hint #2: Extra stars.

Find this “field” on this I — Find this “field” on this
“sky”. “sky”.

http://astrometry.net http://astrometry.net

4/27/16

Robust Matching

* We need to do some sort
of robust matching of the
test image to any proposed
location on the sky. i

Intumvely, we need to ask: . ‘
“Is there an alignment of the test /mage
and the catalogue so that (almost’) every
catalogue star in the field of view of the
, L e I test image lies (almost’) exactly on top of
Find this “field” on this an observed star?”
sy [*The details depend on the rate of distractors/dropouts.]

http://astrometry.net

Solving the search problem Inverted) Index of Features

* Even if we can succeed in e » To solve this problem, we will employ @ -
finding a good robust matching BRI the classic idea of an “inverted index”. |- :

algorithm, there is still a huge We define a set of “features” for any

. Which proposed location R particular view of the sky (image).
should we match to? Then we make an (inverted) index,
telling us which views on the sky

+ Exhaistwesearch? . . exhibit certain (combinations of)
ALy ' feature values. /

ive!
too expensive! This is like the question:
Which web pages contain

. . th é h I . ”?
The Sky is Big e words “machine learning

http://astrometry.net

Matching a test image

* When we see a new test image,
we compute which features are
present, and use our inverted
index to look up which possible
views from the catalogue also
have those feature values.

Each feature generates a

candidate list in this way, b) ®)

and by intersecting the lists o)
we can zero in on the true Q.o 3 O
matching view. '

The features in our inverted index act
as “hash codes” for locations on the sky.

Robust Features for Geometric Hashing

* In simple search domains like | The features we
text, the inverted index idea use are the
can be applied directly. relative positions of
However, in our star matching nearby quadruples
task, the features we chose of stars.
must be

They must also be to
small positional noise.
Finally, there is the additional
problem of

4/27/16

Caching Computation

The idea of an inverted index is that is
pushes the computation from search time
back to

We actually do perform an

of sorts, but it happens during the
building of the inverted index and not at
search time, so queries can still be fast.
There are millions of patches of the scale
of a test image on the sky (plus rotation),
so we need to extract about 30 bits.

Quads as Robust Features

We encode

(ABCD) using a coordinate
system defined by the most
widely separated pair (AB).
Within this coordinate system,
the positions of the remaining
two stars form a

for the shape of the quad.

Swapping AB or CD does not
change the shape but it does
“reflect” the code, so there is
some :

Quads as Robust Features

* This is
invariant to scale, translation
and rotation.

It also has the property that if
stars are uniformly distributed
in space,

We compute codes for most

nearby quadruples of stars, but
not all; we require C&D to lie in
the unit circle with diameter AB.

Making a uniform catalogue

» Starting with USNO+
TYCHO we “cut” to get
a spatially uniform set
of the ~150M brightest [
stars & galaxies.
We do this by laying
down a fine “healpix”
grid and taking the
brightest K unique
objects in each pixel.

Catalogues: USNO-B 1.0 + TYCHO-2

* USNO-B is an all-sky g
catalogue compiled @

from scans of old _ §

Schmidt plates. =~ W

Contains about 10°

objects, both stars

and galaxies.

TYCHO-2 is a tiny

subset of 2.5M
brightest stars.

http://astrometry.net

Building the index

- Start with the catalogue; build a g.s .f‘

on the 3D object positions.

* Place a fine grid on the @ ‘45‘
sky. Within each pixel, identify a

valid quad whose size is near the

target scale for the index.

« Compute 4D for those m’ [
quads; enter them into another oL
remembering their original 1.,
locations. This is the index.

4/27/16

4/27/16

Re-project into the plane
with tangent point at the
midpoint of AB

CODE:
1 (cx,cy,dx,dy)

4D kdtree

A Typical Final Index Solving a new test image

e 144M stars e - . Id_entify objects (stars_+galaxie_s) in the i.mage
(6 quads/star) gois s s bitmap and create a list of their 2D positions.

 Cycle through all possible valid” quads (brightest
* 205M quads o sae first) and compute their corresponding codes.
(4-5 arcmin) Look up the codes in the code KD-tree to find

+ 12 healpixes matches within some tolerance; this stage incurs

some false positive and false negative matches.

Codes S 0 Each code match returns a candidate position &
' rotation on the sky. As soon as 2 quads agree
on a candidate, we proceed to verify that
candidate against all objects in the image.

4/27/16

A Real Example from SDSS A Real Example from SDSS

50

4/27/16

A Real Example from SDSS A Real Example from SDSS

. I T T
= T AEE PR J = FT mED e L0 oo

A Real Example from SDSS

4/27/16

Final Verification Preliminary Results: SDSS

+ After hash code , .- * The Sloan Digital Sky
matching, we are left with ™ S Survey (SDSS) is an
a list of candidate views all-sky, multi-band
that >1 codes agree on. survey which includes

If this list is , the e targeted spectroscopy
search has : ‘ of interesting objects.

If this list is non-empty, : The telescope is
we do a slower positiona — located at Apache
verification on each IR Point Observatory.
candidate to see if it ‘ Lo Fields are

really is the correct : :' corresponding to
position in the catalogue. 2048x1361 pixels.

http://astrometry.net

Preliminary Results: GALEX

. 336,554 fields & T ”ﬂ“ « GALEX is a space-based

science grade+ . ‘ telescope, seeing only in
N the ultraviolet.

+ Ofalse positives It was launched in April

- 99.84% solved - B\, 2003 by Caltech&NASA
530 unsolved - .- RS and is just about finished

+ 99.27% solve w/ © + R collecting data now.

60 brightestobjs ~ It takes huge ()
circular fields with 5arcsec
resolution and spectra

of all objects.

4/27/16

Ovalap batwasn Galex NUV sources and inde» ep bety

Preliminary Results: GALEX Preliminary Results: GALEX

« GALEX NUV i cREL AL
fields can be wf L Teerdt L ne fields are much
solved easily [EEREASEEE TR to solve
using an index et TNt)

: : N I R using USNO as
built from bright | X soﬁrce
blue USNO |
stars. catalogue.

Algorithms & Data Structures

* Indexing takes ~12 hours, * Implementations are all in-core.
uses ~ 2 GB of memory | IEaRRRIEIL « Written in C & Python.

. is in th .. .
and ~100 GB of disk. Ea'rr:jesfm% « Parallelization is at the

Solving a test image A of fields script level, which has

almost always takes many aggregation
<<1sec (not including & storage advantages.

object detection). We make extensive use

of
Solving many fields is some fancy and
done by coarse a cool new

parallelization on about implementation.
100 shared CPUs. [Mierle & Lang]

http://astrometry.net row cs.toronto.edu http://astrometry.net

7 8910111213 14
Ler

0z] 1 o[1]2]3]4]5]6]7

04 06 0
Fraction of Fields Solved

10

Future Work

* Making intelligent use of
brightness (magnitude)

information. Now, we use it only

to set the order in which we try
quads in the test image.

Theoretical analysis of false-
positive/false-negative rates as
a function of various indexing/
solving parameters/tolerances.
Links to “Bloom filters” and
other database indexing
techniques.

Googlers should love this!

* Massive indexing & =
pattern recognition. =

» Coarsely parallel
storage/processing.

» Cool algorithms &
data structures.

« Organizes the sky’ s
information and
makes it searchable.

http://astrometry.net

=

S

e There are several
system parameters to
tune, including range
search sizes in code-
space, agreement and
verification tolerances on
the sky, etc.

Our approach has been
to tune these by

of
what happened across a
large number of test
cases where we know
the ground truth.

http://astrometry.net

astrometry.net

* The project has a
website, which
should go “live” in a
few weeks.

It will allow any user
to recover (or verify)

astrometry.net

the positional
information in their
image headers, label
specific stars,
automatically link
into other surveys
and more.

4/27/16

11

astrometry.net

* In the future, we plan to solve
a wide range of images or
image sets, using a variety of |
indexes.

We also hope to insert the
system into the observing
pipeline of telescopes, debug
standard catalogues, learn
about individual instruments
and facilitate “collaborative
observing” tools.

Related Efforts

automatch — John Thorstensen, Dartmouth
Pinpoint — Robert Denny, DC-3
TheSky/CCDSoft — Software Bisque

Charon — Project Pluto

imwcs (wcstools) — Doug Mink, Harvard CFA
wcsfixer — IRAF-NVO@NOAO

wcs correction service — NVO@U.Pitt

astrometry.net

* We are
email code@astrometry.net |f you want to
be a beta tester.

* We are
email hogg@astrometry.net if you want to
be a beta tester.

* Our
Check out trac.astrometry.net if you want
to see all the gory details.

http://astrometry.net

The Core Team

Sam RO\\ eis a\ id Hogg

m nlstromelrg net

le

real y :m’

talent!

Dustin Lang Keir Mierle Michael Blanton

cs.toronto.edu

4/27/16

12

4/27/16

Pointer-Free KD-Trees Pointer-Free KD-Trees

Position of point in data array

Pivot along x dimension

0) ROOT NODE 0) ROOT NODE)

.7

Itis usually desirable to have a full tree for kdtrees
(Not for doing ray-tri intersection, but that is different)

DATA ARRAY

(1.7) ok / \
103 @ @n Therefore we can use the indexing trick:
Children are stored at 2n+1 and 2n+2
oA A
1234567 Combined with previous pivoting trick:
NO POINTERS ANYWHERE!

Use mmap() for very efficient storing/

loading
ROOT NODE

0 (1.7 . .
The nice thing about

building a kdtree this

way is that at the end of LEFT CHILD

step three, all data

points within a node are

stored contiguously in 0{1/2|314|5||6|7|8]|9|10/11}12]13|14
the data array. This is w
very similar to quicksort.

Store nodes in a Linear Array RIGHT CHILD

13

