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Announcements

• Revised Project 2 (minor) and new Project 3 posted

•Note: each group (on-campus) needs to arrange a
design review during the period 11/29-12/7

•No class on 12/6 (can be used for design review)

•Due Date for Project 2 extended to 12/8

• As alternatives to Rational Rose, I have obtained
licenses for Eclipse & Visual Paradigm; licenses are
(will be available) on the website.

• I will have comments/grades on Project 1 on 11/29
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22-Analysis Overview

• Readings:
• GJM03 Chapter 6
• Ost76    Osterweil, Leon J. and L.D. Fosdick, " DAVE--A Validation Error Detection and Documentation

System for FORTRAN Programs," Software Practice and Experience, September 1976, Vol. 6., pp. 473-
486

• Ole92    Olender, K. M. and L. J. Osterweil, "Interprocedural Static Analysis of Sequencing Constraints,"
ACM Transactions on Software Engineering and Methodology, January 1992, 1(1), pp. 21-
52.                                                                      

• Dwy95   Dwyer , M. B. and Clarke, L. A. ÒA Flexible Architecture for Building Data Flow Analyzers," in 
CMPSCI Technical Report, August 17, 1995

• Adr82    Adrion, W.R,. M.A. Branstad, and J.C.  Cherniavsky, "Validation, Verification and Testing of
Computer Software," ACM Computing Surveys, June 1982,  pp.159--192

• Hoa69    Hoare, C.A.R.,  "An Axiomatic Basis for Computer Programming," Communications of the ACM,
October 1969.

• Flo67     Floyd, R.W.  "Assigning Meaning to Programs", in the Proceedings of Symposium on Applied
Mathematics, 1967, pp. 19-32, (Appeared as volume 19 of Mathematical Aspects of Computer Science).

• Han76    Hantler, S.L. and J.C King,. "An Introduction to Proving the Correctness of Programs," ACM
Computing Surveys, September 1976,  pp. 278-300.

• Cla85     Clarke L. A.  and D. J. Richardson, "Applications of Symbolic Evaluation," Journal of Systems
and Software, January 1985, 5 (1), pp.15-35.

• Zhu97    Zhu, Hong, Patrick A. V. Hall, and John H. R. May, "Software Unit Test Coverage and
Adequacy," ACM Computing Surveys, vol. 29, no.4, pp. 366-427, December, 1997.

• Wey80  Weyuker, Elaine J. and Thomas Ostrand, "Theories of Program Testing and the Application of
Revealing Subdomains," IEEE Transactions on Software Engineering, May 1980, SE-6(5), pp. 236-246

• DeM79  DeMillo R.A.  and R.J. Lipton and A.J. Perlis, "Social Processes and Proofs of Theorems and
Programs, Communications of the ACM, May 1979, 22(5), pp. 271-280
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Behavior

Comparison

model/
product

Intent

Analysis

inferred

Static Analysis

observed

Dynamic Analysis

inferred

Testing

observed

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Approaches

•Static Analysis
• Inspections

•Software metrics

•Symbolic execution

•Dependence Analysis

•Data flow analysis

•Software Verification

•Dynamic Analysis
•Assertions

•Error seeding,
mutation testing

•Coverage criteria

•Fault-based testing

•Specification-based
testing

•Object-oriented testing

•Regression testing



CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Basic Verification Strategy

• analyze a system for desired properties, i.e., compare
behavior to intent

• intent
• can be expressed as properties of a model
• can be expressed as formulas in mathematical logic

• behavior
• can be observed as software executes
• can be inferred from a model
• can be expressed as formulas in mathematical logic

• different representations support different sorts of inferences
• comparison can be informal

• done by human eye, e.g., inspection

• can be done by computers
•  comparing text strings

• can be done by model-checkers
• such as formal machines (e.g., fsa's)

• can be done by rigorous mathematical reasoning
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Example: Dataflow Analysis

• intent:

•stated as a property

•captured as an event sequence

• behavior:
•model represents some execution characteristics

• inferred from a model: (e.g., annotated flow graph)

• inferences based upon:
• semantics of flow graph

• semantics captured by annotations

• comparison:
•done by a fsa (e.g., a property automaton)
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Comparison

Intent

model

1 2

open

close
dfa defined by 
Cecil constraint

“property” = Cecil constraint

if dfa accepts all traces then the
constraint holds for all computations

1

6

5

43

2

trace = computation
along path in an annotated
dataflow graph

Data FlowAnalysis
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Data Flow Analysis (DFA)

• Uses an annotated control flow graph model of the program
• Compute facts for each node
• Use the flow in the graph to compute facts about the whole
program

• DFA used extensively in program optimization, e.g.,
• determine if a definition is dead (and can be removed)
• determine if a variable always has a constant value
• determine if an assertion is always true and can be removed

• Some Dataflow systems
• DAVE system demonstrated the ability to find def/ref
anomalies

• Cecil/Cesar system demonstrated the ability to prove general
user-specified properties

• FLAVERS demonstrated applicability to concurrent system
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Data flow analysis

• computes information that is true at each node in the
CFG, e.g.,

• what variables are defined

• what variables are referenced

• usually stored in sets

• ref(n) is the set of variables referenced at node n

• uses this local information and the control flow graph to
compute global information about the whole program

• done incrementally by looking at each node’s
successors or predecessors
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single-entry,
single-exit

in-line code
blocks

•compute what is true
at each node

•what variables are
defined

•what variables are
referenced

•stored in sets
•ref(n) is the set of
variables referenced
at node n

•use local information
and the control flow
graph to compute
global information
incrementally by
looking at each
node’s successors or
predecessors

def={y}

def={x}
ref={y}

DFA
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Def-ref path expressions

• for a path P and a variable α
can write a path expression
describing the sequence of
set memberships
encountered for a, where
•α  ∈ def (n) or

•α ∈ ref(n) or

•α ∈ null (n)

• for each node n on the path

• write (and simplify) a path
expression
•P(n1, n1, …, n1; α)

α  ∈  def(1) 

α ∈ null(2)

α  ∈ null(3)

α ∈ ref(4) 4

3

2

P(1,2,3,4; α) = d11r = dr

1
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unreferenced
definition

Anomalous pairs of ref/defs

d - defined, r - referenced, u - undefined

 dd bug? du bug?

 dr normal ud normal

 uu harmless? rr normal

 rd normal ru normal

 ur bug undefined
reference
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Consider unreferenced definition

• Want to know if a def is not going to be referenced

•dd  or du

• At the point of a definition of a, want to know if there is
some path where a is defined or undefined before being
used

•May be indicative of a problem if the path is executable

•Usually just a programming convenience and not a
problem

• At the point of a definition of a, want to know if on all
paths a is defined or undefined before being used

•May be indicative of a problem

•Or could just be wasteful
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global dataflow analysis

• classes

• forward flow problems (e.g., available expressions)
• what definitions can affect computations at a given point in
a program

•backward flow problems (e.g., live variables)
• what uses that follow a given point in the program can be
affected by computations up to that point

• paths

•any path

•all path
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x = 3

y = x + 2

if(x > 0)

x = x + y

y:= …

Forward flow,
all paths problem

( )int x,y;
...
x := 3;
y := x + 2;
if x > 0 then
  x := x + y;
end if;
y:= …

(unreferenced defs)

(x)

(x)

(y)

(y)

(y)

(y)

Need to look
at each node
where there
is a def

All( )

(x)

Some (x,y )

(y)

Unreferenced definitions
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top (n)

y:= …

bot(n)

In(n)

In(n)Out(n)

Out(n)

Forward
flow

Backward
flow

gen(n), kill(n),
 null(n)

Ini := Merge (Outj)

Ini := Merge (Outj)

General Approach

• Initial values

• for each node define gen
and kill information

• Input Equations
• for each node we have an
equation of the form:
    Ini := Merge (Outj)

• “Merge” operation over
the “predecessors” of ni
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top (n)

y:= …

bot(n)

In(n)

In(n)Out(n)

Out(n)

Forward
flow

Backward
flow

gen(n), kill(n),
 null(n)

Outi := fi(Ini)

Outi := fi(Ini)

General Approach

• Transfer Equations
• for each node we have
an equation of the form:
Outi := fi(Ini)

• Transfer functions
usually depend on
Gen/Kill information that
is computed for each
node

• Usually:
     Out := (In - kill)U gen

• We can view the set of
variables, transfer
functions, and flow graph
as a system of equations
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worklist algorithm
1. Start at initial node (entry for forward; exit for

reverse), label IN0 with pertinent “facts” (initial
values)

2. Compute OUT0 = F(IN0) (label OUT0 with the
computed facts)

3. Propagate OUT0 to INi (label edge No⇒Ni  with
OUT0) where Ni are successor nodes (forward)
or predecessor nodes (reverse) of N0

4. Compute OUTi  = F(INi), place all Ni on a
“worklist” W, and for all Ni label OUTi  with the
computed facts.

5. While W is not empty,
1. pick Ni from W and propagate OUTi to INk (label

edges Ni⇒Nk with OUTi) where Nk are successor
nodes (forward) or predecessor nodes (reverse)
for Ni ; delete Ni  from W

2. Compute OUTi = F(INk)  for all Nk where
INk=MERGE all input edge labels (MERGE = ∪
for “some paths” and ∩ for “all paths”), label
OUTk with the computed facts); and if for Nk,
OUTk  changes put Nk, on W’

6. If W’ is not empty, then W=W’ and go to 5

x = 3

y = x + 2

if(x > 0)

x = x + y

initial values 
=  empty

0

2

3

4

W ={1,2 }

W ={3}

W ={4}

{ }

{x}

{x}
{x,y}
{x,y}

{ }

{ }

{x,y}}{ }
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Using Quantified Regular Expressions

• Alphabet, quantification,
regular expression

• For the events {open,
close, move}

show that for all paths:
    ((close v move)*,

     (open+ v open+,close) )*

0

1

2

close

close
move

open

open

move
close
open
move
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Cecil: Olender and Osterweil

• Instead of implicitly defined facts, let the user define application-
specific facts

• Represented as a Deterministic Finite State Automaton (DFSA) or as
a Quantified Regular Expression (QRE)

• Events
• Recognizable events
• Method calls

• Can reason about sequences of method calls
• E.g.,Push must be called before Pop

• Thread interactions
• Join or Fork

• Arbitrary operations
• a+b

• Need to be able to treat events as indivisible actions
• E.g., can treat pop and push as atomic as long as they do not contain any events of concern

• Propagate the states in the DFSA that can reach each node in the
program
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State Propagation

• States of the property are propagated through the CFG

• The property is proved if only accepting (non-accepting)
states are contained in the final node of the CFG

•Cecil DFSA ->

 lattice (P(S), ⊂, ∪)
 function space

  δ : P(S) → P(S)

 facts at nodes are elements of P(S)
•propagate until convergence and check if terminal node
in an accepting state of DFSA
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Elevator Controller
void main()
{
…

1: if (elevatorStopped)
{...

3: openDoors();
}
...

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

1: if (elevatorStopped)
    {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

•States of the property are
propagated through the CFG
•For an all property: the
property is proved if only
accepting states are contained
in the final node of the CFG
•For a none property: the
property is proved if only non-
accepting states are contained
in the final node of the CFG
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1: if (elevatorStopped)
    {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

0

1

2

close

close
move

open

open

move
close
open
move

State propagation

Worklist:

initial state

<0>

3  5

<1> <0,1>

union
<0,1>

7  9

<0>

<0,2>

<0,1>
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1: if (elevatorStopped)
    {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

0

1

2

close

close
move

open

open

move
close
open
move

State propagation

<0>

<0>

1: if (elevatorStopped)
    {...

3: openDoors();
}

<0,2>

<0,1>

9: moveToNextFloor();
}

<0,1>

<0,1>

5: if (elevatorStopped)
{...

<1>
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Approaches

•Static Analysis
• Inspections

•Software metrics

•Symbolic execution

•Dependence Analysis

•Data flow analysis

•Software Verification

•Dynamic Analysis
•Assertions

•Error seeding,
mutation testing

•Coverage criteria

•Fault-based testing

•Specification-based
testing

•Object-oriented testing

•Regression testing
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Verification

•two well-established approaches
•(Automated) mathematical reasoning

•theorem proving
•proof checking

•Finite-state verification
•model checking

•Logic spec + FSA comp model ⇒ symbolic model checking
•FSA spec + FSA comp model ⇒ automata-theoretic model
checking

•property checking
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Verification

• How are they different?

• (Automated) mathematical reasoning
• difficult, error prone

• decidability vs. expressiveness
• Propositional calculus is decidable

• Predicate calculus is semi-decidable

•Finite-state verification
• Reason about a finite model of the system

• Fast, yields counterexamples, manages partial
specifications, applies to concurrency

• State explosion!
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Behavior
model/
product

Intent

Proof

typically inferred
by symbolic
execution of the
specifications

lemmas and theorems in
predicate logic

predicate logic
assertions
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Floyd Method of Inductive Assertions

• Show that given the input assertions, after executing the program,
program satisfies output assertions

• show that each program fragment behaves as intended
• use induction to prove that all fragments, including loops, behave as

intended
• show that the program must terminate
• informal description

• Place assertions at the start, final, and  intermediate points in the
code.

• Any path is composed of sequences of program fragments that start
with an assertion, are followed by some assertion free code, and end
with an assertion

• As, C1, A2, C2, A3,…An-1, Cn-1, Af

• Show that for every executable path, if As is assumed true and the
code is executed, then Af is true

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Why does this work?

• suppose P is an arbitrary path through the program

• can denote it by

P = A0 C1 A1 C2 A2...Cn An

• where
A0 - Initial assertion
An - Final assertion
Ai   - Intermediate assertions
Ci - Loop free, uninterrupted,
     straight-line code

 If it has been shown that

  ∀ i, 1 ≤ i < n: AiCi ⇒ Ai+1
 Then, by transitivity

  A0 ⇒......⇒An
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Obvious problems

•How do we do this for a path?

•How do we do this for all paths?
•Infinite number of paths

•Must find a way to deal with loops
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A0

AI

Af

Find loop invariant (AI )

•subpaths to consider:
•C1 Initial assertion A0 to final
assertion Af

•C2 Initial assertion A0 to AI

•C3 AI to AI

•C4 AI to final assertion Af

•Basically an inductive proof

The “Aha!” moment -
finding invariants is
hard!
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Procedure Wensley (P:input, Q:input, E:input, Y:output);
Declare P, Q, E, Y, A, B, D real;
A := 0.0;
B := Q/2.0;
D := 1.0;
Y := 0.0;
Do_While (D>=E)

If ~(P - A - B ≥ 0.0) then
{ Y := Y+(D/2.0);

     A := A+B};
B := B/2.0;
D := D/2.0;
End_do;

End Wensley;

Wensley's Algorithm

Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

D ≥ E

P-A-B < 0.0
Y ← Y+(D/2.0)
A ← A+B

B ← B/2.0
D ← D/2.0

A1

A0

AF
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Input P, Q, E

A ← 0.0
B ← Q/2
D ← 1.0
Y ← 0.0

Y ← Y+(D/2.0)
A ← A+B

D ≥ E

B ← B/2.0
D ← D/2.0

P-A-B < 0.0

A0

AI

AF
F

T

T
F

Floyd Proof: Wensley's Algorithm

• Summary of Five Lemmas Needed

•A0 to AI

•AI, true branch, to AI

•AI, false branch, to AI

•AI, true branch, to AF

•AI, false branch, to AF
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AI: {(A=Q*Y)Λ(B=Q*(D/2))
      ∧ (k ≥ 0, k integer ∧ D=2-k )
          ∧ ((P/Q)-D)<Y≤(P/Q)}

D ≥ E [constraint]
P - A - B ≥ 0 [constraint]
Y ¨ Y+(D/2.0)
A ¨ A+B

 B ← B/2
 D  D/2
  A’I: {(A’=Q*Y’)Λ(B’=Q*(D’/2))
      ∧ (k ≥ 0, k integer ∧ D’=2-k )
             ∧ ((P/Q)-D’)<Y’≤(P/Q)}

{code

Y ← Y+(D/2.0)
A ← A+B

D ≥ E

B ← B/2.0
D ← D/2.0

P-A-B < 0.0

AI

Lemma III: AI, false branch, to AI
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proof of lemma III

AI ⇒ A’I: {(A’=Q*Y’) ∧ (B’=Q*(D’/2))
      ∧ (k ≥ 0, k integer ∧ D’=2-k )
          ∧ ((P/Q)-D’)<Y’≤(P/Q)}
we have

A’ = A + B;  B’ = B/2.0; D’ = D/2.0; Y’ = Y + D/2.0;

1)  A’ = A+B = Q*Y + Q*(D/2) = Q*(Y+(D/2));              
Y’= Y+(D/2); ∴A’ = Q * Y’

2) B’= B/2 =(Q *D/2)/2; D’=D/2 
∴B’ = (Q * 2D’/2)/2 = Q* D’/2

and so on … basically using symbolic evaluation

Y ← Y+(D/2.0)
A ← A+B

D ≥ E

B ← B/2.0
D ← D/2.0

P-A-B < 0.0

AI

from AI
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Hoare axiomatic proof

• assertions are preconditions and post conditions on
some statement or sequence of statements

P{S}Q

• if  P is true before S is executed and S is executed then
Q is true

• as in Floyd's inductive assertion method,  we construct
a sequence of assertions, each of which can be inferred
from previously proved assertions and the rules and
axioms about the statements and operations of the
program

• to prove P{S}Q, we need some axioms and rules about
the programming language
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Hoare axioms and proof rules

• axiom of assignment
• P {x:=f} Q,
• where Q is obtained from P by substituting f for all

occurrences of x in P (symbolic execution)
• rule of composition

• P {S1, S2 } Q => ∃ P1 , P{S1}P1 ∧ P1{S2}Q

• rule for the alternative statement
• P{if B then S1 else S2 }Q ⇒ 

P{B ∧ S1}Q  ∧ P{¬B ∧ S2}Q

• rules of consequence
• [P {S} Q ∧ Q ⇒ R] ⇒ P {S} R
• [P {S} Q ∧ R  ⇒ P] ⇒ R {S} Q

• rule of iteration
• P {while B do S }Q ⇒

P{~B}Q ∧ ∃ I ∍ P {B ∧ S} I ∧ I{B ∧ S } I ∧ I{∼B }Q

Si x:= f

Sj

B

Sk Sn

B

Sm

loop invariant
backwards substitution
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Proof
• Hoare-style and Floyd- style verification are essentially the same

•  one is based on graphical representation and the other on a textual
representation.

• In Floyd-style proof, we visualize the proof goal by annotating a CFG
• In the other, we define the proof goal as a Hoare triple

• Mechanism for applying proof
•  may work either direction on such a proof, but because it's typically

easier to work backwards, often use a technique called backwards
substitution

•  we work our way from the post-condition, using the proof rules to
"push formulas through" the program

•  at each point where a "pushed-through" predicate "runs into" a
supplied predicate, we have a verification condition (VC) that must be
proved.

• After all VCs are proved, we need to be prove termination
•  Without a termination proof, we achieve partial correctness
• With a termination proof, we achieve total correctness
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Behavior
model/
product

Intent

Proof

typically inferred
by symbolic
execution of the
specifications

lemmas and theorems in
predicate logic

predicate logic
assertions
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Symbolic Evaluation/Execution

• Creates a functional
representation of a path
of an executable
component

• P is composed of partial
functions corresponding
to the  executable paths
   P = {P1,...,Pr }
       Pi : Xi →  Y

• For a path Pi

• D[Pi]  is
the domain for path Pi

• C[Pi]  is the
computation for path Pi

Range:Y
P: X → Y

Domain:X

Pj

Pl

Pi

Pk

Xi

Xk
Xl

Xj
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1

2

3

PC: true, PV: X: α, Y: -

PC: true

54

PC: α<0 PC: α≥0

Execution tree (Hantler-King)
ABSOLUTE

1 procedure(X);

2 declare X,Y integer

3 if X<0
4 then Y← -X;

5 else Y← X;

6 return (Y);

7 end;

assume (true)

prove((Y = X’|Y = -X’) & Y≥0 & X = X’)

77
((α = α) ∨ (α= -α)

  ∧ α≥0 ∧ α = α)
verified 

66

PC: α≥0 
PV: X: α, Y: α

PC: α<0 
PV: X: α, Y: -α

((-α = α) ∨ (α= α)

  ∧(-α)≥0 ∧ α = α)
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                input asssertion

n do_while predicate1

n+1     if predicate2

n+2        then code ;

n+3        else code ;

n+4           end;

n+5  output assertion ;

n 

n+1 

n+2 n+3 

n+5 

n+4

input assertion

output assertion

n 

n+5 

output assertion

output assertion

n+1 

n+2 n+3 

n+4

n 

n+1 

n+2 n+3 

n+5 

n+4

better: find a
loop invariant

Loops -- unroll them?
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Straightforward Observations

• Problems
• formal proofs are long, tedious and are often hard; assertions
are hard to get right; invariants are difficult to get right (need to
be invariant, but also need to support overall proof strategy)

• Unsuccessful proof attempt ⇒ ???
• incorrect software? assertions? placement of assertion? inept
prover? although failed proofs often indicate which of the
above is likely to be true (especially to an astute prover)

• Deeper Issues
• undecidability of predicate calculus ⇒ no way to be sure when
you have a false theorem

• there is no sure way to know when you should quit trying to
prove a theorem (and change something)

• proofs are generally much longer than the software being
verified ⇒ errors in the proof are more likely than errors in the
software being verified
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Verification

• How are they different?

• (Automated) mathematical reasoning
• difficult, error prone

• decidability vs. expressiveness
• Propositional calculus is decidable

• Predicate calculus is semi-decidable

•Finite-state verification
• Reason about a finite model of the system

• Fast, yields counterexamples, manages partial
specifications, applies to concurrency

• State explosion!
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Model Checking: Overview

• properties usually expressed in
• in a propositional logic (e.g.,

temporal logic)
• as a FSA

• system represented as a
(possibly “abstracted”)
reachability graph

• reasoning engine
• logic ⇒ propagates valid sub-

formulas through the graph
• FSA ⇒ compares FSAs via

language inclusion;
reachability; or bisumulation

Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as
an FSA

exhaustive search
of state space

properties stated as
propositional logic assertions
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Conservative Analysis

• If property is verified, property holds for all possible
executions of the system

• If property is not verified:
•an error found
       OR

•a spurious result

• System model abstracts information to be tractable
•Conservative abstractions usually over-approximate
behavior

• If inconsistency relies upon over-approximations, then a
spurious result

•e.g. all counter example correspond to infeasible paths
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Temporal logic

• augments the standard operators of propositional logic with “tense”
operators

• "possible worlds semantics" ⇒ Kripke model
• relativize the truth of a statement to temporal stages or states
• a statement is not simply true, but true at a particular state
• states are temporally ordered, with the type of temporal order

determined by the choice of axioms.
• model of time

• partially ordered time
• linearly ordered time

• linear temporal logic is typically extended by two additional operators, “until”
and “since”

• discrete time
• branching (nondeterministic) time

• foundation for one of the principal approaches to verifying concurrent
systems = Computational Tree Logics.
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Computation Tree Logics

• specification language
• a propositional temporal logic.

• verification procedure
• exhaustive search of the state space of

the concurrent system to determine
truth of specification.

• formulas constructed from path
quantifiers and temporal operators:

• path quantifier:
• A “for every path”
• E “there exists a path”

• temporal operator:
• Xp “p holds next time’
• Fp “p holds sometime in the future”
• Gp “p holds globally in the future”
• pUq “p holds until q holds”

AFp
AFp

AFp

p
Xp

AFp
EFp
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System
Translator

Property

System

Property 
Verified

Property
Representation

Counter Examples
for Model

Property
Translator

Reasoning 
EngineSystem

Model

Architecture of  FSV Systems
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mutual exclusion protocol

reachability graph

n1,n2,0

t1,n2,1

c1,n2,1 t1,t2,1

c1,t2,1

n1,t2,2

n1,c2,2t1,t2,2

t1,c2,2

*McMillan

process1  = n1,t1,c1
process2  = n2,t2,c2
turn           = 0,1,2

♣Example: processes can be null, trying to
obtain the lock, or in a critical region (n1, t1, c1)
or (n2, t2, c2)

♣TURN is a variable that indicates which
process can obtain the lock (0,1,2)

♣Need a reachability graph that shows that
states (i.e., the values) of the variables
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Example: propagation

n1,n2,0

t1,n2,1

c1,n2,1 t1,t2,1

c1,t2,1

n1,t2, 2

n1,c2,2t1,t2,2

t1,c2,2

AG(t1⇒AF c1)

AF c1

AF c1
AF c1

AF c1

AF c1
AF c1

AF c1

<process1, process2, turn>

AF c1

t1⇒AF c1

t1⇒AF c1

t1⇒AF c1

t1⇒AF
c1

t1⇒AF
c1

t1⇒AF c1

t1⇒AF c1

t1⇒AF c1

t1⇒AF c1

♣a ⇒b means (b or ¬ a)

♣( t1 ⇒ AF c1 ) means ( AF c1 ∨ ¬ t1 )
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Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as an FSA

FSA

Automata-Theoretic Model Checking
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a, b a, b, c
c

aa

b

b

c

Accepted
by?

(ba)*(ac*+ bbc*)

Example

• Specification:

•  of the possible observable events (a, b, c), c must
happen at least once

•                                              Implementation
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Some observations

•Model Checking
•worst case bound linear in size of the model

•but the model is  exponential
•not clear if model checking or symbolic model
checking is superior
•depends on the problem

•experimentally often very effective!
•used selectively to verify hardware designs
• trying to develop appropriate abstractions to make
it applicable to software systems
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Approaches

•Static Analysis
• Inspections

•Software metrics

•Symbolic execution

•Dependence Analysis

•Data flow analysis

•Software Verification

•Dynamic Analysis
•Assertions

•Error seeding,
mutation testing

•Coverage criteria

•Fault-based testing

•Specification-based
testing

•Object-oriented testing

•Regression testing
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Types of Testing--what is tested

• Unit testing
•exercise a single simple (procedure) component

• Integration testing
•exercise a collection of inter-dependent components
• focus on interfaces between components

• System testing
•exercise a complete, stand-alone system

• Acceptance testing
•customer’s evaluation of a system
•usually a form of system testing

• Regression testing
•exercise a changed system
•Focus on modifications or their impact
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Testing approaches

•“black box”

•“white box” or “glass box”
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White & Black box testing processes

executable
component

test cases
analysis

execution results

oraclespecifications testing report

test data selection

criteria

executable
component

test cases

analysis
execution results

oraclespecifications testing report

test data selection

criteria

Specs 
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DS=X1, X2, ..., Xn=precondition P RS=Y1, Y2, ..., Yn=postcondition Q

D=X1, X2, ..., Xn R =Y1, Y2, ..., Yn

DE=X1, X2, ..., Xn

RE=Y1, Y2, ..., Yn

E

T

specification S

executable component E; show P{E}Q

test data set(s) T

test data adequacy criterion C

Testing Theory
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Testing Theory

• Criterion C for Test Adequacy

•C:SxE ->2T

•specification-based C (s)

• interface-based C (x1, x2, ..., xn,  y1, y2, ..., yn)

•program-based C (e)

•combined C (s,e)

• Types
•structural

• fault-based

•error-based

“black box”

“white box”

• if specification S defines a function F,
such that P{F}Q, then C is reliable if
T1, T2, ... , Tm; C(Ti ,E); and D (E) ⊃ Ti

•∀Ti (∀t ∈Ti, E(t)= F(t)) v ∀Ti

(∃t ∈ Ti  E(t) ≠ F(t))

•∀t ∈  Ti, E(t)= F(t) ⇒
∀ t ∈ Ti OK(Ti ) ⇒ E ≡ F

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Ideal Test Criterion

• test criterion C is ideal  if for any executable component E
and every test set Ti ⊆ D( E ) such that C(Ti ,E ), Ti is
successful

• of course we want Ti << D( E )
• but in general, T= D(P) is the only ideal test

criterion
• In general, there is no ideal test criterion

“Testing shows the presence, not the absence of bugs”    
E. Dijkstra

• Dijkstra was arguing that verification was better than testing
• but, verification has similar problems

• can’t prove an arbitrary program is correct
• can’t solve the halting problem

• can’t determine if the specification is complete
• need to use these techniques so that they compliment one

another
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Black Box Testing

• Functional/Interface Test Data Selection
• typical cases
• boundary conditions/values
• illegal conditions (if robust)
• fault-revealing cases

• based on intuition about what is likely to break the system
• other special cases

• stress testing
• large amounts of data
• worse case operating conditions

• combinations of events
• select those cases that appear to be more error-prone

• common representations for selecting sequences of events
• decision tables
• cause and effect graphs
• usage scenarios
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“White Box” Test Data Selection

•structural
•coverage based

•fault-based
•e.g., mutation testing, RELAY

•error-based
•domain and computation based

•use representations created by symbolic
execution


