CMPSCI 520/620 Fall 2004 Design & Construction

CONMITER 20 - Design & Implementation CONrTH So Where Are We?
»Readings: @)
° XP 5 Architectural Architectural Describe Describe F:ev?wthe Af%m
«Extreme Programming Explained, Kent Beck Addison i o o / e
Wesley 1999
eRefactoring: Improving the Design of Existing Code, \ F (
Martin Fowler, Addison Wesley 1999 o ../ __. O
« http://www.extremeprogramming.org /] e S e g
« http://www.xp2001.org S Design Reviewer
*AOP Decgn
-A§pect-0riented Programmirjg wi.th A§pectJ T""'Erik o) AN
Hilsdale, Gregor Kiczales (with Bill Griswold, Jim D e
Hugunin, Wes Isberg, Mik Kersten), Do e

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;.B

UNIVERSITY:OF'MASSACHUSETTS AMHERST: "

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

CoNriTH Strategy - where are we?

* made an initial attempt at defining the architecture
« defined the major elements of our system
« the subsystems, their interfaces, the design classes, the processes
and threads
« relationships & how these elements map into the hardware on which
the system will run.
* Now, concentrate on
« making sure that there is consistency from beginning to end of use
case implementation, i.e., that nothing has been missed (i.e., this is
where we make sure that what we have done in the previous design
activities is consistent with regards to the use case implementation).
* we do some Use Case Design before Subsystem Design
« Subsystem Design, Class Design and Use Case Design activities
are tightly bound and tend to alternate between one another.

UNIVERSITY:OF'MASSACHUSETTS AMHERST: "

COMPUTER

Design Element Interactions
SCIENCE (Register For Courses - Set-Up)

/‘ \ : MainStuden| : Maintain : Registratiol
: Student Form ScheduleFon Controller

1; registerForCourses()

2: open()

: new(SecureUser)

4: lookup("RemoteR

ClientSchedulg| : Naming | : RemoteRegistrati : ICourse
: Schedule Controller Catalog

No Conflict™
degistrationController")

5: sef

Session(SecureUser)

6: selectCurriculum()

~

- getOfferings(curriculum)

8: gel

tOfferings(curriculum)

10: displayOfferings()

; 11: new(Student)

12: displaySchedule()

UNIVERSITY.OF MASSACHUSETTS AMHERST:

9: getQfferings(curriculum

, semester)

Give current yser conte;
wide open ac¢ess

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

OMPUTER

clENeE Design Classes Relatiogships COMPUTER

SSCIENGE Deployment
: % Subsystem Interface

: MainStuden| : Maintain : Registration |ClientSchedule| : Naming | : RemoteRegistratio : ICourse
: Student Form ScheduleForm | _Controller : Schedule Controller Catalog

1; registerForCourses()

= e e
[ohetie [|

Register for Courses

2: open()

: new(SecureUser)

4: lookup("RemoteRegi: ionController")

5: ion(SecureUser)
0.1

6: selectCurriculum()

<<boundary>> 7: getOfferings(curriculum)
MaintainScheduleForm Z <control>> ‘ — b : :
RegistrationController RemoteRegistrationController 8: getOfferings(curriculum)
displayOfferings() | v 1 fien

1
selectCurriculum() : Curriculum g8

9: getQfferings(curriculum;, semester)
selectOffering() : CourseOffering

on(offering : CourseOffering) |+ getOfferings(curriculum) 10: displayOfferings()

| R + notifyOfferingSelection(offering : CourseOffering)
e ol ule) + saveSchedule(theSchedule : Schedule) 11: new(Student)
update(changeditem : ISubject) cancelSchedule(sched : Schedule) 4) Works similar to Observer.
displaySchedule() 12: diplaySchedule() E:g?)% (\:gllr 1g}éf\¥eghen Coufse

View of Participating Classes (VOPC) diagram.]
UNIVERSITY. OF MASSACHUSETTS ANHERST 3 DEPARTMENT.OF COMPYITE!

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH - DEPARTMENT:OE G OMPUT]

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

COMPITE More steps

Script — describe the details

surrounding these

UNIVERSITY-OFMASSACHUSETTS AMHERS

: Actor1

Scripts can be used to |

=4

 1: Do Something

2:

¢ Annotate the sequence diagrams

:iDo Something Mgré

i [Notes can inclu

e

more information

Note———»|about a particular

diagram element

e Unify classes & subsystems
emerge similar model elements
euse inheritance to abstract model elements

s |

Copyright Rick Adrion 2004, except as noted

COMPUTER
SCIENCE

So Where Are We?

o
L]

Architect

Architectural
Analysis

Architectural Describe Describe Review the Architecture
Design C Distributi i Reviewer

Qo

Designer

Use-Case
Analysis

/
A

Design Design
Reviewer

Subsystem
Design

Use-Case
Design

Class
Design

Database
Designer

Database
Design

UNIVERSITY.:OF MASSACHUSETTS ANH

CMPSCI 520/620 Fall 2004 Design & Construction

CoNriTH Strategy -- where are we?

« have defined subsystems, their interfaces, and their

simplicity, we treat as a ‘black box’

allocated to subsystems
e need to flesh-out the details of the internal interactions
*what classes exist in the subsystem to support?

*how do they collaborate to support, the responsibilities
documented in the subsystem interfaces?

needed to implement those responsibilities, refining
subsystem dependencies, as needed. The internal

possibly other components or subsystems

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3 +DER

Copyright Rick Adrion 2004, except as noted

dependencies as “containers” of complex behavior that, for

*made an initial cut at some design classes, which have been

«In Subsystem Design, we look at the responsibilities of the
subsystems in detail, defining and refining the classes that are

interactions are expressed as collaborations of classes and

FMEUTER Strategy

*need to do some Use Case Design before Subsystem
Design
« after Analysis and Architectural Design
eusually only have sketchy notions of responsibilities of
classes and subsystems

edetails need to get worked out in Use Case Design,
before one is really ready to design the classes and
subsystems
*Reminder: there is frequent iteration between Use Case
Design, Subsystem Design and Class Design.

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DE!

CMPSCI 520/620 Fall 2004 Design & Construction

CoNriT Subsystem Design Overview

Use-Case Realization

Design Subgystems and Intekfaces

\I Use Case Realization

UNIVERSITY:OF'MASSACHUSETTS AMHERST:

Copyright Rick Adrion 2004, except as noted

Design Classes

CONPTE Interface and Subsystem

*What is an interface?

*a model element which defines a set of behaviors (a set
of operations) offered by a classifier model element
(specifically, a class, subsystem or component)

*What is a subsystem?
Contains other model elements and has behavior

*Realizes one or more interfaces —

<<Interface>>
FinancialTransaction

j <<subsystem>>

realizes Finance System

<<subsystem>>

O_ Finance System

Financial
Transaction

Recall: packages provide no behavior; they are simply containers of things which
provide behavior

UNIVERSITY.OF MASSACHUSETTS AMHERST:

CMPSCI 520/620 Fall 2004 Design & Construction

COMPUTER ~: ... T COMPUTER :
seience Distribute Subsystem Responsibilities seinee Subsystem design
% Subsystem Interface
i icti /
° ldentlfy or reuse eXIStIng Classes and/or SUbSyStemS :MainStudenF : Maintain :Re?istratioﬂ(ClientSchedulg| : Naming | : RemoteRegistrati : ICourse
. F ScheduleF Controll : Scheduls Controll Catals
» Allocate subsystem responsibilities to classes and/or St) B v
subsystems 2: open() Flesw
: new(SecureUser)
° lncorporate the a_pp“?able meChanlSmS (eg’ 4: Iookup("RemoteRegistrationController")
peI’SIStence, dlStrlbUt|On s etC.) 5: setSession(SecureUser)
. . @ . . » 6: selectCurriculum()
* Document collaborations with “interface realization -) j
. 7: getOfferings(curriculum)
dlagrams 8: getOfferings(curriculum)
«1 or more sequence diagrams per interface operation 10: displayOferings() §: gelClfernge{ouriouug, semester)
¢ Revisit Architectural Design < 41 newstugeny
« Adjust subsystem boundaries and/or dependencies, as 12: displaySchedule()
needed

UNIVERSITY: OF MASSACHUSETTS AMHERST: $41

UNIVERSITY.OF MASSACHUSETTS AMHERST:

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

scienee Local Subsystem Interaction seieice Document Subsystem Elements
CourseCatal : CourseCataloF : DBCpurs% : Course ||: RDBMSTransaction| H : sql ” B}urseoffe in RDBMSTransaction
Client__ Offerin Offering List C_reate one or mpre class (fom RelationalDEMS)
untypelt object diagrams showing the
1: getCourseOfferings(strin: no time to discuss DB i +start().
g gs(string) becaude we don't care Hosig elements contalned_by the o[commit
s who the client is. subsystem, and their e ;c)el‘llla(a)ck()
The string represents e . ot ; <<utility>>
some criteria. % 2: new associations with one 1 \ ol
Sometimes a more * *|(from Relatior 1S)
robust solution with 3: start() . \ another <65UbSYS‘etml> DBCourseOfferin -
a query object is -1 4: startTrans(O— ourseCatalog s oferinds0 : bind() 0
Tt ings(stri etCourseOfferingsf execsq|
used. 5: getCourseOfferings(string) 6: new() ICourseCatalog + getOfferings() ! LN garseResults() + startTra(r;S()
hi ~o + commit(
6: bind(A 1 +fetch()
Sl * +endT
7: execsq|(String) = \/ P‘:: endTrans()
Do until fet T <<entity>>
returns Not @ule values - 8: feteh() RDBMS List CourseOffering
Found status from raw{data i IS (from University Aftifacts)
-9: parseResults() Retrieve (from Base Reuse)
= + getCourseld() .
+ addStudent() A state diagram may be
10: new(offeringld, number, startTime, iendTime, days, courseld <<bind>> + new
(offering v) <CourspOrfering i getN(l).lmber() need(le)(lj to document the
"""" . : —+ getStartTime(i
. e E— _11: add (CourseOffering) T getEndTime()) possible states the
Cou rsecatalog Int‘eractlon 12: commit() CourseOfferingL{st™ + getDays() subsystem can assume
« R i . ! 13: entTrans(/ (from University Artifacts) + getNumStudents()
*“looks inside” the subsystem : Lepn;g;/ee()student()
one or more per subsystem M

UNIVERSITY OFMASSACHUSETTS AMHERS UNIVERSITY.OF MASSACHUSETTS AMHERST:

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

CONrTH Describe Subsystem Dependencies COMPOTER

seience Describe Subsystem Dependencies

* Subsystem layering using direct dependency

<<subsystem>> <<subsystem>> <<subsystem>>
Client Support ------------ > Server Support Not Registration ICourseCatalog CourseCatalog
recommended
* Subsystem layering using interface dependency
]] *‘ %
<<subsystem>> <<subsystem>>
Client Support |- ----oooooooo @7 Server Support University “
Artifacts
Server More *‘ .
flexible =
Client <<Interface>> RelationalDBMS
(from Client Support) ~ f=-==-==-==--=-~- >| Server

UNIVERSITY:OF'MASSACHUSETTS AMHERST:

UNIVERSITY.OF MASSACHUSETTS AMHERST:

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

COMPUTER
®SCIENCE

Implementation

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPAE:{E["

Copyright Rick Adrion 2004, except as noted

COMPITE! XP Practices

*The Planning Game.

*Small Releases.
*Metaphor.
*Simple Design.
e Testing.
eRefactoring.

UNIVERSITY.:OF MASSACHUSETTS AMHERST

ePair Programming.
Collective Ownership.

eContinuous
Integration.

*40-Hours a Week.
*On-Site Customer.
¢Coding Standards.

10

CMPSCI 520/620 Fall 2004 Design & Construction

COMPITE XP Practices

e The Planning Game

e customers and developers cooperate to produce the
maximum business value as rapidly as possible.

e planning game happens at various scales, but the basic rules
are pretty much the same:

« customer comes up with a list of desired features for the system written out
as a User Story, which gives the feature a name, and describes, broadly,
what is required.

« developer estimates how much effort each story will take, and how much
effort the team can produce in a given time interval (an iteration).

« customer decides which stories to implement in what order, as well as
when and how often to produce a production releases of the system.

* Small Releases

« start with the smallest useful feature set
e release early and often, adding a few features each time
e each iteration ends in a release

UNIVERSITY: OF MASSACHUSETTS AMHERST: ~+DERA}

Copyright Rick Adrion 2004, except as noted

COMPITE! XP Practices

* System Metaphor

eeach project has an organizing metaphor, which
provides an easy to remember naming convention.

«the names should be derived from the vocabulary of the
problem and solution domains

e Simple Design
ealways use the simplest possible design that gets the job
done.

ethe requirements will change tomorrow, so only do
what's needed to meet today's requirements.

suses the fewest number of classes and methods

UNIVERSITY.:OF MASSACHUSETTS AMHERSTH2DE!

11

CMPSCI 520/620 Fall 2004 Design & Construction

CoMriTH Continuous Testing

« before programmers add a feature, they write a test for it.
when the suite runs, the job is done.
» Unit Testing
« unit tests are automated tests written by the developers to test functionality
as they write it.
« each unit test typically tests only a single class, or a small cluster of
classes.
« unit tests are typically written using a unit testing framework (e.g., junit,
parasoft).
 Acceptance Testing
« acceptance tests (functional tests) are specified by the customer to test
that the overall system is functioning as specified. they typically test the
entire system, or some large part.
« when all the acceptance tests pass for a given user story, that story is
considered complete.
« at the very least, an acceptance test could consist of a script of user
interface actions and expected results that a human can run.
« ideally acceptance tests should be automated, either using a unit testing
framework, or a separate acceptance testing framework.

UNIVERSITY OFMASSACHUSETTS AMHERST: S XDERA

Copyright Rick Adrion 2004, except as noted

COMPITE! XP Practices

 Refactoring

« purpose is to improve the design of the code for greater
comprehension, preparation for added features, ease of maintenance,
etc. without changing behavior

« refactorings include extracting methods, moving methods in an
inheritance hierarchy, etc.

« unit tests allows this to occur without danger

UNIVERSITY OF MASSACHUSETTS AMHERSTH - DEPAR

12

CMPSCI 520/620 Fall 2004 Design & Construction

CONMTH Refactoring

*Why?
« cost of software change becomes higher when done late in
process.

¢ good design must anticipate future change. Makes design too
complex.

e design should evolve.
« Strategy

« disciplined technique for restructuring an existing body of
code.

e alter structure, behavior unchanged.
« series of small behavior preserving transformations.
« each refactoring is small, less likely to go wrong.
 system kept working after each step.

* Fowler’s catalog of common refactorings
e many refactorings can be automated
* some tools help the refactoring process..

UNIVERSITY OFMASSACHUSETTS AMHERST: S XDERA

Copyright Rick Adrion 2004, except as noted

COMPITE! XP Practices

 Pair Programming

e all production code is written by two programmers sitting
at one machine; essentially, all code is reviewed as it is
written.

*Helm — at keyboard and mouse doing implementation

« Tactician — thinking about the implications and possible
problems

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPA@[:i

13

CMPSCI 520/620 Fall 2004 Design & Construction

it XP Project

Extreme Programming Project

TestScenarios

Mew User Story

User Stories)
Requirerments Froject Yelocity Bugs

. System Releasze Latest
f'imchltv._’.ctura]Metaphor Relegse Plan -}Iterati0n ot
ests

Spike — " Planning

Uneertain Confident
Estimates Estimates

Spike

UNIVERSITYOF MASSACHUSETI'S!:\:

Copyright Rick Adrion 2004, except as noted

Custorner
|version_Acceptance approval . Small
T

Releases

it XP Project

Iteration
New User Story,
Release Project Velocity
Plan)
Yser Staries Unfinished Tasks Learn and
Communicate
Froiect e
rojec . Iteration Functionality
Next welocity Tteration Flan Devel ——— —aLatest
Tteration Planning evelopment _ sugFixes v v7ergion
Failed Acceptance
Tests Day by Day
Bugs

UNIVERSITY.:OF MASSACHUSETI'S;

14

CMPSCI 520/620 Fall 2004 Design & Construction

COMPITE XP Practices

¢ Collective Code Ownership

¢ no single person "owns" a
module

 any developer is expect to be
able to work on any part of the
code base at any time

« improvement of existing code
can happen at anytime by any
pair

« Continuous Integration

« all changes are integrated into
the code base at least daily

« the tests have to run 100%
both before and after
integration.

UNIVERSITY OFMASSACHUSETTS AMHERS

¢ 40-Hour Work Week

e programmers go home on time.
in crunch mode, up to one
week of overtime is allowed.

* multiple consecutive weeks of
overtime are treated as a sign
that something is very wrong
with the process.

* On-Site Customer

« development team has
continuous access to a real
live customer, that is,
someone who will actually be
using the system.

« for commercial software with
lots of customers, a customer
proxy (usually the product
manager) is used instead

Copyright Rick Adrion 2004, except as noted

U XP Project

Development
Learn and
Communicate
Unfinished Pair Programming
Tteration Tasks Refactor Mercilessly New
Plan Too Much Move People Around . .
Tasks To D Share CRC Cards Functionality
. 100% Unit
Stand Up Collective Tests Passgllj
Meetinge MextTask Code O hi
Failed Acceptance 3 ar Failed ode Uwnership
TEV' Acceptance Test Acceptance
Test Passed 1
Day by Day Bug Fixes

UNIVERSITY.:OF MASSACHUSETTS AMHERS

15

CMPSCI 520/620 Fall 2004 Design & Construction

COMPUTER

science XP PrOjeCt

Collective Code Ownership

UNIVERSITY.OF'MASSACHUSETTS AMHERS

Copyright Rick Adrion 2004, except as noted

CRC Move People
Around 100%
Cards Unit
Sirmple
Design 2 il Change Wa Tests
i Pair| |Meed Passed
Problem Help
Fallad Ruh Al Unit
Next Task par (pepte Uit) Ngrw;nit Tesis
or Failed ___Up Uni est Pair _®5 _Continuous |Run
a Unit +—— J—) Failed
Acceptance Test TJSnSnE Programmmg MHew Integratlon Acceptance
Test Test Functionality Test
Simple Complex
Code| | Code
Acceptance
Test
Refgctor Passed
Mercilessly

COMPUTER

science EXtreme Programming

ean example of an agile process
e short-term emphasis

«frequent releases, no pre-design, task lists, metaphors
e customer oriented

estories, use-cases, on-site customers, feature
negotiation
s contributions

e pair-programming, test-first
 applicability

enew, high-risk, small-to-medium projects

UNIVERSITY.:OF MASSACHUSETTS: AMHER%

16

CMPSCI 520/620 Fall 2004 Design & Construction

PG Design by Contract

¢ Originated by Bertram Meyer (Eiffel)

eIncorporated in others methods (e.g., JML) and tools
(e.g. Parasoft)

* methodology for evolving code together with its
specification.
e classes define their responsibility precisely.

e class invariants, method preconditions and
postconditions.

e compiler instruments code to monitor.

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3 +DER

Copyright Rick Adrion 2004, except as noted

COMPITE Preconditions and postconditions

Class to client: “If you promise to call r with pre satisfied, then |
promise to deliver a final state in which post is satisfied ...”

¢ A method’s precondition

e says what must be true to call it, l.e., what must hold upon
entry to method

* binds the client.
¢ A method’s normal postcondition
*method guarantees it will hold upon exit
*what is true when it returns normally (i.e., without throwing an
exception).
* A method’s exceptional postcondition
*what is true when a method throws an exception.
/1@ signals (lllegalArgumentException e) x < 0;
¢ Class Invariants
 Global properties of a class.
* Must be preserved by all exported routines.

UNIVERSITY.:OF MASSACHUSETTS AMHERST S “DER)

17

CMPSCI 520/620 Fall 2004 Design & Construction

oM DBC COMPITE! Contracts and inheritance

* The role of a contract Methodological implications of contracts on inheritance:
* may monitor at run time - debugging tool. eInvariants and postconditions may only be strengthened,;

« eiffel - by the compiler. .
« other languages - specific tools. *Preconditions may only be weakened.

« conceptual tool for correctness and robustness. « Eiffel enforces this principle..
e design aid.
e aid to understanding
* documentation
e advantages
« clear responsibility for checking.
e run time violation shows a bug:
« Precondition violation -- bug in client.
 Postcondition violation -- bug in supplier.
« simplify code
* method need not check precondition.
« If precondition is not satisfied, do anything

UNIVERSITY OFMASSACHUSETTS AMHERST: S $DER, UNIVERSITY OF MASSACHUSETTS AMHERST - DEPAE

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

e Aspect-oriented programming

* AOP compliments O-O programming, but doesn’t
replace it
the problem
esome programming tasks cannot be neatly encapsulated
in objects, but must be scattered throughout the code
eexamples:
¢ logging (tracking program behavior to a file)
« profiling (determining where a program spends its time)
e tracing (determining what methods are called when)
e session tracking, session expiration
e special security management

ethe result is crosscutting code--the necessary code
“cuts across” many different classes and methods

UNIVERSITY OFMASSACHUSETTS AMHERST: S XDERA

Copyright Rick Adrion 2004, except as noted

CONPUTER Some examples

public class SomeBusinessClass extends OtherBusinessClass

{

// Core data members

// Override methods in the base class

public void
performSomeOperation(OperationInformation info)

// ==== Perform the core operation ====
[}

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPA@[:i

19

CMPSCI 520/620 Fall 2004 Design & Construction

CoNriTH Breaking modularity

 Got the picture ?

¢ Non-modularization due to
client-server nature of
OOoP

« Current popular solution

EJB, servlets, dynamic
proxies

Impleme ntation
Modules

5 Logging

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPAE:{E[;

Copyright Rick Adrion 2004, except as noted

CONrTEE modularity

intuitive definition
a concern is implemented’
in a modular way if the
code for the concern is:
e localized and

e has a clear interface
with the rest of the system

" coded, designed, modeled ...

code from org.apache.tomcat

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPA'E

xml parsing

url pattern matching

logging

=] =

20

CMPSCI 520/620 Fall 2004 Design & Construction

c!'QMI}I;lEIJIE:IE‘ session expiration is not modularized... chMI}I;lEIIIIE}IE‘ Non-modularization

e Symptoms
* Code tangling
¢ Code scattering
 Duplicated code blocks
« Complementary code blocks
« Consequences
* Redundant code
« Same fragment of code in many places
« Difficult to reason about
« Non-explicit structure
« The big picture of the tangling isn’t clear
« Difficult to change
« Have to find all the code involved...
e ...and be sure to change it consistently
e ...and be sure not to break it by accident
« Inefficient when crosscuting code is not needed

ServerSession
ServerSessionManager

UNIVERSITY.OF MASSACHUSETTS AMHERST: S DERARTVEN] UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPARTMElfs:l

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

COtENer If we just could...

UNIVERSITY OFMASSACHUSETTS AMHERST: DEPARTMENW&'

Copyright Rick Adrion 2004, except as noted

CONMTER How does AOP do it ?

Weaver

Concern
Identifier

\ Concerns
Yﬂplementaﬁnn

Aspectual Aspectual

Decomposition Recomposition

AOP development stages

UNIVERSITY. OF MASSACHUSETTS AMHERST DEPARTMENTLEEE:

22

CMPSCI 520/620 Fall 2004 Design & Construction

U0 Aspecty™

e Aspectd is a small, well-integrated extension to Java

e Based on the 1997 PhD thesis by Christina Lopes, A
Language Framework for Distributed Programming

¢ Aspectd modularizes crosscutting concerns

e That is, code for one aspect of the program (such as
tracing) is collected together in one place

e The Aspectd compiler is free and open source

e Aspectd works with JBuilder, Forté, Eclipse, probably
others

UNIVERSITY: OF MASSACHUSETTS AMHERST: $DERAR]

Copyright Rick Adrion 2004, except as noted

COMMTER What is a Concern ?

econcern is a particular goal, concept, or area of interest

e concerns are the primary motivation for organizing and
decomposing software into manageable and
comprehensible parts

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEP‘ BN O G Ot S OIENE R CNPICE 2020 AL P0Gk

23

CMPSCI 520/620 Fall 2004 Design & Construction

Lo Terminology CONriTH a simple figure editor

« A join point is a well-defined point in the program flow factory methods

¢ A pointcut is a group of join points

¢ Advice is code that is executed at a pointcut Fi =
igure FigureElement
¢ Introduction modifies the members of a class and the ~
relationships between classes makePoint(..) moveBy(int, int) °
. . . makelLine(..) N
*An aspect is a module for handling crosscutting A
concerns
¢ Aspects are defined in terms of pointcuts, advice, and |_ - I:]
introduction Point 2 Line
* Aspects are reusable and inheritable getX() getP1()
getY() getP2() i that
setX(int) setP1(Point) operations tha
setY(int) setP2(Point) < _— move elements

moveBy(int, int) ¥ moveBy(int, int)

UNIVERSITY: OF MASSAGHUSETTS AMHERST - DECARTUENT OF DOMPUTER S CIBNGE BN S Ol o/ AL 00k, UNIVERSITVOFMASSACHUSETI'SAMHERS'IEE-

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

MY join points

a method execution amethod call

. . returning or
returning or throwing throwing

a method execution
returning or throwing

UNIVERSITY:OF'MASSACHUSETTS AMHERST: "

Copyright Rick Adrion 2004, except as noted

imagine 1.moveBy (2, 2) key points in dynamic call graph

U Join points

e Ajoin point is a well-defined point in the program flow
¢ We want to execute some code (“advice”) each time a
join point is reached
¢ We do not want to clutter up the code with explicit
indicators saying “This is a join point”
e AspectJ provides a syntax for indicating these join
points “from outside” the actual code
e Ajoin point is a point in the program flow “where
something happens”
e Examples:
¢ When a method is called
¢ When an exception is thrown
* When a variable is accessed

UNIVERSITY.OF MASSACHUSETTS AMHERST: ;.B

25

CMPSCI 520/620 Fall 2004 Design & Construction

CONrTH join point terminology

method
execution
join points

¢ several kinds of join points
¢ method & constructor call
¢ method & constructor execution
e field get & set
¢ exception handler execution
« static & dynamic initialization

UNIVERSITY OFMASSACHUSETTS AMHERST:

Copyright Rick Adrion 2004, except as noted

method call
join points

COMPUTER
SCIENCE

join point terminology

all join points on this slide are
within the control flow of
this join point

UNIVERSITY.:OF MASSACHUSETTS AMHERST

26

CMPSCI 520/620 Fall 2004 Design & Construction

COMPITER Pointcuts

* Pointcut definitions consist of a left-hand side and a
right-hand side, separated by a colon

¢ The left-hand side consists of the pointcut name and the
pointcut parameters (i.e. the data available when the
events happen)

* The right-hand side consists of the pointcut itself
* Example pointcut:

pointcut setter(): call(void setX(int));

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3 +DER

Copyright Rick Adrion 2004, except as noted

CONTETER Example pointcut designators

¢ When a particular method body executes:
« execution(void Point.setX(int))

* When a method is called:
« call(void Point.setX(int))

¢ When an exception handler executes:
« handler(ArrayOutOfBoundsException)

* When the object currently executing (i.e. this) is of type SomeType:

« this(SomeType)
¢ When the target object is of type SomeType
« target(SomeType)
* When the executing code belongs to class MyClass
« within(MyClass)
* When the join point is in the control flow of a call to a Test's no-
argument main method
« cflow(call(void Test.main()))

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEP'

27

CMPSCI 520/620 Fall 2004 Design & Construction

CONMTE Pointcut designator wildcards

¢ It is possible to use wildcards to declare pointcuts:
eexecution(* *(..))

* Chooses the execution of any method regardless of return
or parameter types
ecall(* set(..))

e Chooses the call to any method named set regardless of
return or parameter type

¢ In case of overloading there may be more than one such set
method; this pointcut picks out calls to all of them

UNIVERSITY OFMASSACHUSETTS AMHERST: 2D

Copyright Rick Adrion 2004, except as noted

CONEITE! pointcut composition

e a pointcut is a kind of predicate on join points that:
ecan match or not match any given join point and
e optionally, can pull out some of the values at that join
point
« pointcuts compose like predicates, using &&, || and !
a “void Line.setP1(Point)” call
or

call (void Line.setPl (Point)) ||
call(void Line.setP2 (Point)) ;

a “void Line.setP2(Point)” call

whenever a Line receives a
“void setP1(Point)” or “void setP2(Point)’ method call

UNIVERSITY.OF MASSACHUSETTS AMHERST 2D

28

CMPSCI 520/620 Fall 2004 Design & Construction

COMPUTER

seince after advice COMPUTER

seienee Figure Editor with AspectJ

action to take after class Line { class Line { aspect DisplayUpdating {
private Point pl, p2; private Point pl, p2;
H 1Al 1 pointcut move () :
ComPUtatlon under JOIn pOInts Point getPl() { return pl; } Point getPl() { return pl; } call(void FigureElement.moveBy (int, int) ||
Point getP2() { return p2; } Point getP2() { return p2; } call(void Line.setPl(Point)) 1
call(void Line.setP2 (Point)) 1
. . void setPl(Point pl) { void setPl(Point pl) { call(void Point.setX(int)) 1
aspect DisplayUpdating { this.pl = pl; this.pl = pl; call(void Point.setY(int));

Display.update() ; }
void setP2(Point p2) {

}
pointcut move (FigureElement fe) : void setP2(Point p2) { this.p2 = p2; after() returning: move() {
this.p2 = p2; } Display.update() ;
target (fe) && Display.update () ;) }
g

} }
class Point ¢

(call (void FigureElement.moveBy (int, int)) |
: class Point ¢ private int x = 0, y = 0; e clear display updating
|

|
call (void Line.setPl (Point)) |
call (void Line.setP2 (Point)) |
call (void Point.setX(int)) |

}

private int x = 0, y = 0; int getX() { return x; } module
int getY() { return y; }

. K . int getX() { return x; } « all changes in single aspect
call (void Point.set¥(int))); int ZZ“(. { return ;,- } void setX(int x) { X 9 X 9 P
)) mex = * evolution is modular
5 s v°§:i§$§xl‘§f ® 1 void setY(int y) {
after (FigureElement fe) returning: move(fe) { Diepiny. update () ; this.y = ys s o
Display.update (fe) ;) it setviint 1 ¢ ! °no IOCU_S Of_ display updating

¥ hisy = g5 | e evolution is cumbersome

} y T —~e— * changes in all classes

«have to track & change all

UNIVERSITY OFMASSACHUSETTS AMHER:

UNIVERSITY.:OF MASSACHUSETTS AMHE!

Copyright Rick Adrion 2004, except as noted

CMPSCI 520/620 Fall 2004 Design & Construction

COMPITER Aspectd advice

* Before advice runs as a join point is reached, before the
program proceeds with the join point
« After advice on a particular join point runs after the
program proceeds with that join point
« after returning advice is executed after a method returns
normally
« after throwing advice is executed after a method returns
by throwing an exception
s after advice is executed after a method returns,
regardless of whether it returns normally or by throwing
an exception
¢ Around advice on a join point runs as the join point is
reached, and has explicit control over whether the
program proceeds with the join point

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3 +DER

Copyright Rick Adrion 2004, except as noted

COMPUTER
SCIENCE

Concluding remarks

 Aspect-oriented programming (AOP) is a new paradigm--a
new way to think about programming

¢ AOP is somewhat similar to event handling, where the
“events” are defined outside the code itself

e Aspectd is not itself a complete programming language, but
an adjunct to Java

¢ Aspectd does not add new capabilities to what Java can do,
but adds new ways of modularizing the code

¢ Aspectd is free, open source software

« Like all new technologies, AOP may--or may not--catch on in
a big way

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEP'

30

CMPSCI 520/620 Fall 2004 Design & Construction

CONFETER Myths and realities of AOP

e The program flow in an AOP-based system is hard to
follow True
* AOP doesn’t solve any new problems True

» AOP promotes sloppy design False

*AOP is nice, but a nice abstract OOP interface is all you
need False

» AOP breaks the encapsulation True, but ..
« AOP will replace OOP False

UNIVERSITY OFMASSACHUSETTS AMHERST: S $DER,

Copyright Rick Adrion 2004, except as noted

False
* AOP compiler simply patches the core implementation

COMPUTER
Sseivce Some AOP languages
means of ... join points
JPM join points identifying specifying semantics at
AspectJ points in execution signatures advice
dynamic JPM call, get, set... w/ patterns, declarative & imperative
static & dynamic composition of code
props of JPs
static JPM class members signatures add members

Composition Filters

message sends &
receptions

signature & property
based object queries

wrappers
declarative (filters)
imperative (~ advice)

Hyper/J

members

signatures
w/ patterns,
whole class ops

add, compose (and remove)
members

Demeter traversals

when traversal reaches
object or edge

class & edge names

define visit method

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPA'E

31

CMPSCI 520/620 Fall 2004 Design & Construction

CONFUTER Other “hot” technology

* Generative programming

e Meta programming

* Reflective programming

* Compositional filtering

¢ Adaptive programming

* Subject oriented programming
¢ Intentional programming

UNIVERSITY: OF MASSACHUSETTS AMHERST+* DEPAY

A

Copyright Rick Adrion 2004, except as noted

32

