CMPSCI1520/620 Analysis Overview

CONMTER Announcements

* Revised Project 2 (minor) and new Project 3 posted

*Note: each group (on-campus) needs to arrange a
design review during the period 11/29-12/7

*No class on 12/6 (can be used for design review)
*Due Date for Project 2 extended to 12/8

* As alternatives to Rational Rose, | have obtained
licenses for Eclipse & Visual Paradigm; licenses are
(will be available) on the website.

¢ | will have comments/grades on Project 1 on 11/29

UNIVERSITY OFMASSACHUSETTS AMHERST: DEI%‘

©Rick Adrion 2004 (except where noted)

CONriTHE 22-Analysis Overview

¢ Readings:
* GJMO3 Chapter 6

* Ost76 Osterweil, Leon J. and L.D. Fosdick, " DAVE--A Validation Error Detection and Documentation
System for FORTRAN Programs,” Software Practice and Experience, September 1976, Vol. 6., pp. 473-
486

* Ole92 Olender, K. M. and L. J. Osterweil, "Interprocedural Static Analysis of Sequencing Constraints,"
ACM Transactions on Software Engineering and Methodology, January 1992, 1(1), pp. 21-
52.

« Dwy95 Dwyer, M. B. and Clarke, L. A. OA Flexible Architecture for Building Data Flow Analyzers," in
CMPSCI Technical Report, August 17, 1995

* Adr82 Adrion, W.R,. M.A. Branstad, and J.C. Cherniavsky, "Validation, Verification and Testing of
Computer Software," ACM Computing Surveys, June 1982, pp.159--192

* Hoa69 Hoare, C.AR., "An Axiomatic Basis for Computer Programming,” Communications of the ACM,
October 1969.

* Flo67 Floyd, R.W. "Assigning Meaning to Programs”, in the Proceedings of Symposium on Applied
Mathematics, 1967, pp. 19-32, (Appeared as volume 19 of Mathematical Aspects of Computer Science).

* Han76 Hantler, S.L. and J.C King,. "An Introduction to Proving the Correctness of Programs,” ACM
Computing Surveys, September 1976, pp. 278-300.

* Clag85 Clarke L. A. and D. J. Richardson, "Applications of Symbolic Evaluation," Journal of Systems
and Software, January 1985, 5 (1), pp.15-35.

¢ Zhu97 Zhu, Hong, Patrick A. V. Hall, and John H. R. May, "Software Unit Test Coverage and
Adequacy," ACM Computing Surveys, vol. 29, no.4, pp. 366-427, December, 1997.

* Wey80 Weyuker, Elaine J. and Thomas Ostrand, "Theories of Program Testing and the Application of
Revealing Subdomains," IEEE Transactions on Software Engineering, May 1980, SE-6(5), pp. 236-246

« DeM79 DeMillo R.A. and R.J. Lipton and A.J. Perlis, "Social Processes and Proofs of Theorems and
Programs, Communications of the ACM, May 1979, 22(5), pp. 271-280

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DE!

CMPSCI1520/620 Analysis Overview

“itinet Analysis

@ Testing

Dynamic Analysis
\ Static Analysis
Comparison

\ observed

Behavior

inferred

UNIVERSITY OFMASSACHUSETTS AMHERST: S XDERA

©Rick Adrion 2004 (except where noted)

"I Approaches

« Static Analysis *Dynamic Analysis

oAqsg!:th]s

*Error seéding,
mutation testing

eCoverage criteria

*Fault-based testing

» Specification-based
testing

*Object-oriented testing‘
*Regression testing

+Symbolic execution |
*Dependence Analysis
eData flow analysis
«Software Verification

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPA%

CMPSCI1520/620 Analysis Overview

CoNriH Basic Verification Strategy

e analyze a system for desired properties, i.e., compare
behavior to intent

e intent
 can be expressed as properties of a model
« can be expressed as formulas in mathematical logic

* behavior
« can be observed as software executes
« can be inferred from a model
« can be expressed as formulas in mathematical logic

« different representations support different sorts of inferences

* comparison can be informal
« done by human eye, e.g., inspection
 can be done by computers
« comparing text strings
« can be done by model-checkers
« such as formal machines (e.g., fsa's)
e can be done by rigorous mathematical reasoning

UNIVERSITY OFMASSACHUSETTS AMHERST: 2D

©Rick Adrion 2004 (except where noted)

CoNriH Example: Dataflow Analysis

eintent:
e stated as a property
ecaptured as an event sequence
e behavior:
emodel represents some execution characteristics
einferred from a model: (e.g., annotated flow graph)
einferences based upon:
* semantics of flow graph
e semantics captured by annotations
e comparison:
edone by a fsa (e.g., a property automaton)

UNIVERSITY.:OF MASSACHUSETTS AMHERST

CMPSCI1520/620 Analysis Overview

LN Data FlowAnalysis

“property” = Cecil constraint

if dfa accepts all traces then the

dfa defined by
Cecil constraint

trace = computation
along path in an annotated
dataflow graph

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPAF{E["

©Rick Adrion 2004 (except where noted)

constraint holds for all computations

model

e Data Flow Analysis (DFA)

« Uses an annotated control flow graph model of the program
* Compute facts for each node
* Use the flow in the graph to compute facts about the whole
program
* DFA used extensively in program optimization, e.g.,
« determine if a definition is dead (and can be removed)
« determine if a variable always has a constant value
« determine if an assertion is always true and can be removed
* Some Dataflow systems

* DAVE system demonstrated the ability to find def/ref
anomalies

« Cecil/Cesar system demonstrated the ability to prove general
user-specified properties
* FLAVERS demonstrated applicability to concurrent system

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPAF{EL:i

CMPSCI1520/620 Analysis Overview

COiNE: Data flow analysis

e computes information that is true at each node in the
CFG, e.g.,

» what variables are defined
« what variables are referenced
e usually stored in sets
« ref(n) is the set of variables referenced at node n
« uses this local information and the control flow graph to
compute global information about the whole program

« done incrementally by looking at each node’s
successors or predecessors

UNIVERSITY! OF MASSACHUSETTS AMHERST: = DERARTV

©Rick Adrion 2004 (except where noted)

“Xtieict DFA

else
endif;
. | single-entry,
—; _ single-exit
; in-line code
blocks

ecompute what is true
g at each node

ewhat variables are
defined

ewhat variables are
referenced
g estored in sets
eref(n) is the set of
variables referenced
at node n

ﬁ—

euse local information
and the control flow
graph to compute
g global information
incrementally by
looking at each
node’s successors or

g predecessors

UNIVERSITY.:OF MASSACHUSETTS AMHERST A DERARTV

CMPSCI1520/620 Analysis Overview

COMPITER Def-ref path expressions COMPITE! Anomalous pairs of ref/defs
e for a path P and a variable a d - defined, r - referenced, u - undefined
can w.riFe a path expression , < def(1) | dd bug? du bug? |
ngzgggetgiizzquence ° dr normal ud normal
encountered for a, where o € null(2) uu harmless? rr normal
ea. Edef (n) or rd normal ru normal
fine
e € ref(n) or o € null(3) | ur bug |
ea € null (n)

«for each node n on the path
ewrite (and simplify) a path o € ref(4)
expression
*P(ny, Ny, ..., Ny; @)
P(1,2,3,4; o) =d11r =dr

UNIVERSITY OFMASSACHUSETTS AMHERST: DEP;A‘:!:%\ UNIVERSITY.:OF MASSACHUSETTS AMHERST DEP;'

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPITE! Consider unreferenced definition

*Want to know if a def is not going to be referenced
edd ordu

¢ At the point of a definition of a, want to know if there is
some path where a is defined or undefined before being
used

*May be indicative of a problem if the path is executable

*Usually just a programming convenience and not a
problem

¢ At the point of a definition of a, want to know if on all
paths a is defined or undefined before being used

*May be indicative of a problem
Or could just be wasteful

UNIVERSITY! OF MASSACHUSETTS: AMHERST: DEP

©Rick Adrion 2004 (except where noted)

CONriTH global dataflow analysis

e classes
«forward flow problems (e.g., available expressions)

*what definitions can affect computations at a given point in
a program

ebackward flow problems (e.g., live variables)

*what uses that follow a given point in the program can be
affected by computations up to that point

e paths
eany path
eall path

UNIVERSITY.:OF MASSACHUSETTS AMHERST D. ARENT OF BOMPULER SOENGE £ B PO Io0 B AANE DA0IE Sk

CMPSCI1520/620 Analysis Overview

CONFITER Unreferenced definitions CONPUTER General Approach
. . (unreferenced defs) « Initial values In; := Merge (Out))
|nt XY 0) ofor ea.ch. node dgfine 9eN £y rard
X = 3: . x) and Kkill |nf9rmat|on flow N
yi=x+2) e Input Equations In(n) | out(n)
i xZ 0 t+he!'1) \ Need to look «for each node we have an gen(n), kill(n),
ez d_|fx Y; Y at each node equation of the form: null(n)
yi= ’ where there In; := Merge (Out)
is a def *“Merge” operation over
)) the “predecessors” of n,
Forward flow, out(n) | In(n)
all paths problem v) v Backward
Some (x,y) All() flow
In, := Merge (Oum

UNIVERSITY.:OF MASSACHUSETTS AMHERST - DEPARTMENT:QF: COI\/}:

UNIVERSITY: OF MASSACHUSETTS AMHERST: DEPARTVENT.OF OOMPY:

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER

Sseience General Approach

e Transfer Equations

« for each node we have
an equation of the form:
Out, :=f(In,)

e Transfer functions
usually depend on
Gen/Kill information that
is computed for each
node

e Usually:

Out := (In - kill)U gen
*We can view the set of
variables, transfer
functions, and flow graph
as a system of equations

Forward
flow

In(n)

Out(n)

Out; := f,(In)

gen(n), kill(n),
null(n)

In(n)
Backward
flow

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPARTMENW&'

©Rick Adrion 2004 (except where noted)

6.

CONFUTER worklist algorithm

1.

Start at initial node (entry for forward; exit for
reverse), label IN, with pertinent “facts” (initial
values)

Compute OUT, = F(IN,) (label OUT, with the
computed facts)

Propagate OUT|, to IN; (label edge N,=N; with
OUT,) where N, are successor nodes (forward)
or predecessor nodes (reverse) of N,
Compute OUT,; = F(IN)), place all N;on a
“worklist” W, and for all N; label OUJI' with the
computed facts.

While W is not empty,

1. pick N; from W and propagate OUT,; to IN, (label
edges N=N, with OUT,) where N, dre sutcessor
nodes (forward) or predecessor nodes (reverse)
for N;; delete N; from W

2. Compute OUT, = F(IN,) for all N, where
IN.=MERGE a|| |nput edge labels (MERGE = U
for some paths” and N for “all paths "), label
OUT, with the computed facts) and if for Ny,
OUTk changes put N,, on W’

If W is not empty, then W=W’ and go to 5

UNIVERSITY. OF MASSACHUSETTS AMHERST X DERARTVIENT:

w=(3}

wW={12}

initial values
= empty

CMPSCI1520/620 Analysis Overview

c"{‘};‘;‘;’ﬂﬁf Using Quantified Regular Expressions

¢ Alphabet, quantification,
regular expression

« For the events {open,

close

close, move} move
show that for all paths: close open

((close v move)*,

(open*v open*,close))* open
move

close

open

move

UNIVERSITY OFMASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

COMENE Cecil: Olender and Osterweil

« Instead of implicitly defined facts, let the user define application-
specific facts

« Represented as a Deterministic Finite State Automaton (DFSA) or as
a Quantified Regular Expression (QRE)
* Events

* Recognizable events
* Method calls

« Can reason about sequences of method calls
« E.g.,Push must be called before Pop

* Thread interactions
« Join or Fork
« Arbitrary operations
«atb
* Need to be able to treat events as indivisible actions
« E.g., can treat pop and push as atomic as long as they do not contain any events of concern

* Propagate the states in the DFSA that can reach each node in the
program

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTV

10

CMPSCI1520/620 Analysis Overview

CONriTH State Propagation COMPITE Elevator Controller
void main()
« States of the property are propagated through the CFG 1: if (elevatorStopped)
« The property is proved if only accepting (non-accepting) 1 I(f (elevatorStopped) G..
states are contained in the final node of the CFG 3 7 openDoors() a—
*Cecil DFSA -> . 3: openboors();
|atti ("P(S) c U) 5: if (elevatorStopped) }
attice
T 7: closeDoors();
i }
functlonaquajzig)) 9: moveToNextFloor(); 5: if (elevatorStopped)
facts at nodes are elements of P(S) ;?é%tgsa?;éhﬁ,gggﬁ TﬁeaE?FG a—
epropagate until convergence and check if terminal node *For an all property: the 7: closeDoors();
in an accepting state of DFSA property is proved if only }

accepting states are contained
in the final node of the CFG

*For a none property: the - -
property is proved if only non- 9: moveToNextFloor();
accepting states are contained }

in the final node of the CFG

UNIVERSITY OFMASSACHUSETTS AMHERST: DEI%; UNIVERSITY.:OF MASSACHUSETTS AMHERST DEI%'

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER : COMPUTER :
Sseince Otate propagation Sseince Otate propagation
initial state 1: if (elevatorStopped) 1: if (elevatorStopped)
oo {..
<0> <0>
rrlncc)f/z 3: openDoors(); rrlncc)flz 3: openDoors():
} }
clos open <1> <0,1> \ clos open <1> w0,1>
open 5: if (elevatorStopped) open 5: if (elevatorStopped)
L. union {..
move — <0,1> move <9.1>
close 7: closeDoors(); close 7: closeDoors();
open } open }
move <0,1> move 0,1>
<0> <0>
// ,9: moveToNextFloor(); 9: moveToNextFloor():
} }
Worklist: 2 <0,2> <0,2>
UNIVERSITY OFMASSACHUSETTS AMHERST: S 2DERARTME:

UNIVERSITY.:OF MASSACHUSETTS AMHERST

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

I Approaches

« Static Analysis

*Dynamic Analysis

-Amtﬁ.o\rls

*Error seeding,
mutation testing

+Symbolic execution |
*Dependence Analysis

eCoverage criteria

*Fault-based testing

«Software Verification‘

» Specification-based
testing

*Object-oriented testing,

*Regression testing

UNIVERSITY: OF MASSACHUSETTS AMHERST: ##DERA

©Rick Adrion 2004 (except where noted)

COMPUTER
SCIENCE

Verification

«two well-established approaches
*(Automated) mathematical reasoning
etheorem proving
eproof checking
*Finite-state verification

emodel checking
eLogic spec + FSA comp model = symbolic model checking
*FSA spec + FSA comp model = automata-theoretic model
checking

eproperty checking

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

13

CMPSCI1520/620 Analysis Overview

COMPITER Verification

*How are they different?
¢ (Automated) mathematical reasoning
« difficult, error prone

e decidability vs. expressiveness
« Propositional calculus is decidable
« Predicate calculus is semi-decidable

«Finite-state verification
* Reason about a finite model of the system

« Fast, yields counterexamples, manages partial
specifications, applies to concurrency

« State explosion!

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPAF{E["

©Rick Adrion 2004 (except where noted)

U808 Proof

predicate logic

assertions @

w

lemmas and theorems in
predicate logic

N

typically inferred ode

by symbolic Behavior
execution of the QRLOdUE vi

specifications

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DERA

14

CMPSCI1520/620 Analysis Overview

c"ﬂ-‘;%ﬁ Floyd Method of Inductive Assertions

« Show that given the input assertions, after executing the program,
program satisfies output assertions

« show that each program fragment behaves as intended
« use induction to prove that all fragments, including loops, behave as
intended
« show that the program must terminate
e informal description
« Place assertions at the start, final, and intermediate points in the
code.

« Any path is composed of sequences of program fragments that start
with an assertion, are followed by some assertion free code, and end
with an assertion

* As: Gy, Ay, Gy, Ag, Ans, Crg, Ag

» Show that for every executable path, if A is assumed true and the

code is executed, then A, is true

UNIVERSITY OFMASSACHUSETTS AMHERST: 2D

©Rick Adrion 2004 (except where noted)

CONrTe Why does this work?

e suppose P is an arbitrary path through the program
e can denote it by

P=A,C A CA,.C A,
e where

A, - Initial assertion

A, - Final assertion

A; - Intermediate assertions

C,- Loop free, uninterrupted,
straight-line code

If it has been shown that
Vi, l<i<n AC,= A,
Then, by transitivity

UNIVERSITY.:OF MASSACHUSETTS AMHERST

15

CMPSCI1520/620 Analysis Overview

COMPUTER Obvious problems

*How do we do this for a path?
*How do we do this for all paths?
eInfinite number of paths
*Must find a way to deal with loops

UNIVERSITY! OF MASSACHUSETTS: AMHERST: DEPARTM:E

©Rick Adrion 2004 (except where noted)

COMEER Find loop invariant (A,)

esubpaths to consider:

*C, Initial assertion A, to final
assertion A;

*C, Initial assertion A, to A,

*C;A oA

*C, A to final assertion A,
eBasically an inductive proof

The “Aha!” moment -
finding invariants is
hard!

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPARTM:E:

F]

O
¢
*'E.

g

o o

16

CMPSCI1520/620 Analysis Overview

CONFUTER Wensley's Algorithm

Procedure Wensley (P:input, Q:input, E:input, Y:output);
Declare P, Q, E, ¥, A, B, D real;

A := 0.0;

B := 0/2.0;

D :=1.0; ..
Y := 0.0;

Do_While (D>=E)
If ~(P - A - B 2 0.0) then

{ Y := ¥Y+(D/2.0);
A := A+B};
B := B/2.0;
D := D/2.0;
End_do;
End Wensley;

UNIVERSITY OFMASSACHUSETTS AMHERST: S 2DERARTME

©Rick Adrion 2004 (except where noted)

CONEUTER Floyd Proof: Wensley's Algorithm

e Summary of Five Lemmas Needed
*Ajto A
*A,, true branch, to A,
*A,, false branch, to A,
*A,, true branch, to A
A, false branch, to A¢

Ao

UNIVERSITY.:OF MASSACHUSETTS AMHERST - DERARTVE

17

CMPSCI1520/620 Analysis Overview

Ap {(A=Q*Y)A(B=Q*(D/2))
A (k= 0, k integer A D=2%)
A (P/Q)-D)<Y=(P/Q)}

D = E [constraint]
P - A - B =0 [constraint]

B < B/2
D D2
A {(A=Q*Y")A(B’=Q*(D’/2))
A (k 20, k integer A D’=2%)
A ((P/Q)-D’)<Y’<(P/Q)}

UNIVERSITY OF MASSACHUSETTS AMHERST: S $DERARTMEN

©Rick Adrion 2004 (except where noted)

e Lemma llI: Al false branch, to Al

Y " Y+(D/2.0)
code {4 A —fe ——

COMEER proof of lemma I

A= A’ {(A’=Q*Y) A (B’=Q*(D’/2))
A (k= 0, k integer A D’=2%)
A (P/Q)-D’)<Y’<(P/Q)}
we have
A'=A+B; B'=B/2.0;D' =D/2.0; Y =Y + D/2.0;

1) A= A+B = QY + Q*(D/2) = Q*(Y+(D/2));
Y'=Y+(D/2); ~.A=QY’
2) B=B2=Q , D'=D/2

~B=(@Q* 2D'N
from A,

and so on ... basically using symbolic evaluation

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPARTMENF&E

18

CMPSCI1520/620 Analysis Overview

COMPITE! Hoare axiomatic proof

e assertions are preconditions and post conditions on
some statement or sequence of statements
P{S}Q
«if P is true before S is executed and S is executed then
Qs true

eas in Floyd's inductive assertion method, we construct
a sequence of assertions, each of which can be inferred
from previously proved assertions and the rules and
axioms about the statements and operations of the
program

«to prove P{S}Q, we need some axioms and rules about
the programming language

UNIVERSITY OFMASSACHUSETTS AMHERST: 2D

©Rick Adrion 2004 (except where noted)

COMPITE! Hoare axioms and proof rules

e axiom of assignment
«P {x:=f} Q, S, x=f
» where Q is obtained from P by substituting f for all %
occurrences of x in P (symbolic execution)
e rule of composition
*P{S1,82}Q=>3P1,P{S1}P1 A P1{S2}Q
« rule for the alternative statement
« P{if B then S1 else S2 }Q =
P{B A S1}Q A P{-B A S2}Q
e rules of consequence
*[P{S}QArQ=R]=P{S}R
*[P{S} QAR =P]=R{S}Q
« rule of iteration

«P {while B do S)Q = /

P{"B}QA@P{BAS}|A|{BAS}|/\|{~B}Q

invari iy
loop invariant backwards substitution

UNIVERSITY.OF MASSACHUSETTS AMHERST 2D

19

CMPSCI1520/620 Analysis Overview

U808 Proof

« Hoare-style and Floyd- style verification are essentially the same
* one is based on graphical representation and the other on a textual
representation.
« In Floyd-style proof, we visualize the proof goal by annotating a CFG
« In the other, we define the proof goal as a Hoare triple
¢ Mechanism for applying proof
= may work either direction on such a proof, but because it's typically
easier to work backwards, often use a technique called backwards
substitution
* we work our waz from the post-condition, using the proof rules to
"push formulas through" the program
« at each point where a "pushed-through" predicate "runs into" a
supplied predicate, we have a verification condition (VC) that must be
proved.
« After all VCs are proved, we need to be prove termination
« Without a termination proof, we achieve partial correctness
« With a termination proof, we achieve total correctness

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPA!:?:{

©Rick Adrion 2004 (except where noted)

U808 Proof

predicate logic

assertions @

w

lemmas and theorems in
predicate logic

N

typically inferred ode

by symbolic Behavior
execution of the QRLOdUE vi

specifications

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPA'E

20

CMPSCI1520/620 Analysis Overview

LN Symbolic Evaluation/Execution CONPTH Execution tree (Hantler-King)
« Creates a functional ABSOLUTE PC: true, PV: X: @, Y: -
representation of a path assume (true)
of an executable 1 procedure(X); PC: true
component declare X,Y integer ’

¢ P is composed of partial
functions corresponding
to the executable paths

2
3 if X<0

4 then Y< -X;
5

PC: a<0 PC: 020
else Y< X; \
. ' S

P={P,,..P} 6 return (Y) pC a<0 PC: a=0
P X— Y prove((Y =X|Y =-X)& Y20 & X =X) TPV:X: o, Y- PV:X:a Y:
«For a path P, 7 end;
*D[P] is
the domain for path P,
*C[P] is the
computation for path P, (\% (a— o) (= (x) \Y
verified
A-0)20 A o = a) Ao20 A a=a)

UNIVERSITY OFMASSACHUSETTS AMHERST: DEI%‘

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEI%'

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER

input asssertion

n do_while predicate1 <= bette_r: flnc_j a
n+1 if predicate2 loop invariant
n+2 then code ;

n+3 else code ;

n+4 end;

n+5 output assertion ;

UNIVERSITY OFMASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

n+2

scienee Loops -- unroll them?

L input assertion
n

n+1 n+5
\< output assertion

n+3

n+5

output assertion

CoNrTH Straightforward Observations

* Problems

« formal proofs are long, tedious and are often hard; assertions
are hard to get right; invariants are difficult to get right (need to
be invariant, but also need to support overall proof strategy)

¢ Unsuccessful proof attempt = ??7?

e incorrect software? assertions? placement of assertion? inept
prover? although failed proofs often indicate which of the
above is likely to be true (especially to an astute prover)

¢ Deeper Issues

« undecidability of predicate calculus = no way to be sure when
you have a false theorem

e there is no sure way to know when you should quit trying to
prove a theorem (and change something)

« proofs are generally much longer than the software being
verified = errors in the proof are more likely than errors in the
software being verified

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;

22

CMPSCI1520/620 Analysis Overview

CONPUTER Verification

*How are they different?
¢ (Automated) mathematical reasoning
« difficult, error prone

e decidability vs. expressiveness
« Propositional calculus is decidable
« Predicate calculus is semi-decidable

«Finite-state verification
* Reason about a finite model of the system

« Fast, yields counterexamples, manages partial
specifications, applies to concurrency

« State explosion!

UNIVERSITY OFMASSACHUSETTS AMHERST: DEI%‘

v

©Rick Adrion 2004 (except where noted)

CONFUTER Model Checking: Overview

e properties usually expressed in

« in a propositional logic (e.g., properties stated as
. propositional logic assertions
temporal logic) properties stated as
« asaFSA an

e system represented as a @

(possibly “abstracted”)
reachability graph \
* reasoning engine Comparison
¢ logic = propagates valid sub- exhaustive search b\

formulas through the graph of state space
) language containment
* FSA = compares FSAs via reachabiliy analysis
language inclusion; bisumlation odug

reachability; or bisumulation

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEP'

23

CMPSCI1520/620 Analysis Overview

CoNrie Conservative Analysis

« If property is verified, property holds for all possible
executions of the system

« If property is not verified:
ean error found
OR

e a spurious result

* System model abstracts information to be tractable

«Conservative abstractions usually over-approximate
behavior

«If inconsistency relies upon over-approximations, then a
spurious result

ee.g. all counter example correspond to infeasible paths

UNIVERSITY OFMASSACHUSETTS AMHERST: 2D

©Rick Adrion 2004 (except where noted)

LM Temporal logic

« augments the standard operators of propositional logic with “tense”
operators

« "possible worlds semantics" = Kripke model
« relativize the truth of a statement to temporal stages or states
« a statement is not simply true, but true at a particular state

« states are temporally ordered, with the type of temporal order
determined by the choice of axioms.

* model of time
« partially ordered time
¢ linearly ordered time

« linear temporal logic is typically extended by two additional operators, “until”
and “since”

« discrete time
« branching (nondeterministic) time

« foundation for one of the principal approaches to verifying concurrent
systems = Computational Tree Logics.

UNIVERSITY.OF MASSACHUSETTS AMHERST 2D

24

CMPSCI1520/620 Analysis Overview

CONFITER Computation Tree Logics

« specification language
« a propositional temporal logic. Fp
« verification procedure
« exhaustive search of the state space of
the concurrent system to determine AFp
truth of specification.
e formulas constructed from path
quantifiers and temporal operators:
« path quantifier:
« A “for every path” EFp
« E “there exists a path”
« temporal operator:
* Xp “p holds next time’
* Fp “p holds sometime in the future” p
« Gp “p holds globally in the future”
* pUq “p holds until g holds”

Fp

UNIVERSITY: OF MASSACHUSETTS AMHERST: DEPARTVENT.OF OOM

©Rick Adrion 2004 (except where noted)

CONPETER Architecture of FSV Systems

Property

Property
Representation Property
Verified

System

Counter Examples
for Model

UNIVERSITY. OF MASSACHUSETTS AMHERST S DERARTVIENT OF: Cq

25

CMPSCI1520/620 Analysis Overview

COMPUTER

&Example: processes can be null, trying to
obtain the lock, or in a critical region (n1, t1, c1)

Sseienee mutual exclusion protocol

process1 =n1,t1,c1

or (n2, 12, ¢2) process2 =n2,t2,c2
&TURN is a variable that indicates which turn
process can obtain the lock (0,1,2)

«Need a reachability graph that shows that
states (i.e., the values) of the variables

reachability graph
UNIVERSITY OF MASSACHUSETTS AMHERST: 32 DERARTMENT-ORC0)

©Rick Adrion 2004 (except where noted)

COMPUTER

Sseience Example: propagation

AG(t1=AF c1)

&a =b means (b or 7 a)

&(t1=AF c1)means (AFclv t1)
t1=AF c1

t‘fiﬁll c1

<process1, process2, turn>

UNIVERSITY.:OF MASSACHUSETTS AMHERST - DEPARTMENT:QF: COI\/}

26

CMPSCI1520/620 Analysis Overview

COMPUTER

properties stated as an FSA

lreent

language containment
reachability analysis
bisumulation

UNIVERSITY OFMASSACHUSETTS AMHERST: S $DERARTMENT: OF'

©Rick Adrion 2004 (except where noted)

>seience Automata-Theoretic Model Checking

COMPUTER
»science Example

 Specification:
« of the possible observable events (a, b, ¢), c must
happen at least once

a, b, c

llmplementation

78,

UNIVERSITY.:OF MASSACHUSETTS AMHERST A - DEPARTMENTE)

27

CMPSCI1520/620 Analysis Overview

COMPITE! Some observations COMPITER Approaches
*Model Checking «Static Analysis *Dynamic Analysis
sworst case bound linear in size of the model «Assertions
*but the model is exponential «Error seéding
*not clear if model checking or symbolic model mutation testiﬁg
checking is superior .
«depends on the problem *Coverage criteria
sexperimentally often very effective! *Fault-based testing
eused selectively to verify hardware designs Specification-based
etrying to develop appropriate abstractions to make testing
it applicable to software systems -Object-oriented testing
s
*Regression testing

UNIVERSITY: OF MASSACHUSETTS AMHERST: ##DERA] UNIVERSITY.OF MASSAGHUSETTS AMHERST DEF

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

CONrTH Types of Testing--what is tested CONrTH Testing approaches

* Unit testing *“black box”
eexercise a single simple (procedure) component

e Integration testing
eexercise a collection of inter-dependent components
«focus on interfaces between components

* System testing
eexercise a complete, stand-alone system

« Acceptance testing *“white box” or “glass box”
ecustomer’s evaluation of a system
eusually a form of system testing

¢ Regression testing
eexercise a changed system
*Focus on modifications or their impact

UNIVERSITY: OF MASSACHUSETTS ANHEI UNIVERSITY.OF MASSAGHUSETTS ANMHER!

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER

sseienee White & Black box testing processes

> test data selectio
criteria

test case:

test data selection
criteria

test cases

executable

component specification:

analysis

execution results

specification: oracle testing report

UNIVERSITY:OF MASSACHUSETTS AMHERST: S 2DERARTMENTOF:

©Rick Adrion 2004 (except where noted)

executable
component

execution results

testing report

Rs=Y, Y, ..., Y, =postcondition Q

Dg=X,, X, ..., X, =precondition P

Re=Y,, Y,, .., Y,
De=Xy, X5, ooy X,
specification S
executable component E; show P{E}Q
test data set(s) T
test data adequacy criterion C
UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT:OF

30

CMPSCI1520/620 Analysis Overview

CONMTH Testing Theory

« Criterion C for Test Adequacy

o C:SxE ->27

«specification-based C (s) “black box”

s interface-based C (x1,x2, ..., xn, y1,vy2, ..., yn)

e program-based C (e)

ecombined C (s.e) “white box”
*Types

estructural «if specification S defines a function F,

such that P{F}Q, then C is reliable if
T, Ty oo, Ty C(T,,E); @and D (E) D T,
VT, (VtET, E(t)= F(t)) v VT,
(FET, E)#F()
Vte T, E(t)= F(t) =
VteET OKT,)=E=F

«fault-based
eerror-based

UNIVERSITY: OF MASSACHUSETTS AMHERST: $41

©Rick Adrion 2004 (except where noted)

COMPITE! |deal Test Criterion

e test criterion C is ideal if for any executable component E
and every test set T,C D(E) such that C(T,,E), T; is
successful

e of course we want T, << D(E)
e butin general, T= D(P) is the only ideal test
criterion
¢ In general, there is no ideal test criterion

“Testing shows the presence, not the absence of bugs”
E. Dijkstra

« Dijkstra was arguing that verification was better than testing
¢ but, verification has similar problems
e can'’t prove an arbitrary program is correct
e can't solve the halting problem
e can't determine if the specification is complete

¢ need to use these techniques so that they compliment one
another

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;.B

31

CMPSCI1520/620 Analysis Overview

COMPUTER
SCIENCE

Black Box Testing

 Functional/lnterface Test Data Selection
e typical cases
e boundary conditions/values
eillegal conditions (if robust)
« fault-revealing cases
 based on intuition about what is likely to break the system
e other special cases
« stress testing
e large amounts of data
e worse case operating conditions
e combinations of events
e select those cases that appear to be more error-prone
e common representations for selecting sequences of events
» decision tables
 cause and effect graphs
e usage scenarios

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

estructural

ecoverage based
fault-based

ee.g., mutation testing, RELAY
eerror-based

edomain and computation based

euse representations created by symbolic
execution

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

COMPITER «“White Box” Test Data Selection

32

