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23-Analysis Overview

•Readings:
• GJM03 Chapter 6
• Adr82    Adrion, W.R,. M.A. Branstad, and J.C.  Cherniavsky, "Validation, Verification and Testing of

Computer Software," ACM Computing Surveys, June 1982,  pp.159--192
• Hoa69    Hoare, C.A.R.,  "An Axiomatic Basis for Computer Programming," Communications of the ACM,

October 1969.
• Flo67     Floyd, R.W.  "Assigning Meaning to Programs", in the Proceedings of Symposium on Applied

Mathematics, 1967, pp. 19-32, (Appeared as volume 19 of Mathematical Aspects of Computer Science).
• Han76    Hantler, S.L. and J.C King,. "An Introduction to Proving the Correctness of Programs," ACM

Computing Surveys, September 1976,  pp. 278-300.
• Cla85     Clarke L. A.  and D. J. Richardson, "Applications of Symbolic Evaluation," Journal of Systems

and Software, January 1985, 5 (1), pp.15-35.
• Zhu97    Zhu, Hong, Patrick A. V. Hall, and John H. R. May, "Software Unit Test Coverage and

Adequacy," ACM Computing Surveys, vol. 29, no.4, pp. 366-427, December, 1997.
• Wey80  Weyuker, Elaine J. and Thomas Ostrand, "Theories of Program Testing and the Application of

Revealing Subdomains," IEEE Transactions on Software Engineering, May 1980, SE-6(5), pp. 236-246
• DeM79  DeMillo R.A.  and R.J. Lipton and A.J. Perlis, "Social Processes and Proofs of Theorems and

Programs, Communications of the ACM, May 1979, 22(5), pp. 271-280
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Approaches

•Static Analysis
• Inspections

•Software metrics

•Symbolic execution

•Dependence Analysis

•Data flow analysis

•Software Verification

•Dynamic Analysis
•Assertions

•Error seeding,
mutation testing

•Coverage criteria

•Fault-based testing

•Specification-based
testing

•Object-oriented testing

•Regression testing
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Intent

Static Analysis

model/
product
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simple dataflow
   intent → gen, kill sets &rev/for & any/all
     e.g. no uninitialized variables
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Advanced dataflow
   intent → Properties as FSA 1 2

open

close
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Floyd Inductive Proof
   intent → predicate logic assertions

Q

P5

P4

P3

P2 → PI 

P1

P
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Behavior
model/
product

Intent

Proof

typically inferred
by symbolic
execution of the
specifications

lemmas and theorems in
predicate logic

predicate logic
assertions
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Symbolic Evaluation/Execution

•Creates a functional
representation of a path
of an executable
component

• P is composed of partial
functions corresponding
to the  executable paths
   P = {P1,...,Pr }
       Pi : Xi →  Y

• For a path Pi

•D[Pi]  is
the domain for path Pi

•C[Pi]  is the
computation for path Pi

Range:Y
P: X → Y

Domain:X

Pj

Pl

Pi

Pk

Xi

Xk
Xl

Xj
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1

2

3

PC: true, PV: X: α, Y: -

PC: true

54

PC: α<0 PC: α≥0

Execution tree (Hantler-King)
ABSOLUTE

1 procedure(X);

2 declare X,Y integer

3 if X<0
4 then Y← -X;

5 else Y← X;

6 return (Y);

7 end;

assume (true)

prove((Y = X’|Y = -X’) & Y≥0 & X = X’)

77
((α = α) ∨ (α= -α)

  ∧ α≥0 ∧ α = α)
verified 

66

PC: α≥0 
PV: X: α, Y: α

PC: α<0 
PV: X: α, Y: -α

((-α = α) ∨ (α= α)

  ∧(-α)≥0 ∧ α = α)
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                input asssertion

n do_while predicate1

n+1     if predicate2

n+2        then code ;

n+3        else code ;

n+4           end;

n+5  output assertion ;

n 

n+1 

n+2 n+3 

n+5 

n+4

input assertion

output assertion

n 

n+5 

output assertion

output assertion

n+1 

n+2 n+3 

n+4

n 

n+1 

n+2 n+3 

n+5 

n+4

better: find a
loop invariant

Loops -- unroll them?
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Straightforward Observations

• Problems
• formal proofs are long, tedious and are often hard; assertions
are hard to get right; invariants are difficult to get right (need to
be invariant, but also need to support overall proof strategy)

•Unsuccessful proof attempt ⇒ ???
• incorrect software? assertions? placement of assertion? inept
prover? although failed proofs often indicate which of the
above is likely to be true (especially to an astute prover)

•Deeper Issues
• undecidability of predicate calculus ⇒ no way to be sure when
you have a false theorem
• there is no sure way to know when you should quit trying to
prove a theorem (and change something)
• proofs are generally much longer than the software being
verified ⇒ errors in the proof are more likely than errors in the
software being verified
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Model Checking: Overview

• properties usually expressed in
• in a propositional logic (e.g.,

temporal logic)
• as a FSA

• system represented as a
(possibly “abstracted”)
reachability graph

• reasoning engine
• logic ⇒ propagates valid sub-

formulas through the graph
• FSA ⇒ compares FSAs via

language inclusion;
reachability; or bisumulation

Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as
an FSA

exhaustive search
of state space

properties stated as
propositional logic assertions
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Conservative Analysis

• If property is verified, property holds for all possible
executions of the system

• If property is not verified:
•an error found
       OR

•a spurious result

•System model abstracts information to be tractable
•Conservative abstractions usually over-approximate
behavior

• If inconsistency relies upon over-approximations, then a
spurious result

•e.g. all counter example correspond to infeasible paths
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Temporal logic

• augments the standard operators of propositional logic with “tense”
operators
• "possible worlds semantics" ⇒ Kripke model
• relativize the truth of a statement to temporal stages or states
• a statement is not simply true, but true at a particular state
• states are temporally ordered, with the type of temporal order

determined by the choice of axioms.
• model of time
• partially ordered time
• linearly ordered time
• linear temporal logic is typically extended by two additional operators, “until”

and “since”

• discrete time
• branching (nondeterministic) time
• foundation for one of the principal approaches to verifying concurrent

systems = Computational Tree Logics.
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Computation Tree Logics

• specification language
• a propositional temporal logic.

• verification procedure
• exhaustive search of the state space of

the concurrent system to determine
truth of specification.

• formulas constructed from path
quantifiers and temporal operators:
• path quantifier:
• A “for every path”
• E “there exists a path”

• temporal operator:
• Xp “p holds next time’
• Fp “p holds sometime in the future”
• Gp “p holds globally in the future”
• pUq “p holds until q holds”

AFp
AFp

AFp

p
Xp

AFp
EFp
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System
Translator

Property

System

Property 
Verified

Property
Representation

Counter Examples
for Model

Property
Translator

Reasoning 
EngineSystem

Model

Architecture of  FSV Systems
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mutual exclusion protocol

reachability graph

n1,n2,0

t1,n2,1

c1,n2,1 t1,t2,1

c1,t2,1

n1,t2,2

n1,c2,2t1,t2,2

t1,c2,2

*McMillan

process1  = n1,t1,c1
process2  = n2,t2,c2
turn           = 0,1,2

♣Example: processes can be null, trying to
obtain the lock, or in a critical region (n1, t1, c1)
or (n2, t2, c2)

♣TURN is a variable that indicates which
process can obtain the lock (0,1,2)

♣Need a reachability graph that shows that
states (i.e., the values) of the variables
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Example: propagation

n1,n2,0

t1,n2,1

c1,n2,1 t1,t2,1

c1,t2,1

n1,t2, 2

n1,c2,2t1,t2,2

t1,c2,2

AG(t1⇒AF c1)

AF c1

AF c1
AF c1

AF c1

AF c1
AF c1

AF c1

<process1, process2, turn>

AF c1

t1⇒AF c1

t1⇒AF c1

t1⇒AF c1

t1⇒AF
c1

t1⇒AF
c1

t1⇒AF c1

t1⇒AF c1

t1⇒AF c1

t1⇒AF c1

♣a ⇒b means (b or ¬ a)

♣( t1 ⇒ AF c1 ) means ( AF c1 ∨ ¬ t1 )
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Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as an FSA

FSA

Automata-Theoretic Model Checking
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a, b a, b, c
c

aa

b

b

c

Accepted
by?

(ba)*(ac*+ bbc*)

Example

•Specification:

•  of the possible observable events (a, b, c), c must
happen at least once

•                                              Implementation
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Some observations

•Model Checking
•worst case bound linear in size of the model
•but the model is  exponential

•not clear if model checking or symbolic model
checking is superior
•depends on the problem

•experimentally often very effective!
•used selectively to verify hardware designs
• trying to develop appropriate abstractions to make
it applicable to software systems
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Verification

•How are they different?

• (Automated) mathematical reasoning
• difficult, error prone

• decidability vs. expressiveness
•Propositional calculus is decidable

•Predicate calculus is semi-decidable

•Finite-state verification
•Reason about a finite model of the system

•Fast, yields counterexamples, manages partial
specifications, applies to concurrency

•State explosion!

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Approaches

•Static Analysis
• Inspections

•Software metrics

•Symbolic execution

•Dependence Analysis

•Data flow analysis

•Software Verification

•Dynamic Analysis
•Assertions

•Error seeding,
mutation testing

•Coverage criteria

•Fault-based testing

•Specification-based
testing

•Object-oriented testing

•Regression testing
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Types of Testing--what is tested

•Unit testing
•exercise a single simple (procedure) component

• Integration testing
•exercise a collection of inter-dependent components
• focus on interfaces between components

•System testing
•exercise a complete, stand-alone system

•Acceptance testing
•customer’s evaluation of a system
•usually a form of system testing

•Regression testing
•exercise a changed system
•Focus on modifications or their impact
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Testing approaches

•“black box”

•“white box” or “glass box”
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White & Black box testing processes

executable
component

test cases
analysis

execution results

oraclespecifications testing report

test data selection

criteria

executable
component

test cases

analysis
execution results

oraclespecifications testing report

test data selection

criteria

Specs 
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DS=X1, X2, ..., Xn=precondition P RS=Y1, Y2, ..., Yn=postcondition Q

D=X1, X2, ..., Xn R =Y1, Y2, ..., Yn

DE=X1, X2, ..., Xn

RE=Y1, Y2, ..., Yn

E

T

specification S

executable component E; show P{E}Q

test data set(s) T

test data adequacy criterion C

Testing Theory
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Testing Theory

•Criterion C for Test Adequacy

•C:SxE ->2T

•specification-based C (s)

• interface-based C (x1, x2, ..., xn,  y1, y2, ..., yn)

•program-based C (e)

•combined C (s,e)

•Types
•structural

• fault-based

•error-based

“black box”

“white box”

• if specification S defines a function F,
such that P{F}Q, then C is reliable if
T1, T2, ... , Tm; C(Ti ,E); and D (E) ⊃ Ti

•∀Ti (∀t ∈Ti, E(t)= F(t)) v ∀Ti

(∃t ∈ Ti  E(t) ≠ F(t))

•∀t ∈  Ti, E(t)= F(t) ⇒
∀ t ∈ Ti OK(Ti ) ⇒ E ≡ F
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Ideal Test Criterion

• test criterion C is ideal  if for any executable component E
and every test set Ti ⊆ D( E ) such that C(Ti ,E ), Ti is
successful
• of course we want Ti << D( E )
• but in general, T= D(P) is the only ideal test

criterion
• In general, there is no ideal test criterion

“Testing shows the presence, not the absence of bugs”    
E. Dijkstra

• Dijkstra was arguing that verification was better than testing
• but, verification has similar problems

• can’t prove an arbitrary program is correct
• can’t solve the halting problem

• can’t determine if the specification is complete
• need to use these techniques so that they compliment one

another



CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 14

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Black Box Testing

• Functional/Interface Test Data Selection
• typical cases
• boundary conditions/values
• illegal conditions (if robust)
• fault-revealing cases
• based on intuition about what is likely to break the system

• other special cases
• stress testing
• large amounts of data
•worse case operating conditions

• combinations of events
• select those cases that appear to be more error-prone

• common representations for selecting sequences of events
• decision tables
• cause and effect graphs
• usage scenarios
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“White Box” Test Data Selection

•structural
•coverage based

•fault-based
•e.g., mutation testing, RELAY

•error-based
•domain and computation based

•use representations created by symbolic
execution
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CFG-Based Coverage

•Criteria
•Statement Coverage

•Path Coverage

•Cyclomatic-number

•Branch Coverage

•Hidden Paths

• Loop Guidelines

•Boundary - Interior
• Selecting paths that satisfy the criteria

• static selection
• some of the associated paths may be infeasible

• dynamic selection
•monitors coverage and displays areas that have not been

satisfactorily covered
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“Simple” coverage measures

•Statement Coverage
• requires that each statement in a program be executed
at least once
• a set P of paths in the CFP satisfies the statement coverage

criterion iff  ∀ ni ∈ N,    ∃ p ∈ P such that ni is on path p
•Path Coverage
•Requires that every path in the program be executed at
least once
• P satisfies the path coverage criterion iff P contains all execution

paths from the start node to the end node in the CFG
• In most programs, path coverage is impossible

•Multiple Condition Coverage
•T is adequate if for every condition C which consists of
atomic predicates  (p1, p2, ..., pn) and all possible
combinations (b1, b2, ..., bn) of their values, there is at
least one t ∈ T such that the value of pi is equal to bi for
all i
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1

2

3

X > 1

Y < 2

T

F

F

T T

hidden
branches

Branch & Loop Coverage

•Branch Coverage
•Requires that each
branch in a program
(each edge in a control
flow graph) be executed
at least once
• e.g., Each predicate must

evaluate to each of its
possible outcomes

•Branch coverage is
stronger than statement
coverage

• Loop Coverage
• Path 1, 2, 1, 2, 3  executes all

branches (and all statements) but
does not execute the loop well.

• Better
• fall through case
• minimum number of iterations
• minimum +1 number of iterations
• maximum number of iterations
• maximum -1 number of iterations

1, 2, 1, 2, 1, 2, 3

(1, 2)n-1, 3

(1, 2)n, 3
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Data Flow Path Selection

• Definitions

• dn(x) denotes that variable x  is assigned  a value at node n (defined)

• um(y) denotes that variable y is used (referenced at node m)
• a definition clear path p with respect to (wrt) x is a subpath where x  is not defined at any of the

nodes in p
• a definition dm(x) reaches a use un(x) iff there is a subpath (m) • p • (n) such that p is definition clear

wrt x

• Rapps and Weyuker
• definition-clear subpaths from definitions to uses

• Ntafos

• chains of alternating definitions and uses linked by definition-clear subpaths

• Laski and Korel
• combinations of definitions that reach uses at a node via a subpath
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x:= := x. . .
def-clear

:= x. . .
:= x

x:= . . .. . .
:= xdef-clear

def-clear

def-clear

Rapps’ and Weyuker’s DF Criteria

•All-Defs - Some definition-clear subpath from each
definition to some use reached by that definition

•All-Uses- Some definition-clear subpath from each
definition to each use reached by that definition and
each successor node of the use
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. . .x:= . . .

. . .

def-clear

def-clear

def-clear

cycle-free or simple-cycles

cycle-free or simple-cycles

cycle-free or simple-cycles

C-use is a “computation use”
P-use is a “predicate use”

Rapps’ and Weyuker’s DF Criteria

•All-C-Uses, Some-P-Uses
• either All-C-Uses  for dm(x) or at least one P-Use

•All-P-Uses, Some-C-Uses
• either All-P-Uses for dm(x) or at least one C-Use

•All-Du-Paths
•All definition-clear subpaths that are cycle-free or simple-
cycles from each definition to each use reached by that
definition and each successor node of the use
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1

2 3

4

5

6

d1(x)

u3(x)

u5(x)

u2(x)

Examples

•All-Defs Satisfactory Path:

•1, 2, 4, 6

•All-Uses Satisfactory Paths:
•1, 2, 4, 5, 6

•1, 3, 4, 6

•All-Du-Paths Satisfactory Paths:
•1, 2, 4, 5, 6

•1, 3, 4, 5, 6 d1(x) to any use 

d1(x) to u2(x)

d1(x) to u3(x)

d1(x) to u5(x)

d1(x) to u2(x)

d1(x) to u3(x)

both paths for d1(x) to u5(x)
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Ntafos k-dr Data Flow Criteria

• Chains of alternating definitions and uses linked by definition-
clear subpaths (k-dr interactions)
• ith definition reaches ith use,
•which defines (i+1)st definition

• Required K-tuples
•Some subpath propagating each k-dr interaction

+ if last use is a predicate, both branches
+ if first definition or last use is in a loop, minimal and some larger

number of loop iterations

y:=, := x
. . .x:= . . .

. . .
:= x

def-clear def-clear

def-clear

z:=, :=y

x:=

x:= := yy:=, := x

2-dr

3-dr

. . .
w:=, :=z

. . .def-clear

. . .def-clear. . .def-clear
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3-DR interactions

d1(x),  u4(x), d4(y), u6(y)

d1(x),  u4(x), d4(y), u2(y)

d1(x),  u4(x), d4(y), u3(y)

d1(y),  u3(y), d3(x), u5(x)

d1(y),  u3(y), d3(x), u6(x)

d1(y),  u3(y), d3(x), u4(x)

d3(x),  u4(x), d4(y), u6(y)

d4(y),  u3(y), d3(x), u5(x)

d4(y),  u3(y), d3(x), u6(x)

Paths
• 2-DR paths

u4(x), d4(y)

 d1(x), d1(y) 1

2

3 4

5

6

u2(y)

u5(x)

u6(y), u6(x)

u3(y), d3(x)
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y:=. . .
x:=

. . .def-clear
def-clear

z:=

. . .def-clear
:=x, :=y, :=z

y:=. . .
x:= . . .def-clear

def-clear

z:= . . .
def-clear

def-clear

. . .
:=x, :=y, :=z. . .

def-clear

Laski’s and Korel’s Criteria
• Context Coverage - Some subpath along which each set of

definitions reach uses at some node

• Ordered Context Coverage -Some subpath along which each
ordering of each sequence of definitions reach uses at some
node
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All-Paths

All-DU-Paths

All-Uses

All-Defs

Required k-Tuples

All-P-Uses

All-Edges

All-Nodes

All-P-Uses/Some-C-Uses

ORDERED CONTEXT COVERAGE

CONTEXT COVERAGE

REACH COVERAGE

All-C-Uses/Some-P-Uses

♣All-Defs -- linear in assignment statements
♣All-Uses -- quadratic in assignment statements
♣All-DU-paths -- exponential in assignment statements,
but empirically, all are linear in conditional statements
♣Required 2-tuples -- quadratic in statements
♣Reach -- linear in definitions that reach uses
♣Context -- quadratic in definitions that reach uses

Relationships among criteria
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... ...

Mutants 

introduce 
simple errors

apply test data
to distinguish (kill)

apply test data
to propagate fault
to output

Fault-based Techniques

•Mutation Testing

•Fault propagation
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Mutation Testing

•Competent Programmer Hypothesis
•  programmers write programs that are reasonably close to the
desired program
• e.g., sort program is not written as a hash table

•Coupling Effect
• detecting simple atomic faults will lead to the detection of
more complex faults

• considers all simple (atomic) faults that could occur
• introduces single faults one at a time to create “mutants” of
original program
• interactively(?) apply test data to complete (or partial) set of
mutants
• “test adequacy” is measured by “mutants killed”

operand mutations:
A : = X + 1;  ⇒ A : = X + 2 or ⇒ A : = X + Y

binary operator replacement:
A : = X + 1;  ⇒ A : = X - 1 or ⇒ A : = X * 1

statement replacement:
A : = X + 1;  ⇒ continue or  ⇒ return
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Mutation testing process

•Execute program P on test set T

•save results R to serve as an oracle

•P is considered the “correct” program

•Each fault results in a new program
•Mutant programs = P1,...,Pk

•Execute each mutant Pi on T and
compare results Ri  to R
• If Ri  ≠ R then mutant is killed

• if  Ri = R then either
•Pi  = P,  thus it is an equivalent mutant or
the test cases do not reveal the error and
need to find a new test case that does

apply test data to
distinguish (kill) by
comparing output with
“oracle”

... ...

Mutants 

P1

        P2

            Pk
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Relay Model

:= <op>

fault

:=

:=

“observable”
failure

transfer

transfer
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Other Fault-Based techniques:

•mutating test data

• instead of mutating program, mutate input

•Bart Miller did an experiment where he demonstrated
that arbitrary strings caused UNIX to consistently fail
•wanted to understand why storms caused his connection
to go down
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Putting it all together

•unit testing

• integration & system testing

•regression testing
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Scaffolding

Stubs

Unit testing

• test scaffolding
•can be created for general
or for specific tests

• is composed of
• one or more drivers
• provide a prototype activation
environment

• drivers initialize non-local
variables and parameters and call
the unit

• one or more stubs
• provide a prototype of the units
used by the program to be tested

• one or more oracles
• identify the tests that cause
failures.

Driver

Instrument

Oracle
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Instrument

Oracle

Unit vs. Integration vs. System Testing

• Integration testing
• focuses on communication and

interface problems
• tests derived from module

interfaces and detailed architecture
specifications
• some scaffolding is required

• System testing
• focuses on the behavior of the

system as a whole
• tests are derived from requirements

specifications
• code is seen as a black box
• support of scaffoldings not usually

needed
• exception is embedded code, where

some simulation of the embedding
environment may be required
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Integration testing strategies

• big bang

Outputs

Oracle
• top down

Stub

Stub

Outputs

Oracle
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Driver

Integration testing strategies

• bottom up

Outputs

Oracle
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Relation to design

Traditional

Incremental

Prototype (spiral)

Critical Modules

Top Down

Bottom Up

Threads

Big Bang
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O-O Programs are Different

•High Degree of Reuse

•Does this mean more, or less testing?

•Unit Testing vs. Class Testing
•What is the right “unit” in OO testing?

•Review of Analysis & Design

•Classes appear early, so defects can be recognized
early as well
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Testing OOA and OOD Models

•Correctness (of each model element)
•Syntactic (notation, conventions)
• review by modeling experts

•Semantic (conforms to real problem)
• review by domain experts

•Consistency (of each class)
•Revisit Class Diagram
•Trace delegated responsibilities
•Examine / adjust cohesion of responsibilities

• Evaluating the Design
•Compare behavioral model to class model
•Compare behavioral & class models to the use cases
• Inspect the detailed design for each class (algorithms & data
structures)
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Unit Testing

•What is a “Unit”?

•Traditional: a “single operation”

•O-O: encapsulated data & operations

•Smallest testable unit = class
many operations

• Inheritance
• testing “in isolation” is impossible

•operations must be tested every place they are used
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Issues in O-O testing

•Need to re-examine all testing techniques and
processes

•Primary Issues:
• implications of encapsulation

• implications of inheritance

• implications of genericity

• implications of polymorphism

•Changes concerns
•State of instance variables

•Sequences of methods calls

•Must test a class and its specializations
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Tests:
  input, expected output
    -1 Less
     0 Equal
     1 More

Tests:
  input, expected output
    -1 Less
     0 Equal
     1 More

Example

Base::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)

Base::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)

Derived::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{
    message(“More”)

    if(val==42) message(“Jackpot”)
}

Derived::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{
    message(“More”)

    if(val==42) message(“Jackpot”)
}

Tests:
  input, expected output
    -1 Less
     0 Equal
     1 More

OK
Change                 ------ Zero Equal
OK
Add      42        Jackpot
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•The distance between object-oriented
specification and implementation is typically small
•gap (and therefore usefulness) of the white-
box/black-box distinction is decreasing

•But object-oriented specification describes
functional behavior, while the implementation
describes how that is achieved
•These techniques can be adapted to method
testing, but are not sufficient for class testing
•Conventional flow-graph approaches
•may be inconsistent the object-oriented paradigm
•method-level control faults are not likely

White-box vs. Black-box Testing
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Black-box O-O Testing
•Conventional black-box methods are useful for object-
oriented systems
•error-guessing strategies
•verification of ADTs can be adapted to object-
oriented systems

•Other approaches
•utilize specifications integrated with the
implementation as assertions
•specification integrated with the implementation
as dynamic assertions
•C++ assertions or Eiffel pre/post-conditions offer
similar self-checking

•Utilize method (event) sequence information
•usually don’t have history of method invocations
so can’t do this with assertions
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Encapsulation
• not a source of errors but may be an obstacle to testing
• how to get at the concrete state of an object?
• use the abstraction
• state is inspected via access methods
• equivalence scenarios

• comparing sequences of events
• state is implicitly inspected by comparing related behavior

• examine sequences of events
• need to be able to define what are equivalent sequences and need to determine

equal states
• use or provide hidden functions to examine the state
• useful for debugging throughout the life of the system

• but modified code, may alter the behavior
• especially true for languages that do not support strong typing

• proof-of-correctness techniques
• a proved method could be excused from testing to bootstrap testing of other

methods
• state reporting methods tend to be small and simple, they should be relatively

easy to prove
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Implications of Inheritance

• rule rather than the exception?

• inherited features usually require re-testing
•because a new context of usage results when features
are inherited

•multiple inheritance increases the number of contexts to
test

• specialization relationships
• implementation specialization should correspond to problem
domain specialization

• reusability of superclass test cases depends on this
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Base class contains:
inherited(int x)
redefined() - returns a number in range 1 to 10 inclusive

Base class contains:
inherited(int x)
redefined() - returns a number in range 1 to 10 inclusive

Derived class contains:
redefined() - returns a number in range 0 to20 inclusive
//inherited() is inherited

Derived class contains:
redefined() - returns a number in range 0 to20 inclusive
//inherited() is inherited

inherited contains the code:
if (x<0)
    x = x/redefined()
return x

inherited contains the code:
if (x<0)
    x = x/redefined()
return x

have to test
when x<0, could
divide by 0

Which fns must be tested

• derived::redefined has to be tested afresh
• does derived::inherited() have to be retested?

• derived::inherited() may not have to be completely tested
• if code in inherited() doesn’t depend on redefined(), doesn’t call it nor call any code

that indirectly calls it
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Inheritance Testing

• flattening inheritance

•each subclass is tested as if all inherited features were
newly defined

• tests used in the super-classes can be reused

•many tests are redundant

• incremental testing
• reduce tests only to new/modified features

•determining what needs to be tested requires automated
support
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Polymorphism

• in procedural programming, procedure calls are
statically bound
•each possible binding of a polymorphic component
requires a separate set of test cases
•many server classes may need to be integrated
before a client class can be tested

•may be hard to determine all such bindings
•complicates integration planning and testing
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Shape

move()

Circle

resize()

Square

resize()

Ellipse

resize()

Q: What if implementation of resize() 
for each subclass calls inherited 
operation move() ?

A: Shape cannot be completely tested unless
we also test Circle, Square, & Ellipse!

Testing under Inheritance
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Integration Testing

•O-O Integration: Not Hierarchical
•Coupling is not via subroutine

•“Top-down” and “Bottom-up” have little meaning

•Integrating one operation at a time is difficult
•Indirect interactions among operations
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O-O Integration Testing

• Thread-Based Testing
• Integrate set of classes required to respond to one input or
event
• Integrate one thread at a time
•Example: Event-Dispatching Thread vs. Event Handlers in
Java
• Implement  & test all GUI events first
• Add event handlers one at a time

•Use-Based Testing
• Implement & test independent classes first
•Then implement dependent classes (layer by layer, or cluster-
based)
•Simple driver classes or methods sometimes required to test
lower layers
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Test Case Design
• Focus: “Designing sequences of operations to exercise the states of a class

instance”
• Challenges
• Observability - Do we have methods that allow us to inspect the inner state of

an object?
• Inheritance - Can test cases for a superclass be used to test a subclass?

• Test Case Checklist
• Identify unique tests & associate with a particular class
• Describe purpose of the test
• Develop list of testing steps:

• Specified states to be tested
• Operations (methods) to be tested
• Exceptions that might occur
• External conditions & changes thereto
• Supplemental information (if needed)


