CMPSCI1520/620 Analysis Overview

CONMTER Announcements

* Revised Project 2 (minor) and new Project 3 posted

*Note: each group (on-campus) needs to arrange a
design review during the period 11/29-12/7

*No class on 12/6 (can be used for design review)
*Due Date for Project 2 extended to 12/8

* As alternatives to Rational Rose, | have obtained
licenses for Eclipse & Visual Paradigm; licenses are
(will be available) on the website.

¢ | will have comments/grades on Project 1 on 11/29

UNIVERSITY OF MASSACHUSETTS AMHERST > ¥DER)

i

©Rick Adrion 2004 (except where noted)

CONriTHE 21-Analysis Overview

¢ Readings:

* GJMO3 Chapter 6

« Fag86 Fagan,, M.E. "Advances in Software Inspections," IEEE Transactions on Software Engineering,
July 1986, SE-12(7), pp. 744-751

« Mil87 Mills, Harlan D., Michael Dyer, and Richard C. Linger, “Cleanroom Software Engineering," IEEE
Software, September 1987, pp. 19-25

* Ost76 Osterweil, Leon J. and L.D. Fosdick, " DAVE--A Validation Error Detection and Documentation
System for FORTRAN Programs,” Software Practice and Experience, September 1976, Vol. 6., pp. 473-
486

* Ole92 Olender, K. M. and L. J. Osterweil, "Interprocedural Static Analysis of Sequencing Constraints,"
ACM Transactions on Software Engineering and Methodology, January 1992, 1(1), pp. 21-
52.

« Dwy95 Dwyer, M. B. and Clarke, L. A. OA Flexible Architecture for Building Data Flow Analyzers," in
CMPSCI Technical Report, August 17, 1995

* Adr82 Adrion, W.R,. M.A. Branstad, and J.C. Cherniavsky, "Validation, Verification and Testing of
Computer Software," ACM Computing Surveys, June 1982, pp.159--192

* Hoa69 Hoare, C.AR., "An Axiomatic Basis for Computer Programming,” Communications of the ACM,
October 1969.

* Flo67 Floyd, R.W. "Assigning Meaning to Programs”, in the Proceedings of Symposium on Applied
Mathematics, 1967, pp. 19-32, (Appeared as volume 19 of Mathematical Aspects of Computer Science).

* Han76 Hantler, S.L. and J.C King,. "An Introduction to Proving the Correctness of Programs,” ACM
Computing Surveys, September 1976, pp. 278-300.

* Clag85 Clarke L. A. and D. J. Richardson, "Applications of Symbolic Evaluation," Journal of Systems
and Software, January 1985, 5 (1), pp.15-35.

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DE!

CMPSCI1520/620 Analysis Overview

Mp .
Ggsm'iﬁf:'!‘ Analysis

e

“~

UNIVERSITY OF MASSACHUSETTS AMHERST S XDERAR:

©Rick Adrion 2004 (except where noted)

Comparison

'

ode
sroductay Behavior

Fhtve: Basic Definitions

e Failure-- result that deviates from the expected or
specified intent

* Fault/defect-- a flaw that could cause a failure

« Error -- erroneous belief that might have led to a flaw
that could result in a failure

observed
failure

Behavior

UNIVERSITY.OF MASSAGHUSETTS AMHERST - DEPARTMEN

CMPSCI1520/620 Analysis Overview

UPHE Approaches

« Static Analysis
« the static examination of a product or a representation of the
product for the purpose of inferring properties or
characteristics
* Dynamic Analysis
« the "interpretation" of a product or representation of a product
for the purpose of inferring properties or characteristics
e Testing
« the (systematic) selection and subsequent "execution" of
sample inputs from a product's input space in order to infer
information about the product's behavior.
« usually trying to uncover failures
« the most common form of dynamic analysis
« Debugging -- the search for the cause of a failure and
subsequent repair

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3 +DER

©Rick Adrion 2004 (except where noted)

EOMPTER A nalysis

@ Testing

Static Analysis
Comparison

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DE!

\ Dynamic Analysis

observed

Behavior

inferred

CMPSCI1520/620 Analysis Overview

COMPITER Validation and Verification: V&V

« Validation -- techniques for assessing the quality of a
software product
« Verification -- the use of analytic inference to (formally) prove
that a product is consistent with a specification of its intent
« the specification could be a selected property of interest or it
could be a specification of all expected behaviors and qualities

« e.g., provide a user-friendly and efficient ATM system for remotely
depositing funds into and withdrawing funds from a checking or
saving account

¢ e.g., all deposit transactions for an individual will be completed
before any withdrawal transaction will be initiated

« a form of validation
« usually achieved via some form of static analysis

COMPITE Correctness

ea product is functionally correct if it satisfies all the
functional requirement
specifications
e correctness is a mathematical property
erequires a specification of intent
e specifications are rarely complete
ea product is behaviorally correct if it satisfies all the
specified behavioral requirements

e difficult to prove poorly-quantified qualities such as user-
friendly

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

UNIVERSITY.:OF MASSACHUSETTS AMHERST D

CMPSCI1520/620 Analysis Overview

EOMPUTER 2 oliability

*measures the dependability of a product

esometimes stated as a property of time
e.g., mean time to failure

¢ Reliability vs. Correctness
ereliability is relative, while correctness is absolute

egiven a "correct" specification, a correct product is
reliable, but not necessarily vice versa

UNIVERSITY OFMASSACHUSETTS AMHERST: 2D

©Rick Adrion 2004 (except where noted)

«the probability that a product will perform as expected

COMPITE! Robustness

*behaves "reasonably" even in circumstances that were
not expected
emaking a system robust more then doubles development
costs

e a system that is correct may not be robust, and vice
versa

UNIVERSITY.OF MASSACHUSETTS AMHERST 2D

CMPSCI1520/620 Analysis Overview

COMMTER Formal models

¢ Analysis is usually done on a model of an artifact

etextual representation of the artifact is translated into a
model that is more amenable to analysis then the
original representation

ethe translation may require syntactic and semantic
analysis so that the model is as accurate as possible
ee.g., x:=y + foo.bar
emodel must be appropriate for the intended analysis
e graphs are the most common forms of models used
ee.g., abstract syntax graphs, control flow graphs, call

graphs, reachability graphs, Petri nets, program
dependence graphs

UNIVERSITY OFMASSACHUSETTS AMHERST: DEI%‘

v

©Rick Adrion 2004 (except where noted)

COENER Modeling intent & artifacts

e natural language

e structured natural language

e pictorial notation
¢ Charts, Diagrams, Box-and-Arrow Charts
e Graphs

* Flowgraphs
¢ Parse Trees @
« Call graphs

« Dataflow graphs ‘
Comparison
e data models ‘ sbserved
« formal language(s)
o state-oriented)
« function-oriented Behavior
« object-oriented inferred

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEI%'

CMPSCI1520/620 Analysis Overview

COMPUTER

« different languages
¢ e.g., Ada, C++, Java
e different levels of abstraction/detail
 e.g., detailed design, arch. design
e different kinds of artifacts
ee.g., code, designs, requirements

translate textual representations

O,

O

UNIVERSITY:OF'MASSACHUSETTS AMHERST: "

seience Ideally want general models

©—>> translator(s)

CONrTH Static analysis

« typically conservative
enever declare a property to be valid if it is not

eusually achieve this by using representations that over-
estimate actual behavior

ethe representation depends on the analysis
*AST is a conservative representation for
edetermining all the operators in a program
edetermining all the locations where X is defined
*CFG is a conservative representation for
¢Determining how many loops are in the program
edetermining how deeply nested each loop is

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;.B

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

CMfIE Conservative analysis in CFG

« For all execution sequences, is P true?
« if P is true for all paths, then P is true

« if P is true for some paths, then P may
be true or false

» Paths where P is not true may not be
feasible

* For some execution sequence, is P
true?

« if P is true for some path, P may be true
or false

« the path where P is true may or may not

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPARTN:!:

©Rick Adrion 2004 (except where noted)

be feasible
« Conservative analysis would only say P
is true if is known to be true for all paths

COMPUTER
®SCIENCE

Example with an infeasible path

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTV

CMPSCI1520/620 Analysis Overview

e Dynamic analysis techniques Ftie: Approaches

e draw inferences from a sample e Static Analysis *Dynamic Analysis
of the problem domain «Inspections +Assertions
*how do we (.:hoose that subset? «Software metrics «Error seeding,
: E;g: detection may depend »Symbolic execution | mutation testing
. i *Coverage criteria
* Specific combinations of Dependence An?IyS|s g :
statements, not just coverage +Data flow analysis *Fault-based testing
of those statements *| «Software Verification Specification-based
testing

« Astutely selected test data that
reveals the fault, not just test *Object-oriented testing
»
*Regression testing

data that executes the path

UNIVERSITY OF MASSACHUSETTS AMHERST: S EDERARTM UNIVERSITY.OF MASSACHUSETTS AMHERST - DERARTVER

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

cﬂ%‘;‘;ﬁ&% Reviews, Inspections, and Walkthroughs @H;I;'E'J&‘ Reviews in the RUP

*Manual static analysis methods

*Most can be applied at any step in the 5
lifecycle et

*Have been shown to improve reliability, but

«often the first thing dropped when time is tight 5 \./ %b.m\

DD — D

Architectural Describe Describe
Design Concurrency Distribution

Architectural
Analysis

elabor intensive s
«often done informally, no data/history, not

Use-Case

Designer Design

repeatable Dot
O RS
D Database
Database Design
Designer

UNIVERSITY OFMASSACHUSETTS AMHERST: S $DERARTMENT: OF' UNIVERSITY.:OF MASSACHUSETTS AMHERST S “DEPARTMENT: OFL('E

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

““E‘.'-';E',IE'E Reviews, Inspections, and Walkthroughs

*Formal reviews

eauthor or one reviewer leads a presentation of the
product

ereview is driven by presentation, issues raised
¢ Walkthroughs

e usually informal reviews of source code

e step-by-step, line-by-line review
¢ Inspections

elist of criteria drive review

e properties not limited to error correction

e historical context

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

PO e: Review methods

« Fagan inspections
« formal, multi-stage process
« significant background & preparation
¢ led by moderator
« Active design reviews
e also called "phased inspections"”
e several brief reviews rather than one large review
e guided by questions from the author
e Cleanroom
emore than reviews, but reviews important component
*we’ll come back to this
« N-fold
e parallel reviews controlled by moderator
« focuses on user requirements

UNIVERSITY.:OF MASSACHUSETTS AMHERST D

11

CMPSCI1520/620 Analysis Overview

COMPUTER

* Moderator

leading the session
 Author

« Responsible for recording bugs found

* User representative

« To relate the product to what the user wants
« Peers of the author

« Perhaps more experienced, perhaps less
¢ Apprentice

* An observer who is there mostly to learn

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3 +DER

©Rick Adrion 2004 (except where noted)

== {
¢ Planner or designer \//\\\q\§

« Author from a previous step in the software lifecycle

9 SCIENCE Fagan Inspections (3-5 participants)

« Responsible for organizing, scheduling, distributing materials, and

« Responsible for explaining the product l,\g‘}\ \ \(%
« Scribe f \ ~
>

COMPUTER
SCIENCE

Fagan Inspection Process (5 steps)

Jvervie

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DE!

12

CMPSCI1520/620 Analysis Overview

COMPUTER

« Planning 4| moderator

* Gather materials and insure
that they meet entry criteria
 Arrange for participants,
« assign them roles,
« insure their training

* Arrange meeting
e Overview

e explain corNgnt to the
inspectors

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

scienee Fagan Inspection Process

 Preparation
¢ Participants study material
¢ Inspection

¢ Find/Report faults (Do not
discuss alternative
solutions)

* Rework
* Author fixes all faults
* Follow-Up

* Team certifies faults fixed
and no new faults
introduced

©Rick Adrion 2004 (except where noted)

CONrTHe Fagan Inspection

*General guidelines
*Distribute material ahead of time

*Use a written checklist of what should be
considered

ee.g., functional testing guidelines
«Criticize product, not the author

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

13

CMPSCI1520/620 Analysis Overview

COMPUTER

eusing software
inspections has
repeatedly been
shown to be cost
effective

eincreases front-end
costs

*~15% increase to
development cost

edecreases overall cost

UNIVERSITY:OF'MASSACHUSETTS AMHERST: "

©Rick Adrion 2004 (except where noted)

seience EXperimental Results

*|IBM study

edoubled number of
lines of code produced
per person

* some of this due to
inspection process

ereduced faults by 2/3

efound 60-90% of the
faults

efound faults close to
when they are

introduced
« helps reduce cost

cﬂ'!‘ll":gﬂfz':‘ People Resource vs. Schedule
PEOPLE
WITHOUT
.) /INSPECTIONS
: E: WITH
P| Qi v
AU e
AU e
Lo e
NI RI l
e ;
M o
o El 3
DN ' /
T p //
_..!......3..1 ,,,,,,,,,, ’
/ | | Il

TESTING ———— | SHIP!

DESIGN |CODING |

SCHEDULE

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;.B

14

CMPSCI1520/620 Analysis Overview

CONrTE Why are inspections effective

e knowing the product will be scrutinized causes
developers to produce a better product

« having others scrutinize a product increases the
probability that faults will be found

e walkthroughs and reviews are not as formal as
inspections, but appear to also be effective

ehard to get empirical results

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

What are the deficiencies?

«focus on error detection

*what about other "ilities" --
rr{alntenance, portability,
etc.

*not applied consistently
& rigorously
e inspection shows statistical

improvement, but cannot
ensure quality

e inspection should have the
same results without regard
to the product to which it is
applied or the inspection
team

erange of errors not
addressed
e team expertise limited
e one property may have
many error modalities

UNIVERSITY.:OF MASSACHUSETTS AMHERST D

*human intensive and
often makes ineffective
use of human resources

*e.g., skilled software
engineer reviewing coding
standards, comments
spelling, etc.

*no automated support

e again inefficient of human
resources

easpects of review not
used appropriately

°e.g., in Fagan process,
overview often covers what
should be described if
documentation is adequate

15

CMPSCI1520/620 Analysis Overview

COMPITER Cleanroom

Customer
Requirements
Processes
Work Products <-7

Specification

Function Usage

Functional Specification
Incremental

Usage Specification

Development

, Planning s

Incremental
; Development Plan Usage M

ng
n Test Case Generation

Box Structure
Specification & De:

Cor Veri
Source Code

s , Test Cases
Statistical Testing

—-— Failure Data

Improvement Feedback

UNIVERSITY:OF'MASSACHUSETTS AMHERST: 3

Cel
Model

Measures of Operational Performance

©Rick Adrion 2004 (except where noted)

COMPUTER
SCIENCE

[£]
do
[9]
[h]
od

For all
inputs, does
[g] followed
by [h] do
[f1?

Cleanroom

« Verification as Review Process
« team verification of correctness
takes the place of individual unit
testing; correctness is established
by group consensus if it is
obvious
« by formal proof techniques if it is
not.
* benefits
« intellectual control of the process
* motivates developers to deliver
error-free code
« verification is a form of peer review
« each person assumes
responsibility for and derives a
sense of ownership in the evolving
product
« every person must agree that the
work is correct before it is
accepted -> successes are
ultimately team successes, and
failures are team failures.

* Markov Analysis
 Factors
< number of statistically typical (i.e.,
likely) usage paths through the
software
» Steps
« focus verification efforts,

« identify the likelihood of given
events,

« project the test schedule, and
« ascertain the (affordable) upper
bound on inferences about
reliability
« Stopping Criterion for Testing

« goals (e.g., target level of
estimated reliability) are achieved

« or quality standards (e.g.,
errors/KLOC) are violated

See—

UNIVERSITVOFMASSACHUSETI'SAMHERST- D EBARTVENT O COMPUTER SOIENE

16

CMPSCI1520/620 Analysis Overview

COMPITE! Generation of Test Cases

« usage model->test cases
* may be automatically generated.

« each test case is a random walk through the usage model
« invocation->termination

« test cases constitute a "script" for use in testing

« Stopping Criterion for Testing
« goals (e.g., target level of estimated reliability) are achieved
« or quality standards (e.g., errors/KLOC) are violated

« Statistical Hypothesis Testing

Confi (%)
90 95 99 99.9
g 0.9 22 29 44 66
Reliability 0.95 45 59 90 135
level () 0.99 230 299 459 688
0.999 2302 2993 4603 6905

UNIVERSITY OFMASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

* may be applied by human testers, or used as input to an automated test tool.

COMPITER Software Metrics

emeasures that predict qualities about software

e can be applied to any of the products (e.g., design, code,
test cases) or to the process (e.g., Capability Maturity
Model)

* Qualities measured by software metrics

 performance
e user-friendliness
eresources

e memory/storage

« development costs

* maintenance cost
e quality

* maintainabity

« reliability

e completeness

* consistency

* complexity

UNIVERSITY.:OF MASSACHUSETTS AMHERST

17

CMPSCI1520/620 Analysis Overview

COMPUTER : .
seienee Function Points

« proposed by Albrecht in 1979 : weightsszimple Average Complex

« Originally applied to code wi 3 4 6

*UFP = w2 3 5 7

number of inputs x w1+ w3 3 4 6

number of outputs x w2 + w4 7 10 15

number of user inquiries x w3 w5 5 ’ 10

number of files x w4 +
number of external references x w5
« function points = UFP* TCA = UFP* (.65 + 0.01 * SUM(Fi))
ewhere the degree of influence, DI= SUM(Fi) is the sum of
complexity adjustment values, Fi

e metrics:
e productivity: FP/person-month
e quality: defects/FP
« cost: $/FP

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

CONFITEE More Quality Metrics

* Modularity
e cohesion metric
« applied to unit design
« the relationship among the elements of a module
* best cohesion level is functional, and the worst is
coincidental.
«Cruickshank and Gaffney Cohesion Strength
Strength = V(X2 + Y2)
e where:

* X = reciprocal of the number of assignment statements in
the module

*Y = number of unique function outputs divided by number of
unique function inputs

UNIVERSITY.:OF MASSACHUSETTS AMHERST D

18

CMPSCI1520/620 Analysis Overview

CONTETER More Quality Metrics

e Modularity
« coupling
« applied to system and unit designs
« measure of the degree to which modules share data

« data coupling (the sharing of data via parameter lists)
is the best type of coupling, while common coupling
(the sharing of data via global or common areas) is
the worst.

« a lower coupling value is better.
« Cruickshank and Gaffney Coupling:

¢ M. = sum of the number of input and output items
shared between components i & j

* Z, = average number of input and output items shared
over m components with component i

¢ n = number of components in the software product

UNIVERSITY: OF MASSACHUSETTS AMHERST: D)

©Rick Adrion 2004 (except where noted)

Coupling

where: 2 M?

Z! = j=I

CONrTH McCabe’s cyclomatic complexity

e Complexity measured by control flow information
ebased on a control flow graph where e is number of
edges, n is number of nodes, p is number of
connected components
*McCabe’s Cyclomatic Complexity:
ev=e-n+2
*where:
e v = complexity of the graph
e e = number of edges (program flows between nodes)
*n = number of nodes (sequential groups of program
statements)

«if a strongly connected graph is constructed (one in
which there is an edge between the exit node and
entry node), the calculation is

ev=e-n+1

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;

19

CMPSCI1520/620 Analysis Overview

“Xtiiet Example

—

UNIVERSITY OFMASSACHUSETTS AMHERST: 2D

©Rick Adrion 2004 (except where noted)

T @ S
I
N —
o

C=10-8+ 2=4

O

COMPITER Software Science

« Halstead applied information theory to computer science
e metrics
n, number of distinct operators
n, number of distinct operands
YV, total number of occurrences of operators
YV, total number of occurrences of operands
e program level estimator
D =11L =0 12) (Ny]ny)
$=1/$=(2/“|)(“zlmﬂz)

difficulty increases as operators are introduced (n, 12 increases) and as
operands are used repetitively (W, | n, increases)

e programming time
T7=EIS
where § is the “Stroud number”
5<.6<20, usually 18

UNIVERSITY.OF MASSACHUSETTS AMHERST 2D

20

CMPSCI1520/620 Analysis Overview

COMPUTER

elanguage level

h=uxv =V
App = 1.53, }"Algol =1.21,
)"Fortran =114, }“CDC assmoir = 0-88

e predicted effort
8 =v*3/)\'2

UNIVERSITY OFMASSACHUSETTS AMHERST: 2D

©Rick Adrion 2004 (except where noted)

seience Software Science (continued)

COMPUTER Quality Metrics for Code

e Understandability
*size metrics
«lines of code
« function points
« function count
etraceability metrics
e number of comment lines per total source lines of code
e percent comment lines of total lines
e correctness of comments
¢ Predicting quality
*LOC X domain seems to be the most reliable predictor

UNIVERSITY.OF MASSACHUSETTS AMHERST 2D

21

CMPSCI1520/620 Analysis Overview

WP A nalysis

e

“~

Comparison

'

ode
sroductay Behavior

UNIVERSITY OFMASSACHUSETTS AMHERST: S $DER,

©Rick Adrion 2004 (except where noted)

e Basic Verification Strategy

eanalyze a system for desired properties, i.e., compare
behavior to intent
eintent
e can be expressed as properties of a model
e can be expressed as formulas in mathematical logic
ebehavior
e can be observed as software executes
e can be inferred from a model
e can be expressed as formulas in mathematical logic

e different representations support different sorts of
inferences

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPA%

22

CMPSCI1520/620 Analysis Overview

CONTETER Compare behavior to intent

e comparison can be informal
edone by human eye, e.g., inspection
e can be done by computers
e comparing text strings
e can be done by model-checkers
esuch as formal machines (e.g., fsa's)
e can be done by rigorous mathematical reasoning

UNIVERSITY:OF'MASSACHUSETTS AMHERST: "

CONTETER Example: Dataflow Analysis

eintent:
e stated as a property
ecaptured as an event sequence
e behavior:
emodel represents some execution characteristics
einferred from a model: (e.g., annotated flow graph)
einferences based upon:
* semantics of flow graph
e semantics captured by annotations
e comparison:
edone by a fsa (e.g., a property automaton)

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;.B

©Rick Adrion 2004 (except where noted)

23

CMPSCI1520/620 Analysis Overview

LN Data FlowAnalysis

“property” = Cecil constraint

if dfa accepts all traces then the

dfa defined by
Cecil constraint

trace = computation
along path in an annotated
dataflow graph

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPAF{E["

©Rick Adrion 2004 (except where noted)

constraint holds for all computations

model

e Data Flow Analysis (DFA)

« Uses an annotated control flow graph model of the program
* Compute facts for each node
* Use the flow in the graph to compute facts about the whole
program
* DFA used extensively in program optimization, e.g.,
« determine if a definition is dead (and can be removed)
« determine if a variable always has a constant value
« determine if an assertion is always true and can be removed
* Some Dataflow systems

* DAVE system demonstrated the ability to find def/ref
anomalies

« Cecil/Cesar system demonstrated the ability to prove general
user-specified properties
* FLAVERS demonstrated applicability to concurrent system

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPAF{EL:i

24

CMPSCI1520/620 Analysis Overview

COMPUTER

seience Data flow analysis

¢ computes information that is true at each node in the
CFG, e.g.,

* what variables are defined

* what variables are referenced
¢ usually stored in sets

« ref(n) is the set of variables referenced at node n
« uses this local information and the control flow graph to
compute global information about the whole program

« done incrementally by looking at each node’s
successors or predecessors

UNIVERSITY! OF MASSACHUSETTS: AMHERST: DEP

©Rick Adrion 2004 (except where noted)

COMPUTER

scienee Data Flow Analysis

detect and
eliminate redundancy

anomaly detection +" code optimization

Q
0
0
-
.
=

verification won't falk"about this

UNIVERSITY.:OF MASSACHUSETTS AMHERST D. ARTIENT O

-
.
.

scalar ':_

test data selection
program *, parallel vector

understanding %

Q
Q
Q

Q
3

25

CMPSCI1520/620 Analysis Overview

“Xtieict DFA

else ...
endif;
. | single-entry,
—; _ single-exit g
; in-line code
blocks

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPARTN:!:

ﬁ—

ecompute what is true
at each node
ewhat variables are
defined
ewhat variables are
referenced def={y}
estored in sets
eref(n) is the set of
variables referenced
at node n

suse local information
and the control flow
graph to compute
global information
incrementally by
looking at each
node’s successors or
predecessors

def={x}
ref={y}

©Rick Adrion 2004 (except where noted)

COMPUTER
®SCIENCE

Def-ref path expressions

e for a path P and a variable a
can write a path expression , o def(1)
describing the sequence of
set memberships
encountered for a, where
e €def(n)or
ea € ref(n) or
ea € null (n)
«for each node n on the path
ewrite (and simplify) a path
expression
*P(ny, Ny, ..., Ny; @)

a € null(2)

a € null(3)

o € ref(4)

P(1,2,3,4; o) =d11r = dr

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTV

26

CMPSCI1520/620 Analysis Overview

COMPITE! Anomalous pairs of ref/defs COMPITE! Consider unreferenced definition
d - defined, r - referenced, u - undefined *Want to know if a def is not going to be referenced
| dd bug? du bug? | «dd or du
dr normal ud normal ¢ At the point of a definition of a, want to know if there is
uu harmless? rr normal some path where a is defined or undefined before being
rd normal ru normal used
| ur bug | *May be indicative of a problem if the path is executable
referenc «Usually just a programming convenience and not a
problem

¢ At the point of a definition of a, want to know if on all
paths a is defined or undefined before being used

*May be indicative of a problem
*Or could just be wasteful

UNIVERSITY: OF MASSACHUSETTS AMHERST: H#DEPAR UNIVERSITY.OF MASSAGHUSETTS AMHERST Db

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMEER global dataflow analysis

e classes
«forward flow problems (e.g., available expressions)
*what definitions can affect computations at a given point in
a program
ebackward flow problems (e.g., live variables)
*what uses that follow a given point in the program can be
affected by computations up to that point
e paths
eany path
eall path

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPARTM:E:

©Rick Adrion 2004 (except where noted)

COMENER Unreferenced definitions

(unreferenced defs)

int x,y; 0O
X = 3; x)

y =X+ 2;

if x > 0 then \

X=X+,) Need to look
end if: ’ at each node
= Qwhere there
Y= is a def

(y))
Forward flow,
all paths problem ¢ (x)

UNIVERSITY.:OF MASSACHUSETTS AMHERST

28

CMPSCI1520/620 Analysis Overview

"W General Approach

e |nitial values

+for each node define gen g . 1.4

and kill information
¢ Input Equations

«for each node we have an

equation of the form:
In; := Merge (Out)

*“Merge” operation over

the “predecessors” of n

flow

In(n)

Out(n)
v

In, := Merg

In; := Merge (Out))

Out() | [oy, kill(n),

In(n)
Backward
flow

e (Oum

UNIVERSITY:OF MASSACHUSETTS AMHERST: S 2DERARTMENTOF: COMPt}

©Rick Adrion 2004 (except where noted)

null(n)

COMPUTER

Sscienet General Approach

e Transfer Equations

« for each node we have
an equation of the form:
Out, :=f(In,)

e Transfer functions
usually depend on
Gen/Kill information that
is computed for each
node

e Usually:

Out := (In - kill)U gen
*We can view the set of
variables, transfer
functions, and flow graph
as a system of equations

Forward
flow

In(n)

Out(n)
)

Out; :=

/

_ Out; = f(In)

\
\/ A
v

Out(n)

In(n)

Backward
flow

f(In)

UNIVERSITY.:OF MASSACHUSETTS AMHERST - DEPARTMENT:QF: COMPE};‘F

gen(n), kill(n),
null(n)

29

CMPSCI1520/620 Analysis Overview

CoNrTE worklist algorithm

1. Start at initial node (entry for forward; exit for
reverse), label IN, with pertinent “facts” (initial
values)

2. Compute OUT, = F(IN,) (label OUT, with the
computed facts)

3. Propagate OUT| to IN; (label edge N,=N; with
OUT,) where N, are successor nodes (forward)
or predecessor nodes (reverse) of N,

4. Compute OUT,; = F(IN)), place all N;on a
“worklist” W, and for all N; label OUJI' with the
computed facts.

5. While W is not empty,

1. pick N; from W and propagate OUT; to IN, (label
edges N=N, with OUT,) where N, dre sutcessor
nodes (forward) or predecessor nodes (reverse)
for N;; delete N; from W

2. Compute OUT, = F(IN,) for all N, where
IN.=MERGE a|| |nput edge labels (MERGE = U
for some paths” and N for “all paths), label
OUT, with the computed facts) and if for Ny,
OUTk changes put N,, on W’

6. If W is not empty, then W=W’ and go to 5

UNIVERSITY OFMASSACHUSETTS AMHERST: S XDERA

©Rick Adrion 2004 (except where noted)

COMPUTER
®SCIENCE

Using Quantified Regular Expressions

¢ Alphabet, quantification,
regular expression

« For the events {open, close
close, move} move
show that for all paths: close open

((close v move)*,
(open*v open*,close))* open
move
close
open
move

UNIVERSITY.:OF MASSACHUSETTS AMHERST

30

CMPSCI1520/620 Analysis Overview

COMPITER Cecil: Olender and Osterweil

« Instead of implicitly defined facts, let the user define application-
specific facts

« Represented as a Deterministic Finite State Automaton (DFSA) or as
a Quantified Regular Expression (QRE)
e Events
* Recognizable events
* Method calls
« Can reason about sequences of method calls
« E.g.,Push must be called before Pop
 Thread interactions
« Join or Fork
« Arbitrary operations
- atb
* Need to be able to treat events as indivisible actions
« E.g., can treat pop and push as atomic as long as they do not contain any events of concern
* Propagate the states in the DFSA that can reach each node in the
program

UNIVERSITY! OF MASSACHUSETTS: AMHERST: = ¥Di

©Rick Adrion 2004 (except where noted)

CONriTH State Propagation

« States of the property are propagated through the CFG

* The property is proved if only accepting (non-accepting)
states are contained in the final node of the CFG

e Cecil DFSA ->

lattice (P(S), C, V)
function space
d:P(S) = P(S)
facts at nodes are elements of P(S)

epropagate until convergence and check if terminal node
in an accepting state of DFSA

UNIVERSITY.:OF MASSACHUSETTS AMHERST DE¢

31

CMPSCI1520/620 Analysis Overview

COMPUTER COMPUTER H
Seeienee Elevator Controller Sseince Otate propagation
void main() L
1: if (elevatorStopped) initial state 1: if (elevatorStopped)
10 if ‘(elevatorStopped) { °_. {-.
3: b openDoors(); — | <0>
} 3: openDoors(); m%?/z 3: openDoors();

5: if”(elevatorStopped) } }
7 oseDoors() clos open <1> <0,1> \
9: moveToNextFloor(); 5: if (elevatorStopped) open 5: if (elevatorStopped)
Statos of th] PR PR union
«States of the property are
propagated through the CFG — move — <0,1>
«For an all property: the 7: closeDoors(); close 7: closeDoors();
property is proved if only } open }
accepting states are contained move <0,1>
in the final node of the CFG <0>
;)I:grr):nr;lc?g T)ric))r\(/)g(f ri}y(;rflr;/enon- 9: moveToNextFloor(): // ,9: moveToNextFloor():
accepting states are contained } - }
in the final node of the CFG Worklist: & <0 2>

UNIVERSITY OF MASSACHUSETTS AMHERST S XDERART

UNIVERSITY. OF MASSACHUSETTS AMHERST S “DERPARTV

©Rick Adrion 2004 (except where noted)

CMPSCI1520/620 Analysis Overview

COMPUTER
@®SCIENCE

clos

State propagation

open

move

move

open

7: closeDoors();

UNIVERSITY OF MASSACHUSETTS AMHERST S X DERARTMEN T OF COMPUTERSCIENCEZEN

©Rick Adrion 2004 (except where noted)

33

