
CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Announcements

• Revised Project 2 (minor) and new Project 3 posted

•Note: each group (on-campus) needs to arrange a
design review during the period 11/29-12/7

•No class on 12/6 (can be used for design review)

•Due Date for Project 2 extended to 12/8

• As alternatives to Rational Rose, I have obtained
licenses for Eclipse & Visual Paradigm; licenses are
(will be available) on the website.

• I will have comments/grades on Project 1 on 11/29

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

21-Analysis Overview

• Readings:
• GJM03 Chapter 6

• Fag86 Fagan,, M.E. "Advances in Software Inspections," IEEE Transactions on Software Engineering,
July 1986, SE-12(7), pp. 744-751

• Mil87 Mills, Harlan D., Michael Dyer, and Richard C. Linger, “Cleanroom Software Engineering," IEEE
Software, September 1987, pp. 19-25

• Ost76 Osterweil, Leon J. and L.D. Fosdick, " DAVE--A Validation Error Detection and Documentation
System for FORTRAN Programs," Software Practice and Experience, September 1976, Vol. 6., pp. 473-
486

• Ole92 Olender, K. M. and L. J. Osterweil, "Interprocedural Static Analysis of Sequencing Constraints,"
ACM Transactions on Software Engineering and Methodology, January 1992, 1(1), pp. 21-
52.

• Dwy95 Dwyer , M. B. and Clarke, L. A. ÒA Flexible Architecture for Building Data Flow Analyzers," in
CMPSCI Technical Report, August 17, 1995

• Adr82 Adrion, W.R,. M.A. Branstad, and J.C. Cherniavsky, "Validation, Verification and Testing of
Computer Software," ACM Computing Surveys, June 1982, pp.159--192

• Hoa69 Hoare, C.A.R., "An Axiomatic Basis for Computer Programming," Communications of the ACM,
October 1969.

• Flo67 Floyd, R.W. "Assigning Meaning to Programs", in the Proceedings of Symposium on Applied
Mathematics, 1967, pp. 19-32, (Appeared as volume 19 of Mathematical Aspects of Computer Science).

• Han76 Hantler, S.L. and J.C King,. "An Introduction to Proving the Correctness of Programs," ACM
Computing Surveys, September 1976, pp. 278-300.

• Cla85 Clarke L. A. and D. J. Richardson, "Applications of Symbolic Evaluation," Journal of Systems
and Software, January 1985, 5 (1), pp.15-35.

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Behavior

Comparison

model/
product

Intent

Analysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Basic Definitions

• Failure-- result that deviates from the expected or
specified intent

• Fault/defect-- a flaw that could cause a failure

• Error -- erroneous belief that might have led to a flaw
that could result in a failure

Behavior

Comparison

model/
product

Intent observed
failure

fault

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Approaches

• Static Analysis
• the static examination of a product or a representation of the
product for the purpose of inferring properties or
characteristics

• Dynamic Analysis
• the "interpretation" of a product or representation of a product
for the purpose of inferring properties or characteristics

• Testing
• the (systematic) selection and subsequent "execution" of
sample inputs from a product's input space in order to infer
information about the product's behavior.

• usually trying to uncover failures
• the most common form of dynamic analysis

• Debugging -- the search for the cause of a failure and
subsequent repair

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Behavior

Comparison

model/
product

Intent

Analysis

inferred

Static Analysis

observed

Dynamic Analysis

inferred

Testing

observed

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Validation and Verification: V&V

• Validation -- techniques for assessing the quality of a
software product

• Verification -- the use of analytic inference to (formally) prove
that a product is consistent with a specification of its intent

• the specification could be a selected property of interest or it
could be a specification of all expected behaviors and qualities

• e.g., provide a user-friendly and efficient ATM system for remotely
depositing funds into and withdrawing funds from a checking or
saving account

• e.g., all deposit transactions for an individual will be completed
before any withdrawal transaction will be initiated

• a form of validation

• usually achieved via some form of static analysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Correctness

• a product is functionally correct if it satisfies all the
functional requirement
specifications
•correctness is a mathematical property

• requires a specification of intent

•specifications are rarely complete

• a product is behaviorally correct if it satisfies all the
specified behavioral requirements
•difficult to prove poorly-quantified qualities such as user-
friendly

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Reliability

• measures the dependability of a product

• the probability that a product will perform as expected

•sometimes stated as a property of time
e.g., mean time to failure

• Reliability vs. Correctness
• reliability is relative, while correctness is absolute

•given a "correct" specification, a correct product is
reliable, but not necessarily vice versa

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Robustness

• behaves "reasonably" even in circumstances that were
not expected

•making a system robust more then doubles development
costs

•a system that is correct may not be robust, and vice
versa

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Formal models

• Analysis is usually done on a model of an artifact

• textual representation of the artifact is translated into a
model that is more amenable to analysis then the
original representation

• the translation may require syntactic and semantic
analysis so that the model is as accurate as possible
• e.g., x:= y + foo.bar

•model must be appropriate for the intended analysis

• graphs are the most common forms of models used

•e.g., abstract syntax graphs, control flow graphs, call
graphs, reachability graphs, Petri nets, program
dependence graphs

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Modeling intent & artifacts

• natural language
• structured natural language
• pictorial notation

• Charts, Diagrams, Box-and-Arrow Charts
• Graphs

• Flowgraphs
• Parse Trees
• Call graphs
• Dataflow graphs

• data models
• formal language(s)

• state-oriented
• function-oriented
• object-oriented

Comparison

model/
product

Intent

observed

inferred

Behavior

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Ideally want general models

• different languages

• e.g., Ada, C++, Java

• different levels of abstraction/detail
• e.g., detailed design, arch. design

• different kinds of artifacts

•e.g., code, designs, requirements

translate textual representations

translator(s) model

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Static analysis

• typically conservative

•never declare a property to be valid if it is not

•usually achieve this by using representations that over-
estimate actual behavior

• the representation depends on the analysis

• AST is a conservative representation for
•determining all the operators in a program

•determining all the locations where X is defined

• CFG is a conservative representation for
•Determining how many loops are in the program

•determining how deeply nested each loop is

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

2 3

65

4

7

1

Conservative analysis in CFG

• For all execution sequences, is P true?
• if P is true for all paths, then P is true
• if P is true for some paths, then P may

be true or false
• Paths where P is not true may not be

feasible

• For some execution sequence, is P
true?

• if P is true for some path, P may be true
or false

• the path where P is true may or may not
be feasible

• Conservative analysis would only say P
is true if is known to be true for all paths

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Example with an infeasible path

X ≥ 0

Y > 0

P ?

P trueP false

1
X ≥ 0

Y := 5

X * Y ≥ 0

2 3

4

5 6

7

Y := X

X < 0

Y < 0

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

x

x
x

x

Dynamic analysis techniques

• draw inferences from a sample
of the problem domain

• how do we choose that subset?

• Fault detection may depend
upon
•Specific combinations of
statements, not just coverage
of those statements

•Astutely selected test data that
reveals the fault, not just test
data that executes the path

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Approaches

•Static Analysis
• Inspections

•Software metrics

•Symbolic execution

•Dependence Analysis

•Data flow analysis

•Software Verification

•Dynamic Analysis
•Assertions

•Error seeding,
mutation testing

•Coverage criteria

•Fault-based testing

•Specification-based
testing

•Object-oriented testing

•Regression testing

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Reviews, Inspections, and Walkthroughs

•Manual static analysis methods

•Most can be applied at any step in the
lifecycle

•Have been shown to improve reliability, but
•often the first thing dropped when time is tight

•labor intensive

•often done informally, no data/history, not
repeatable

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Reviews in the RUP

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Reviews, Inspections, and Walkthroughs

• Formal reviews

•author or one reviewer leads a presentation of the
product

• review is driven by presentation, issues raised

• Walkthroughs
•usually informal reviews of source code

•step-by-step, line-by-line review

• Inspections
• list of criteria drive review

•properties not limited to error correction

•historical context

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Review methods

• Fagan inspections
• formal, multi-stage process
• significant background & preparation
• led by moderator

• Active design reviews
• also called "phased inspections"
• several brief reviews rather than one large review
• guided by questions from the author

• Cleanroom
• more than reviews, but reviews important component
• we’ll come back to this

• N-fold
• parallel reviews controlled by moderator
• focuses on user requirements

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Fagan Inspections (3-5 participants)

• Moderator
• Responsible for organizing, scheduling, distributing materials, and

leading the session
• Author

• Responsible for explaining the product
• Scribe

• Responsible for recording bugs found
• Planner or designer

• Author from a previous step in the software lifecycle
• User representative

• To relate the product to what the user wants
• Peers of the author

• Perhaps more experienced, perhaps less
• Apprentice

• An observer who is there mostly to learn

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Planning

Overview

Preparation

Inspection

Rework &
 Follow-Up

Fagan Inspection Process (5 steps)

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Fagan Inspection Process

• Planning
• Gather materials and insure
that they meet entry criteria

• Arrange for participants,
• assign them roles,

• insure their training

• Arrange meeting

• Overview
• explain content to the
inspectors

• Preparation
• Participants study material

• Inspection
• Find/Report faults (Do not
discuss alternative
solutions)

• Rework
• Author fixes all faults

• Follow-Up
• Team certifies faults fixed
and no new faults
introduced

moderator

author(s)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Fagan Inspection

•General guidelines
•Distribute material ahead of time

•Use a written checklist of what should be
considered
•e.g., functional testing guidelines

•Criticize product, not the author

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Experimental Results

•using software
inspections has
repeatedly been
shown to be cost
effective

• increases front-end
costs
•~15% increase to
development cost

•decreases overall cost

• IBM study
•doubled number of
lines of code produced
per person

• some of this due to
inspection process

•reduced faults by 2/3

• found 60-90% of the
faults

• found faults close to
when they are
introduced

• helps reduce cost

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

P
L
A
N
N
I
N
G

R
E
Q
U
I
R
E
M
E
N
T
S

DESIGN CODING TESTING SHIP

WITHOUT
INSPECTIONS

WITH
INSPECTIONS

SCHEDULE

PEOPLE

 People Resource vs. Schedule

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Why are inspections effective

• knowing the product will be scrutinized causes
developers to produce a better product

• having others scrutinize a product increases the
probability that faults will be found

• walkthroughs and reviews are not as formal as
inspections, but appear to also be effective
•hard to get empirical results

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

What are the deficiencies?

• focus on error detection
• what about other "ilities" --
maintenance, portability,
etc.

• not applied consistently
& rigorously

• inspection shows statistical
improvement, but cannot
ensure quality

• inspection should have the
same results without regard
to the product to which it is
applied or the inspection
team

• range of errors not
addressed

• team expertise limited
• one property may have
many error modalities

• human intensive and
often makes ineffective
use of human resources
• e.g., skilled software
engineer reviewing coding
standards, comments
spelling, etc.

• no automated support
• again inefficient of human
resources

• aspects of review not
used appropriately
• e.g., in Fagan process,
overview often covers what
should be described if
documentation is adequate

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Measures of Operational Performance

Quality Certification
Model

Customer
RequirementsCustomer
Requirements

Specification

Function Usage

Usage Modeling
Test Case Generation

Box Structure
Specification & Design

Correctness Verification

Statistical Testing

Incremental
Development

Planning

Incremental
Development

Planning

Usage SpecificationFunctional Specification

Incremental
Development Plan

Source Code Test Cases

Failure Data

Improvement Feedback

Processes
Work Products

Cleanroom

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

[f]
do
 [g]
 [h]
od

For all
inputs, does
[g] followed
by [h] do
[f]?

Cleanroom
• Verification as Review Process

• team verification of correctness
takes the place of individual unit
testing; correctness is established
by group consensus if it is
obvious

• by formal proof techniques if it is
not.

• benefits
• intellectual control of the process
• motivates developers to deliver

error-free code
• verification is a form of peer review
• each person assumes

responsibility for and derives a
sense of ownership in the evolving
product

• every person must agree that the
work is correct before it is
accepted -> successes are
ultimately team successes, and
failures are team failures.

• Markov Analysis
• Factors

• number of statistically typical (i.e.,
likely) usage paths through the
software

• Steps
• focus verification efforts,
• identify the likelihood of given

events,
• project the test schedule, and
• ascertain the (affordable) upper

bound on inferences about
reliability

• Stopping Criterion for Testing
• goals (e.g., target level of

estimated reliability) are achieved
• or quality standards (e.g.,

errors/KLOC) are violated

Invocation Main Menu Termination

Display

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Generation of Test Cases
• usage model->test cases

• may be automatically generated.

• each test case is a random walk through the usage model
• invocation->termination

• test cases constitute a "script" for use in testing
• may be applied by human testers, or used as input to an automated test tool.

• Stopping Criterion for Testing
• goals (e.g., target level of estimated reliability) are achieved
• or quality standards (e.g., errors/KLOC) are violated

• Statistical Hypothesis Testing

69054603299323020.999

6884592992300.99

1359059450.95

664429220.9

99.9999590
Confidence level (%)

Reliability
level (r)

%r

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Software Metrics

• measures that predict qualities about software
• can be applied to any of the products (e.g., design, code,
test cases) or to the process (e.g., Capability Maturity
Model)

• Qualities measured by software metrics
• performance
• user-friendliness
• resources

• memory/storage
• development costs
• maintenance cost

• quality
• maintainabity
• reliability
• completeness
• consistency
• complexity

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 18

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Function Points

• proposed by Albrecht in 1979
• Originally applied to code

• UFP =
 number of inputs x w1 +
 number of outputs x w2 +
 number of user inquiries x w3 +
 number of files x w4 +
 number of external references x w5

• function points = UFP* TCA = UFP* (.65 + 0.01 * SUM(Fi))
• where the degree of influence, DI= SUM(Fi) is the sum of
complexity adjustment values, Fi

• metrics:
• productivity: FP/person-month
• quality: defects/FP
• cost: $/FP

• weights:
 Simple Average Complex
w1 3 4 6
w2 3 5 7
w3 3 4 6
w4 7 10 15
w5 5 7 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

More Quality Metrics

• Modularity

•cohesion metric
• applied to unit design

• the relationship among the elements of a module

• best cohesion level is functional, and the worst is
coincidental.

•Cruickshank and Gaffney Cohesion Strength
Strength = √(X2 + Y2)

• where:
• X = reciprocal of the number of assignment statements in
the module

• Y = number of unique function outputs divided by number of
unique function inputs

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 19

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

More Quality Metrics

• Modularity
• coupling

• applied to system and unit designs
• measure of the degree to which modules share data
• data coupling (the sharing of data via parameter lists)

is the best type of coupling, while common coupling
(the sharing of data via global or common areas) is
the worst.

• a lower coupling value is better.

• Cruickshank and Gaffney Coupling:
• Mj = sum of the number of input and output items

shared between components i & j
• Zi = average number of input and output items shared

over m components with component i
• n = number of components in the software product

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

McCabe’s cyclomatic complexity

•Complexity measured by control flow information
•based on a control flow graph where e is number of
edges, n is number of nodes, p is number of
connected components

•McCabe’s Cyclomatic Complexity:
•v = e - n + 2

• where:
• v = complexity of the graph
• e = number of edges (program flows between nodes)
• n = number of nodes (sequential groups of program
statements)

• if a strongly connected graph is constructed (one in
which there is an edge between the exit node and
entry node), the calculation is

•v = e - n + 1

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 20

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

n = 8
e = 10
p = 1

C = 10 - 8 + 2 = 4

Example

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Software Science

• Halstead applied information theory to computer science
• metrics

 n1 number of distinct operators

 n2 number of distinct operands

N1 total number of occurrences of operators

N2 total number of occurrences of operands

• program level estimator
 D = 1 /L = (n1 /2) (N2 / n2)

 L = 1/ D = (2/n1)(n2 / N2)
 difficulty increases as operators are introduced (n1 /2 increases) and as

operands are used repetitively (N2 / n2 increases)

• programming time
 T = E /S
 where S is the “Stroud number”

 5 ≤ S ≤ 20, usually 18

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 21

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Software Science (continued)

• language level

 λ = L x V* = L2V*
 λPL/1 = 1.53, λAlgol = 1.21,

 λFortran = 1.14, λCDC assmblr = 0.88

• predicted effort

 E =V*3/ λ2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Quality Metrics for Code

• Understandability

•size metrics
• lines of code

• function points

• function count

• traceability metrics
• number of comment lines per total source lines of code

• percent comment lines of total lines

• correctness of comments

• Predicting quality
•LOC X domain seems to be the most reliable predictor

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 22

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Behavior

Comparison

model/
product

Intent

Analysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Basic Verification Strategy

• analyze a system for desired properties, i.e., compare
behavior to intent

• intent
• can be expressed as properties of a model

• can be expressed as formulas in mathematical logic

•behavior
• can be observed as software executes

• can be inferred from a model

• can be expressed as formulas in mathematical logic

•different representations support different sorts of
inferences

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 23

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Compare behavior to intent

• comparison can be informal

•done by human eye, e.g., inspection

• can be done by computers
• comparing text strings

• can be done by model-checkers

•such as formal machines (e.g., fsa's)

• can be done by rigorous mathematical reasoning

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Example: Dataflow Analysis

• intent:

•stated as a property

•captured as an event sequence

• behavior:
•model represents some execution characteristics

• inferred from a model: (e.g., annotated flow graph)

• inferences based upon:
• semantics of flow graph

• semantics captured by annotations

• comparison:
•done by a fsa (e.g., a property automaton)

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 24

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Comparison

Intent

model

1 2

open

close
dfa defined by
Cecil constraint

“property” = Cecil constraint

if dfa accepts all traces then the
constraint holds for all computations

1

6

5

43

2

trace = computation
along path in an annotated
dataflow graph

Data FlowAnalysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Data Flow Analysis (DFA)

• Uses an annotated control flow graph model of the program
• Compute facts for each node
• Use the flow in the graph to compute facts about the whole
program

• DFA used extensively in program optimization, e.g.,
• determine if a definition is dead (and can be removed)
• determine if a variable always has a constant value
• determine if an assertion is always true and can be removed

• Some Dataflow systems
• DAVE system demonstrated the ability to find def/ref
anomalies

• Cecil/Cesar system demonstrated the ability to prove general
user-specified properties

• FLAVERS demonstrated applicability to concurrent system

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 25

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Data flow analysis

• computes information that is true at each node in the
CFG, e.g.,

• what variables are defined

• what variables are referenced

• usually stored in sets

• ref(n) is the set of variables referenced at node n

• uses this local information and the control flow graph to
compute global information about the whole program

• done incrementally by looking at each node’s
successors or predecessors

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

detect and
eliminate redundancy

code optimization
scalar

parallel vector

anomaly detection

program
understanding

test data selection

 verification won’t talk about this

Data Flow Analysis

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 26

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

;
;

;
;

;
;

;
;

;
;

;
;
;

;
;

;

if ...
 then ...

 else ...

endif;

;
;

;
;

;

;
;

;

;
;

;
;

;

;
;

;

;
;

;
;

;

;
;

;

;
;

;
;

;

;
;

;

;
;

;
;

;

;
;

;

;
;

;
;

;

;
;

;

single-entry,
single-exit

in-line code
blocks

•compute what is true
at each node

•what variables are
defined

•what variables are
referenced

•stored in sets
•ref(n) is the set of
variables referenced
at node n

•use local information
and the control flow
graph to compute
global information
incrementally by
looking at each
node’s successors or
predecessors

def={y}

def={x}
ref={y}

DFA

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Def-ref path expressions

• for a path P and a variable α
can write a path expression
describing the sequence of
set memberships
encountered for a, where
•α ∈ def (n) or

•α ∈ ref(n) or

•α ∈ null (n)

• for each node n on the path

• write (and simplify) a path
expression
•P(n1, n1, …, n1; α)

α ∈ def(1)

α ∈ null(2)

α ∈ null(3)

α ∈ ref(4) 4

3

2

P(1,2,3,4; α) = d11r = dr

1

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 27

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

unreferenced
definition

Anomalous pairs of ref/defs

d - defined, r - referenced, u - undefined

 dd bug? du bug?

 dr normal ud normal

 uu harmless? rr normal

 rd normal ru normal

 ur bug undefined
reference

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Consider unreferenced definition

• Want to know if a def is not going to be referenced

•dd or du

• At the point of a definition of a, want to know if there is
some path where a is defined or undefined before being
used

•May be indicative of a problem if the path is executable

•Usually just a programming convenience and not a
problem

• At the point of a definition of a, want to know if on all
paths a is defined or undefined before being used

•May be indicative of a problem

•Or could just be wasteful

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 28

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

global dataflow analysis

• classes

• forward flow problems (e.g., available expressions)
• what definitions can affect computations at a given point in
a program

•backward flow problems (e.g., live variables)
• what uses that follow a given point in the program can be
affected by computations up to that point

• paths

•any path

•all path

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

x = 3

y = x + 2

if(x > 0)

x = x + y

y:= …

Forward flow,
all paths problem

()int x,y;
...
x := 3;
y := x + 2;
if x > 0 then
 x := x + y;
end if;
y:= …

(unreferenced defs)

(x)

(x)

(y)

(y)

(y)

(y)

Need to look
at each node
where there
is a def

All()

(x)

Some (x,y)

(y)

Unreferenced definitions

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 29

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

top (n)

y:= …

bot(n)

In(n)

In(n)Out(n)

Out(n)

Forward
flow

Backward
flow

gen(n), kill(n),
 null(n)

Ini := Merge (Outj)

Ini := Merge (Outj)

General Approach

• Initial values

• for each node define gen
and kill information

• Input Equations
• for each node we have an
equation of the form:
 Ini := Merge (Outj)

• “Merge” operation over
the “predecessors” of ni

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

top (n)

y:= …

bot(n)

In(n)

In(n)Out(n)

Out(n)

Forward
flow

Backward
flow

gen(n), kill(n),
 null(n)

Outi := fi(Ini)

Outi := fi(Ini)

General Approach

• Transfer Equations
• for each node we have
an equation of the form:
Outi := fi(Ini)

• Transfer functions
usually depend on
Gen/Kill information that
is computed for each
node

• Usually:
 Out := (In - kill)U gen

• We can view the set of
variables, transfer
functions, and flow graph
as a system of equations

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 30

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

worklist algorithm
1. Start at initial node (entry for forward; exit for

reverse), label IN0 with pertinent “facts” (initial
values)

2. Compute OUT0 = F(IN0) (label OUT0 with the
computed facts)

3. Propagate OUT0 to INi (label edge No⇒Ni with
OUT0) where Ni are successor nodes (forward)
or predecessor nodes (reverse) of N0

4. Compute OUTi = F(INi), place all Ni on a
“worklist” W, and for all Ni label OUTi with the
computed facts.

5. While W is not empty,
1. pick Ni from W and propagate OUTi to INk (label

edges Ni⇒Nk with OUTi) where Nk are successor
nodes (forward) or predecessor nodes (reverse)
for Ni ; delete Ni from W

2. Compute OUTi = F(INk) for all Nk where
INk=MERGE all input edge labels (MERGE = ∪
for “some paths” and ∩ for “all paths”), label
OUTk with the computed facts); and if for Nk,
OUTk changes put Nk, on W’

6. If W’ is not empty, then W=W’ and go to 5

x = 3

y = x + 2

if(x > 0)

x = x + y

initial values
= empty

0

2

3

4

W ={1,2 }

W ={3}

W ={4}

{ }

{x}

{x}
{x,y}
{x,y}

{ }

{ }

{x,y}}{ }

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Using Quantified Regular Expressions

• Alphabet, quantification,
regular expression

• For the events {open,
close, move}

show that for all paths:
 ((close v move)*,

 (open+ v open+,close))*

0

1

2

close

close
move

open

open

move
close
open
move

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 31

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Cecil: Olender and Osterweil

• Instead of implicitly defined facts, let the user define application-
specific facts

• Represented as a Deterministic Finite State Automaton (DFSA) or as
a Quantified Regular Expression (QRE)

• Events
• Recognizable events
• Method calls

• Can reason about sequences of method calls
• E.g.,Push must be called before Pop

• Thread interactions
• Join or Fork

• Arbitrary operations
• a+b

• Need to be able to treat events as indivisible actions
• E.g., can treat pop and push as atomic as long as they do not contain any events of concern

• Propagate the states in the DFSA that can reach each node in the
program

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

State Propagation

• States of the property are propagated through the CFG

• The property is proved if only accepting (non-accepting)
states are contained in the final node of the CFG

•Cecil DFSA ->

 lattice (P(S), ⊂, ∪)
 function space

 δ : P(S) → P(S)

 facts at nodes are elements of P(S)
•propagate until convergence and check if terminal node
in an accepting state of DFSA

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 32

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Elevator Controller
void main()
{
…

1: if (elevatorStopped)
{...

3: openDoors();
}
...

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

1: if (elevatorStopped)
 {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

•States of the property are
propagated through the CFG
•For an all property: the
property is proved if only
accepting states are contained
in the final node of the CFG
•For a none property: the
property is proved if only non-
accepting states are contained
in the final node of the CFG

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

1: if (elevatorStopped)
 {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

0

1

2

close

close
move

open

open

move
close
open
move

State propagation

Worklist:

initial state

<0>

3 5

<1> <0,1>

union
<0,1>

7 9

<0>

<0,2>

<0,1>

CMPSCI520/620 Analysis Overview

Rick Adrion 2004 (except where noted) 33

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

1: if (elevatorStopped)
 {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

0

1

2

close

close
move

open

open

move
close
open
move

State propagation

<0>

<0>

1: if (elevatorStopped)
 {...

3: openDoors();
}

<0,2>

<0,1>

9: moveToNextFloor();
}

<0,1>

<0,1>

5: if (elevatorStopped)
{...

<1>

