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Introduction

Background

Contributions

Experiments

Random walks and Quantum walks are foundational

paradigms in studying stochastic processes. While a random

walk can be summed up as a series of random movements

within a graph, a quantum random walk introduces the wave-

like properties of quantum mechanics such as superposition

and interference into this process. In fact, any quantum

algorithm can be a mapped to a quantum walk on a graph.

Analyzing these walks has broad implications, from

machine learning to medicine manufacturing. For instance,

quantum walks may provide ways to speed-up the

PageRank algorithm that drives web-page recommendation.

In addition, they are candidates for the efficient simulation of

quantum systems, a problem considered to be intractable for

classical computers.

Results and Discussion

Quantum Circuits: Sequence of quantum gates that

manipulates qubits to perform a quantum algorithm. Serve as

a universal quantum computing model.

Random walks

● Create walk matrix P from adjacency matrix

● Define initial probability distribution 𝝅(0)
● Compute 𝝅(k) = Pk𝝅(0) for k = 1,2,..., t

● Compute entropy H[𝝅(k)] for k = 1,2,..., t

Quantum walks

● Define coin (C) and shift (S) operators using Qiskit

○ Hadamard gate used as coin to compare with uniform 

random walk

● Initialize initial state |𝛹(0)⟩ of the walker 

● Perform circuit |𝛹(k)⟩ = (SC)k|𝛹(0)⟩ for k = 1,2,..., t

○ Repeat and measure system to estimate 𝝅(k)
● Calculate the entropy H[𝝅(k)] for k = 1,2,..., t

Random walks

● Vertex probabilities converge

● Entropy strictly increases for random walks

● Entropy on torus grows faster than cycle

● Growth rate explained by mixing times

Quantum Walks

● Vertex probabilities don't converge

● Seem to "defy" second law of thermodynamics

● Entropy fluctuates over time, dropping to zero 

once. 

Qubits: State represented as vector in bi-dimensional Hilbert

space. Unlike bits, qubits are in an undefined superpositions

of states 0 and 1 until a measurement is performed.

Graphs: mathematical structures composed of nodes and

edges representing the relationship between pairs of objects.

Random Walk: Stochastic process on vertices of a graph. 

Position is a random variable.

Quantum Walk: evolution of superposition of graph edges.

Measurements generate probability distribution on vertices.

Quantum Gates: Unitary operations on the Hilbert space 

spanned by qubits. Transform the state preserving norm.

We investigated entropy in walks on cycle and torus 

graphs to derive intuition on:

Fig 8: Truth table for a 4-

node cycle quantum 

walker position.

Coin Input Output

0 00 11

0 01 00

0 10 01

0 11 10

1 00 01

1 01 10

1 10 11

1 11 00

● Entropy behaves similarly for cycle with 

different initial coin conditions cycle

● Indicates a non-trivial dependence between 

entropy and initial state

● Lowest four curves follow similar pattern

● Horizontal line initial condition causes different 

dynamics

● Similar oscillatory behavior for all five curves, 

(including dip point around t = 40)

● Indicates that initial entropy plays important 

role

Fig 10: Quantum circuit for a 

4x4-node torus quantum walk
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Fig 7: 4-node cycle 

random walk transition 

matrix 

Fig 9: Quantum circuit for a 4-

node cycle QWalk

1. Comparison between random and quantum walks

2. Impact of initial conditions in evolution of entropy 

3. Effects of real hardware noise in system's evolution 
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Fig 3: Random walk on path graph.
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Fig 4: Initial state. 

|𝛹(0)⟩ = |A, B⟩.
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Fig 5: Coin yields 

C|𝛹(0)⟩ as

ɑ|A, B⟩ + β|A, D⟩

Fig 6: Shift yields

SC|𝛹(0)⟩ as

ɑ|B, C⟩ + β|D, C⟩

H

● Stark divergence between simulation and 

experiments

● Current quantum computers inaccurate

● IBM’s Nairobi and Perth show high entropies 

at all times (independent of circuit size).

Future work

● Extend analysis on impacts of initial condition 

on entropy

● Study quantum walks on more generic 

graphs

● Search for quantum walk operators that 

reduce initial entropy

● Analyze entropy oscillations theoretically

Fig 1: Hadamard gate Fig 2: CNOT gate

𝝅(k + 1) = P𝝅(k)

Eq 1: Random walk

|𝛹(k + 1)⟩ = SC|𝛹(k)⟩

Eq 2: Quantum Walk

H[𝝅(k)]=-𝝨x𝝅x(k)log[𝝅x(k)]

Eq 3: Vertex probability distribution 

entropy
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