CMPSCI1520/620 Analysis Overview

COMPUTER

Sseince 23-Analysis Overview

¢ Readings:

GJMO03 Chapter 6

Adr82 Adrion, W.R,. M.A. Branstad, and J.C. Cherniavsky, "Validation, Verification and Testing of
Computer Software," ACM Computing Surveys, June 1982, pp.159--192

Hoa69 Hoare, C.A.R., "An Axiomatic Basis for Computer Programming," Communications of the ACM,
October 1969.

Flo67 Floyd, R.W. "Assigning Meaning to Programs", in the Proceedings of Symposium on Applied
Mathematics, 1967, pp. 19-32, (Appeared as volume 19 of Mathematical Aspects of Computer Science).
Han76 Hantler, S.L. and J.C King,. "An Introduction to Proving the Correctness of Programs," ACM
Computing Surveys, September 1976, pp. 278-300.

Clag85 Clarke L. A. and D. J. Richardson, "Applications of Symbolic Evaluation," Journal of Systems
and Software, January 1985, 5 (1), pp.15-35.

Zhu97 Zhu, Hong, Patrick A. V. Hall, and John H. R. May, "Software Unit Test Coverage and
Adequacy," ACM Computing Surveys, vol. 29, no.4, pp. 366-427, December, 1997.

Wey80 Weyuker, Elaine J. and Thomas Ostrand, "Theories of Program Testing and the Application of
Revealing Subdomains," IEEE Transactions on Software Engineering, May 1980, SE-6(5), pp. 236-246
DeM79 DeMillo R.A. and R.J. Lipton and A.J. Perlis, "Social Processes and Proofs of Theorems and
Programs, Communications of the ACM, May 1979, 22(5), pp. 271-280

UNIVERSITY: OF MASSACHUSETTS AMHERST 4/ DERARTVENT. OF GOMPU TSRS CIENGE HONBS O S0 IBA AL 005 ok

©Rick Adrion 2004 (except where noted)

"I Approaches

« Static Analysis *Dynamic Analysis
oAqsg!:th]s

*Error seéding,
+Symbolic execution | mutation testing
«Dependence Analysis +Coverage criteria
+Data flow analysis *Fault-based testing

«Software Verification *Specification-based
testing

*Object-oriented testing‘
*Regression testing

UNIVERSITY.OF MASSACHUSETTS AMHERST 2D

CMPSCI1520/620 Analysis Overview

CONFUTER Static Analysis

Floyd Inductive Proof

intent — predicate logic assertions

UNIVERSITY OFMASSACHUSETTS AMHERST: S $DERARTMENT:

©Rick Adrion 2004 (except where noted)

product

COMPUTER
Sscienee Proof

predicate logic

assertions @

w

lemmas and theorems in
predicate logic

N

typically inferred ode

by symbolic m Behavior
execution of the SQRLOAUS
specifications

UNIVERSITY.:OF MASSACHUSETTS AMHERST A - DEPARTMENTE)

CMPSCI1520/620 Analysis Overview

LN Symbolic Evaluation/Execution CONPTH Execution tree (Hantler-King)
« Creates a functional ABSOLUTE PC: true, PV: X: @, Y: -
representation of a path assume (true)
of an executable 1 procedure(X); PC: true
component declare X,Y integer ’

¢ P is composed of partial
functions corresponding
to the executable paths

2
3 if X<0

4 then Y< -X;
5

PC: a<0 PC: 020
else Y< X; \
- ' S

P={P,,...P} 6 return (Y) pC a<0 PC: a=0
P X— Y prove((Y =X|Y =-X)& Y20 & X =X) TPV:X: o, Y:-a PV:X:a Y:
«For a path P, 7 end;
*D[P] is
the domain for path P,
*C[P] is the
computation for path P, (\% (a— o) (= (x) \Y
verified
A-0)20 A o = a) Ao20 A a=a)

UNIVERSITY OFMASSACHUSETTS AMHERST: DEI%‘

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEI%'

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER COMPUTER : :
seienee Loops -- unroll them? seienice Straightforward Observations
[.
input asssertion . input assertion « Probl
n do_while predicate! <= better: find a n roblems
n+1 if predicate2 loop invariant n+1 n+5 « formal proofs are long, tedious and are often hard; assertions
n+2 then code ; N\ output assertion are hard to get right; invariants are difficult to get right (need to
n+3 else code ; » :) be invariant, but also need to support overall proof strategy)
n 1+,

":: et"";t . 4 « Unsuccessful proof attempt = ???
n output assertion ; . . X X

? n+4 eincorrect software? assertions? placement of assertion? inept

' prover? although failed proofs often indicate which of the
S = above is likely to be true (especially to an astute prover)
e) « Deeper Issues
< output assertion

« undecidability of predicate calculus = no way to be sure when
you have a false theorem

e there is no sure way to know when you should quit trying to
prove a theorem (and change something)

« proofs are generally much longer than the software being
verified = errors in the proof are more likely than errors in the
software being verified

UNIVERSITY OFMASSACHUSETTS AMHERST:

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER

¢ properties usually expressed in
« in a propositional logic (e.g.,
temporal logic)
e asaFSA
e system represented as a

(possibly “abstracted”) ‘

reachability graph \
e reasoning engine

¢ logic = propagates valid sub- exhaustive search

formulas through the graph of state space
. language containment
¢ FSA = compares FSAs via reachability analysis

language inclusion; bisumlation
reachability; or bisumulation

UNIVERSITY OFMASSACHUSETTS AMHERST: DEI%‘

©Rick Adrion 2004 (except where noted)

Sseivee Model Checking: Overview

rti ted
propBSonal o516 Sssartions

properties stated as
an FSA

Comparison

A

odug

CONFUTER Conservative Analysis

« If property is verified, property holds for all possible
executions of the system

« If property is not verified:
ean error found
OR

e a spurious result
* System model abstracts information to be tractable

«Conservative abstractions usually over-approximate
behavior

«If inconsistency relies upon over-approximations, then a
spurious result

¢e.g. all counter example correspond to infeasible paths

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEP'

CMPSCI1520/620 Analysis Overview

COMPUER Temporal logic

« augments the standard operators of propositional logic with “tense”
operators

« "possible worlds semantics" = Kripke model
« relativize the truth of a statement to temporal stages or states
« a statement is not simply true, but true at a particular state

« states are temporally ordered, with the type of temporal order
determined by the choice of axioms.

* model of time
« partially ordered time
¢ linearly ordered time

« linear temporal logic is typically extended by two additional operators, “unti
and “since”

« discrete time
« branching (nondeterministic) time

« foundation for one of the principal approaches to verifying concurrent
systems = Computational Tree Logics.

UNIVERSITY OFMASSACHUSETTS AMHERST: S XDERA

©Rick Adrion 2004 (except where noted)

I

CONFITER Computation Tree Logics

« specification language
« a propositional temporal logic. Fp
« verification procedure AFp
« exhaustive search of the state space of
the concurrent system to determine AFp
truth of specification.
e formulas constructed from path
quantifiers and temporal operators:
« path quantifier: Fp
« A “for every path” EFp
« E “there exists a path”
« temporal operator:
* Xp “p holds next time’
* Fp “p holds sometime in the future” p
* Gp “p holds globally in the future”
* pUq “p holds until g holds”

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DERA

CMPSCI1520/620 Analysis Overview

CONFETER Architecture of FSV Systems CONMTER mutual exclusion protocol
Property &Example: processes can be null, trying to process1 =n1.t1.¢1
obtain the lock, or in a critical region (n1, t1, c1) S
or (n2, 12, c2) process2 =n2,t2,c2
#TURN is a variable that indicates which turn =0,1,2

process can obtain the lock (0,1,2)

«Need a reachability graph that shows that
states (i.e., the values) of the variables *McMillan

Property
Representation

Property
Verified
System

Counter Examples
for Model

UNIVERSITY:OF MASSACHUSETTS AMHERST: S 2DERARTMENTOF: COMPt}

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH - DEPARTMENT:QEGOMP:

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

CONPUTER Example: propagation CONFUTER Automata-Theoretic Model Checking
AG(t1=AF 01) &a =b means (b or ~ a)
&(t1=AFcl)means (AFclvt1) properties stated as an FSA

t1=AF c1

lreent

language containment
reachability analysis
bisumulation

\.,

FSA

cl tﬁ:‘F»:&ll c1

<process1, process2, turn>

UNIVERSITY.OF MASSAGHUSETTS AMHERST DEPARTVENT:OE B OM

UNIVERSITY! OF MASSACHUSETTS AMHERST: S DERARTVMENT. OF: C

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER
»seienee Example

 Specification:
« of the possible observable events (a, b, ¢), c must
happen at least once

a, b, c

f

(ac*+ bbc*)

llmplementation

oo

UNIVERSITY OF MASSACHUSETTS AMHERST: S EDERARTM

©Rick Adrion 2004 (except where noted)

COMPUTER
®SCIENCE

Some observations

*Model Checking

eworst case bound linear in size of the model
ebut the model is exponential

enot clear if model checking or symbolic model
checking is superior
edepends on the problem

eexperimentally often very effective!
eused selectively to verify hardware designs

etrying to develop appropriate abstractions to make
it applicable to software systems

UNIVERSITY.OF MASSACHUSETTS AMHERST - DERARTVER

CMPSCI1520/620 Analysis Overview

CONPUTER Verification

*How are they different?
¢ (Automated) mathematical reasoning
« difficult, error prone

e decidability vs. expressiveness
« Propositional calculus is decidable
« Predicate calculus is semi-decidable

«Finite-state verification
* Reason about a finite model of the system

« Fast, yields counterexamples, manages partial
specifications, applies to concurrency

« State explosion!

UNIVERSITY OFMASSACHUSETTS AMHERST: DEI%‘

v

©Rick Adrion 2004 (except where noted)

"I Approaches

« Static Analysis *Dynamic Analysis

oAqsg!:th]s

*Error seéding,
mutation testing

eCoverage criteria

*Fault-based testing

» Specification-based
testing

*Regression testing

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DE!

*Object-oriented testing‘

10

CMPSCI1520/620 Analysis Overview

CONrTH Types of Testing--what is tested CONrTH Testing approaches

* Unit testing *“black box”
eexercise a single simple (procedure) component

e Integration testing
eexercise a collection of inter-dependent components
«focus on interfaces between components

* System testing
eexercise a complete, stand-alone system

« Acceptance testing *“white box” or “glass box”
ecustomer’s evaluation of a system
eusually a form of system testing

¢ Regression testing
eexercise a changed system
*Focus on modifications or their impact

UNIVERSITY: OF MASSACHUSETTS ANHEI UNIVERSITY.OF MASSAGHUSETTS ANMHER!

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER

sseienee White & Black box testing processes

> test data selectio
criteria

test case:

test data selection
criteria

test cases

executable

component specification:

analysis

execution results

specification: oracle testing report

UNIVERSITY:OF MASSACHUSETTS AMHERST: S 2DERARTMENTOF:

©Rick Adrion 2004 (except where noted)

executable
component

execution results

testing report

Rs=Y, Y, ..., Y, =postcondition Q

Dg=X,, X, ..., X, =precondition P

Re=Y,, Y,, .., Y,
De=Xy, X5, ooy X,
specification S
executable component E; show P{E}Q
test data set(s) T
test data adequacy criterion C
UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT:OF

12

CMPSCI1520/620 Analysis Overview

CONMTH Testing Theory

« Criterion C for Test Adequacy

o C:SxE ->27

«specification-based C (s) “black box”

s interface-based C (x1,x2, ..., xn, y1,vy2, ..., yn)

e program-based C (e)

ecombined C (s.e) “white box”
*Types

estructural «if specification S defines a function F,

such that P{F}Q, then C is reliable if
T, Ty oo, Ty C(T,,E); @and D (E) D T,
VT, (VtET, E(t)= F(t)) v VT,
(FET, E)#F()
Vte T, E(t)= F(t) =
VteET OKT,)=E=F

«fault-based
eerror-based

UNIVERSITY: OF MASSACHUSETTS AMHERST: $41

©Rick Adrion 2004 (except where noted)

COMPITE! |deal Test Criterion

e test criterion C is ideal if for any executable component E
and every test set T,C D(E) such that C(T,,E), T; is
successful

e of course we want T, << D(E)
e butin general, T= D(P) is the only ideal test
criterion
¢ In general, there is no ideal test criterion

“Testing shows the presence, not the absence of bugs”
E. Dijkstra

« Dijkstra was arguing that verification was better than testing
¢ but, verification has similar problems
e can'’t prove an arbitrary program is correct
e can't solve the halting problem
e can't determine if the specification is complete

¢ need to use these techniques so that they compliment one
another

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;.B

13

CMPSCI1520/620 Analysis Overview

COMPUTER
SCIENCE

Black Box Testing

 Functional/lnterface Test Data Selection
e typical cases
e boundary conditions/values
eillegal conditions (if robust)
« fault-revealing cases
 based on intuition about what is likely to break the system
e other special cases
« stress testing
e large amounts of data
e worse case operating conditions
e combinations of events
e select those cases that appear to be more error-prone
e common representations for selecting sequences of events
» decision tables
 cause and effect graphs
e usage scenarios

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

estructural

ecoverage based
fault-based

ee.g., mutation testing, RELAY
eerror-based

edomain and computation based

euse representations created by symbolic
execution

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

COMPITER «“White Box” Test Data Selection

14

CMPSCI1520/620 Analysis Overview

e CFG-Based Coverage

e Criteria
» Statement Coverage
« Path Coverage
¢ Cyclomatic-number
*Branch Coverage
*Hidden Paths
e Loop Guidelines
e Boundary - Interior
« Selecting paths that satisfy the criteria
« static selection

e dynamic selection

satisfactorily covered

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

« some of the associated paths may be infeasible

* monitors coverage and displays areas that have not been

CoNrTE «Simple” coverage measures

« Statement Coverage
erequires that each statement in a program be executed
at least once
« a set P of paths in the CFP satisfies the statement coverage
criterion ift V.n;EN, I p &P such that n; is on path p
e Path Coverage
*Requires that every path in the program be executed at
least once
« P satisfies the path coverage criterion iff P_contains all execution
paths from the start node to the end node in the CFG
¢In most programs, path coverage is impossible
e Multiple Condition Coverage
T is adequate if for every condition C which consists of
atomic predicates (p4, Pa. F) and all possible
comblnatlons_|(b1, b,, %)0 their values, there is at
IeiIa'St one t € T sticK that the value of p; is equal to b, for
alli

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

15

CMPSCI1520/620 Analysis Overview

COMPUTER

e Branch Coverage

¢ Requires that each
branch in a program
(each edge in a control
flow graph) be executed
at least once
* e.g., Each predicate must
evaluate to each of its
possible outcomes
*Branch coverage is
stronger than statement
coverage

<so>" hidden
F

branches
p

UNIVERSITY: OF MASSACHUSETTS AMHERST: ~+DERA}

©Rick Adrion 2004 (except where noted)

Sseinee Branch & Loop Coverage

e Loop Coverage

«Path 1, 2,1, 2, 3 executes all
branches (and all statements) but
does not execute the loop well.

* Better

« fall through case

* minimum number of iterations

* minimum +1 number of iterations

* maximum number of iterations

* maximum -1 number of iterations

1,2,1,2,1,2,3
(1,2)",3
(1,23

COMPITE Data Flow Path Selection

« Definitions
« d,(x) denotes that variable x is assigned a value at node n (defined)

* u,,(y) denotes that variable y is used (referenced at node m)

« adefinition clear path p with respect to (wrt) x is a subpath where x is not defined at any of the
nodes in p

« a definition d,(x) reaches a use u,(x) iff there is a subpath (m) * p * (n) such that p is definition clear
wrt x

* Rapps and Weyuker

« definition-clear subpaths from definitions to uses
 Ntafos

« chains of alternating definitions and uses linked by definition-clear subpaths
« Laski and Korel

« combinations of definitions that reach uses at a node via a subpath

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEP'

16

CMPSCI1520/620 Analysis Overview

COMPUTER

¢ All-Defs - Some definition-clear subpath from each
definition to some use reached by that definition

def-clear

¢ All-Uses- Some definition-clear subpath from each

each successor node of the use

=X
— 7 wefelear ~@® ~-@®
= . @ =x-@
Yef-Lledt

Yef-Bleat

UNIVERSITY OFMASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

seieice Rapps’ and Weyuker’s DF Criteria

definition to each use reached by that definition and

CoNrTH Rapps’ and Weyuker’s DF Criteria

C-use is a “computation use”
*All-C-Uses, Some-P-Uses p_yse is a “predicate use”
e either All-C-Uses for dm(x) or at least one P-Use
*All-P-Uses, Some-C-Uses
« either All-P-Uses for dm(x) or at least one C-Use
¢ All-Du-Paths

« All definition-clear subpaths that are cycle-free or simple-
cycles from each definition to each use reached by that
definition and each successor node of the use

cycle-f(rjeeefx_gre?iipﬁple-cycles
PR

Xi=

/;-free [olg sim@s&‘
Yef-tleat \

L

def-clear.
cycle-free or simple-cycles

UNIVERSITY.OF MASSACHUSETTS AMHERST:

17

CMPSCI1520/620 Analysis Overview

Xt Examples

e All-Defs S

°1,2,4,6

¢ All-Uses Batisfactory Paths:

tisfactory Path:

°1,2,4,5,6

2,4, 9, u.(x
+1,3,4,6 %)
All-Du-Paths Satisfactory Paths:

*1,2,4,5,6

4,00 to u,(x)
d,(x) 10 uy(x)

both paths for d,(x) to us(x)

UNIVERSITY:OF'MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

COMPITE! Ntafos k-dr Data Flow Criteria

« Chains of alternating definitions and uses linked by definition-
clear subpaths (k-dr interactions)

« ith definition reaches ith use,
e which defines (i+1)st definition
* Required K-tuples
* Some subpath propagating each k-dr interaction
+ if last use is a predicate, both branches

+ if first definition or last use is in a loop, minimal and some larger
number of loop iterations

Viam =X
[def-clear

def-clear

—
gef-glear, Tind

g AR L =y .
‘/v .Z\ \b—, =z

X= =X
¥ def-clear) 2-dr

—» def-clear__Y gl — X deq-c\ear_>5 Y 3-dr

UNIVERSITY.OF MASSACHUSETTS AMHERST:

CMPSCI1520/620 Analysis Overview

d1(x),
d1(x),
d1(x),
d1(y),
d1(y),
d1(y),
d3(x),
d4(y),

d4(y),
Paths

UNIVERSITY:OF'MASSACHUSETTS AMHERST: ~+

ud(x), d4(y), ub(y)
ud(x), d4(y), u2(y)
ud(x), d4(y), u3(y)
u3(y), d3(x), u5(x)
u3(y), d3(x), u6(x)
u3(y), d3(x), ud(x)
ud(x), d4(y), ub(y)
u3(y), d3(x), u5(x)
u3(y), d3(x), u6(x)

¢ 2-DR paths

computeR 3-DR interactions
SCIENCE

©Rick Adrion 2004 (except where noted)

COMPITER | aski’s and Korel’s Criteria

« Context Coverage - Some subpath along which each set of
definitions reach uses at some node

VAL
/.\de'-c\ear
DRI : \ yi=

.\ def-clear
e

def-clear

» Ordered Context Coverage -Some subpath along which each
ordering of each sequence of definitions reach uses at some

def-clear

VA detcles
def-clear "~ .\ﬁ deli-d_eaf \
o .. -
/\._/ \ \.\ R X =Y, =2

dei-clear‘/ ST .
P

UNIVERSITY. OF MASSAGHUSETTS AMHERST 4 DEPARTENT 05 B OMP U EH S OIENOE # GBS G0 SO AL S0k

19

CMPSCI1520/620 Analysis Overview

COMPUTER

CONTEXT COVERAGE AII—

REAC}lCOVERAGE

All-C-Uses/Some-P-Uses

\

#All-Defs -- linear in assignment statements
#®All-Uses -- quadratic in assignment statements

#All-DU-paths -- exponential in assignment statements,
but empirically, all are linear in conditional statements

#Required 2-tuples -- quadratic in statements
#Reach -- linear in definitions that reach uses
#Context -- quadratic in definitions that reach uses

UNIVERSITY! OF MASSACHUSETTS AMHERST: = DERARTV

©Rick Adrion 2004 (except where noted)

Jseience Relationships among criteria

All-Paths

ORDERED CiNTEXT:mFMUImd k-Tuples

ses

All-P- Uses/Some C-Uses

All- P Uses

All-Defs

All-Edges

v

All-Nodes

CONFITER Fault-based Techniques

apply test data
to distinguish (kill)

e Mutation Testing

introduce
simple errors

« Fault propagation
apply test data
to propagate fault
to output

I“I“I“
NN N

UNIVERSITY.:OF MASSACHUSETTS AMHERST A DERARTV

20

CMPSCI1520/620 Analysis Overview

CONPITER Mutation Testing

« Competent Programmer Hypothesis
e programmers write programs that are reasonably close to the
desired program
e e.g., sort program is not written as a hash table
e Coupling Effect
« detecting simple atomic faults will lead to the detection of
more complex faults
« considers all simple (atomic) faults that could occur
e introduces single faults one at a time to create “mutants” of
original program
e interactively(?) apply test data to complete (or partial) set of
mutants
« “test adequacy” is measured by “mutants killed”
operand mutations:
A:=X+1;, =>A:=X+2or=A:=X+Y
binary operator replacement:
A:=X+1; =A:=X-1or=>A:=X*1
statement replacement:
A:=X+1; = continue or = return

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPAF{E["

©Rick Adrion 2004 (except where noted)

CONPUTER Mutation testing process

apply test data to
distinguish (kill) by
comparing output with
“oracle”

e Execute program P on test set T
esave results R to serve as an oracle
P is considered the “correct” program

¢ Each fault results in a new program
eMutant programs = P1,...,Pk

¢ Execute each mutant Pion T and

compare results Ri to R
*If Ri = R then mutant is killed
«if Ri =R then either

*Pi =P, thusitis an equivalent mutant or
the test cases do not reveal the error and
need to find a new test case that does

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DERA

21

CMPSCI1520/620 Analysis Overview

U1 Relay Model

transfer — fault

L

> transfer

“observable”
failure

UNIVERSITY! OF MASSACHUSETTS: AMHERST: DEP

©Rick Adrion 2004 (except where noted)

COMPITE Other Fault-Based techniques:

e mutating test data
einstead of mutating program, mutate input
 Bart Miller did an experiment where he demonstrated
that arbitrary strings caused UNIX to consistently fail
ewanted to understand why storms caused his connection
to go down

UNIVERSITY.:OF MASSACHUSETTS AMHERST D. ARENT OF BOMPULER SOENGE £ B PO Io0 B AANE DA0IE Sk

22

CMPSCI1520/620 Analysis Overview

CONE Putting it all together

eunit testing
eintegration & system testing
eregression testing

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

CONPITER Unit testing

« test scaffolding

can be created for general
or for specific tests

is composed of

e one or more drivers

« provide a prototype activation
environment

« drivers initialize non-local
variables and parameters and call
the unit

eone or more stubs

« provide a prototype of the units

used by the program to be tested
e one or more oracles

« identify the tests that cause
failures.

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

Stubs

23

CMPSCI1520/620 Analysis Overview

COMPUTER

¢ Integration testing

« focuses on communication and
interface problems

« tests derived from module

seience Unit vs. Integration vs. System Testing

1-®

system as a whole

« tests are derived from requiremen
specifications

« support of scaffoldings not usually
needed

interfaces and detailed architecture
specifications
« some scaffolding is required T
« System testing %
« focuses on the behavior of the

|
¢ code is seen as a black box |

« exception is embedded code, where
some simulation of the embedding

i

environment may be required

UNIVERSITY:OF'MASSACHUSETTS AMHERST: "

©Rick Adrion 2004 (except where noted)

|
e

COMPUTER
SCIENCE

Integration testing strategies

¢ big bang

[]

=57

e top down I

o
Outputs

L =

xfiaix s

G

UNIVERSITY.:OF MASSACHUSETTS AMHERS

St

Outputs

4

— |

24

CMPSCI1520/620 Analysis Overview

CONPUTER Integration testing strategies

¢ bottom up ‘

o

UNIVERSITY: OF MASSACHUSETTS AMHERST. DEPARIVENT OF OOMPOTERSCIANCE % EMPS ro6/ea0 FALESODGH %

©Rick Adrion 2004 (except where noted)

COMPUTER Relation to design

;

el
el

UNIVERSITY.OF MASSAGHUSETTS AMHERST DEPARTVENT:OF G OMPOTER S OIENCE ¥ C MBS CE 2080 AL a0 +:3%

25

CMPSCI1520/620 Analysis Overview

LMt 0-0 Programs are Different

¢ High Degree of Reuse

¢Does this mean more, or less testing?
e Unit Testing vs. Class Testing

*What is the right “unit” in OO testing?
¢ Review of Analysis & Design

«Classes appear early, so defects can be recognized
early as well

UNIVERSITY: OF MASSACHUSETTS AMHERST: D)

©Rick Adrion 2004 (except where noted)

Cttne: Testing OOA and OOD Models

« Correctness (of each model element)
 Syntactic (notation, conventions)
* review by modeling experts
* Semantic (conforms to real problem)
* review by domain experts
« Consistency (of each class)
 Revisit Class Diagram
e Trace delegated responsibilities
* Examine / adjust cohesion of responsibilities
« Evaluating the Design
* Compare behavioral model to class model
* Compare behavioral & class models to the use cases

« Inspect the detailed design for each class (algorithms & data
structures)

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;

26

CMPSCI1520/620 Analysis Overview

COMPITER Unit Testing

*What is a “Unit"?
e Traditional: a “single operation”
*0-0: encapsulated data & operations

* Smallest testable unit = class
many operations

¢ Inheritance
etesting “in isolation” is impossible

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

eoperations must be tested every place they are used

COMPUTER
SCIENCE

Issues in O-0 testing

*Need to re-examine all testing techniques and
processes

ePrimary Issues:
e implications of encapsulation
«implications of inheritance
e implications of genericity
«implications of polymorphism

¢ Changes concerns
« State of instance variables
* Sequences of methods calls
*Must test a class and its specializations

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

27

CMPSCI1520/620 Analysis Overview

COMPUTER
@®SCIENCE

Example

UNIVERSITY:OF MASSACHUSETTS AMHERST: S S ERARTVENT OF UOMPUTERS CIENCE#ENRS Or520/42

©Rick Adrion 2004 (except where noted)

CONFUTER White-box vs. Black-box Testing

*The distance between object-oriented
specification and implementation is typically small

egap (and therefore usefulness) of the white-
box/black-box distinction is decreasing

*But object-oriented specification describes
functional behavior, while the implementation
describes how that is achieved

*These techniques can be adapted to method
testing, but are not sufficient for class testing
*Conventional flow-graph approaches
emay be inconsistent the object-oriented paradigm
emethod-level control faults are not likely

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH - DEPARTMENT:OR G OMPUTERSOIENCEX GBS CE320/620:

28

CMPSCI1520/620 Analysis Overview

PONE Black-box O-O Testing

» Conventional black-box methods are useful for object-
oriented systems

eerror-guessing strategies
everification of ADTs can be adapted to object-
oriented systems
¢ Other approaches

eutilize specifications integrated with the
implementation as assertions

especification integrated with the implementation
as dynamic assertions

«C++ assertions or Eiffel pre/post-conditions offer
similar self-checking

«Utilize method (event) sequence information

eusually don’t have history of method invocations
so can’t do this with assertions

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

COMPITE! Encapsulation

« not a source of errors but may be an obstacle to testing
« how to get at the concrete state of an object?
« use the abstraction
« state is inspected via access methods
« equivalence scenarios
« comparing sequences of events
« state is implicitly inspected by comparing related behavior
« examine sequences of events

« need to be able to define what are equivalent sequences and need to determine
equal states

« use or provide hidden functions to examine the state
« useful for debugging throughout the life of the system
« but modified code, may alter the behavior
« especially true for languages that do not support strong typing
« proof-of-correctness techniques
ca ptrﬁvgd method could be excused from testing to bootstrap testing of other
methods

« state reporting methods tend to be small and simple, they should be relatively
easy to prove

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

29

CMPSCI1520/620 Analysis Overview

COMPUTER Implications of Inheritance

erule rather than the exception?
e inherited features usually require re-testing
ebecause a new context of usage results when features
are inherited
emultiple inheritance increases the number of contexts to
test
« specialization relationships

e implementation specialization should correspond to problem
domain specialization

e reusability of superclass test cases depends on this

UNIVERSITY OFMASSACHUSETTS AMHERST = *DERARTMENT-OF. COMPLE

©Rick Adrion 2004 (except where noted)

COMMTER Which fns must be tested

« derived::redefined has to be tested afresh
« does derived::inherited() have to be retested?

have to test
when x<0, could
divide by O

« derived::inherited() may not have to be completely tested

« if code in inherited() doesn’t depend on redefined(), doesn’t call it nor call any code
that indirectly calls it

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH - DEPARTMENT:QEGOMP:

30

CMPSCI1520/620 Analysis Overview

CONPTH Inheritance Testing

« flattening inheritance

eeach subclass is tested as if all inherited features were
newly defined

etests used in the super-classes can be reused
emany tests are redundant

eincremental testing
ereduce tests only to new/modified features

edetermining what needs to be tested requires automated
support

UNIVERSITY! OF MASSACHUSETTS: AMHERST: DEP

©Rick Adrion 2004 (except where noted)

““ﬂr'ﬂ'ﬂﬁ';‘ Polymorphism

*in procedural programming, procedure calls are
statically bound

each possible binding of a polymorphic component
requires a separate set of test cases

*many server classes may need to be integrated
before a client class can be tested

emay be hard to determine all such bindings
ecomplicates integration planning and testing

UNIVERSITY.:OF MASSACHUSETTS AMHERST D. ARENT OF BOMPULER SOENGE £ B PO Io0 B AANE DA0IE Sk

31

CMPSCI1520/620 Analysis Overview

CONMTH Testing under Inheritance
Shape
Q: What if implementation of resize()
for each subclass calls inherited
move() operation move() ?

N

Circle Square Ellipse

resize() resize() resize()

A: Shape cannot be completely tested unless
we also test Circle, Square, & Ellipse!

UNIVERSITY: OF MASSACHUSETTS AMHERS

©Rick Adrion 2004 (except where noted)

Fttver Integration Testing

*0O-O0 Integration: Not Hierarchical
*Coupling is not via subroutine
*“Top-down” and “Bottom-up” have little meaning
eIntegrating one operation at a time is difficult
eIndirect interactions among operations

UNIVERSITY.:OF MASSACHUSETTS AMHE!

32

CMPSCI1520/620 Analysis Overview

CONrTE 0-0 Integration Testing

e Thread-Based Testing

¢ Integrate set of classes required to respond to one input or
event

¢ Integrate one thread at a time

e Example: Event-Dispatching Thread vs. Event Handlers in
Java

e Implement & test all GUI events first
* Add event handlers one at a time
e Use-Based Testing
¢ Implement & test independent classes first
* Then implement dependent classes (layer by layer, or cluster-
based)
« Simple driver classes or methods sometimes required to test
lower layers

UNIVERSITY OF MASSACHUSETTS AMHERST > ¥DER)

i

©Rick Adrion 2004 (except where noted)

CONMTH Test Case Design

« Focus: “Designing sequences of operations to exercise the states of a class
instance”
« Challenges
« Observability - Do we have methods that allow us to inspect the inner state of
an object?
« Inheritance - Can test cases for a superclass be used to test a subclass?
« Test Case Checklist
« Identify unique tests & associate with a particular class
« Describe purpose of the test
« Develop list of testing steps:
« Specified states to be tested
« Operations (methods) to be tested
« Exceptions that might occur
« External conditions & changes thereto
« Supplemental information (if needed)

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DE!

33

