CMPSCI520/620 Design

COMEHEE 19-Design COMEE Views & Workflows

)SCIENGE
*Readings .
«OOAD Using the UML =} D

« Copyright 1994-1998 Rational Software, all rights reserved

e[Partly] posted B \‘./

Designer

R
Design _Design
Reviewer

= '/I/
N N
P
[e) design implemgntation
U view vie
Database
Classes, infrfaces,
s BE=ED Jaboraichs
Designer
Organizatibn e cases ynamics
Ipteraction
Package, gibsystel [I3ercase
S State machil
—a
'\/ a :
P Il/.
process
view CED
classes ——Homes

UNIVERSITY OF MASSACHUSETTS AMHERST:

UNIVERSITY OF'MASSACHUSETTS AMHERST: 54D

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

“"«'%':E'JE'E Worker Responsibilities COMPUTER Use Case Analysis Overview

(::::) \ Q I

g i T 5] 53 4
Realizati -

Architect ealzation / Designer I Use-Case Model ‘ |_O Q

:;| z . Analysis Classes
/

= Supporting Documents
— Architecture Document
Package/ =——| Glossary a
b 1 ——— | Supplemental Specs
Design Model Subsystem " Class / O
Software Architecture ﬁﬁ Design t
Document Reviewer -==
/v O \/\ ’\I
Data Model . N
Database Deslgner Use-Case Realization Analysis Model Design Model
- s Em o = s Em s oEm s o Archltecture

Reviewer

UNIVERSITY. OF MASSAGHUSETTS ANMHER!

UNIVERSITY: OF MASSACHUSETTS ANMHEI

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMPUTER

seience What is a Use-Case Realization?

Use Case Model

Use Case

=

Use Case Realization
Documentation

||||||||||IIQO

-

UNIVERSITY: OF MASSACHUSETTS AMHERST. 5

Design Model
<<realizes>> FAEEREREN

""""""""""""""" \ 7

~ -

Use Case Realization

X OO R—=—0 y
= d
. \.o/;/
[[— > \Q
Sequence Diagrams Collaboration

iagrams

©Rick Adrion 2004 (except where noted)

Q

COMPIER Alternatives

*RUP begins with Analysis classes we found
by analyzing Collaboration & Sequence
Diagrams (these derived from the Use Cases
during Use Case Analysis), then is refined by
defining Operations, States, Attributes,
Associations and Generalizations (in Class
Design)

*Some other approaches:

¢ Noun Phrase Approach
e Common Class Patterns
e CRC (Class-Responsibility-Collaboration)

UNIVERSITY. OF MASSAGHUSETTS AMHERST#:D

CMPSCI520/620 Design

CONMTER Noun Phrase Approach

¢ Examine the requirements and underline each noun
e Each noun is a candidate class
¢ Divide list of candidate classes into
* Relevant Classes
 Part of the application domain; occur frequently in reqs
¢ Irrelevant Classes
¢ Qutside of application domain
e Fuzzy Classes

« Unable to be declared relevant with confidence; require
additional analysis
« Experience will eventually enable designers to avoid
generating irrelevant classes

UNIVERSITY OF'MASSACHUSETTS AMHERST: S $DER;

©Rick Adrion 2004 (except where noted)

CONMTER Find Classes from requirements

*Consider the following University
Enrollment system specification
eeach university| major has a number of

(required | [courses |and a number of
elective courses.

Course

RequiredCourse

- ElectiveCourse
ek]

UNIVERSITY.:OF MASSACHUSETTS AMHERST DEPAE{;

CMPSCI520/620 Design

CONFUTER Classes, Relationships & Attributes COMFUTER Noun Phrase Approach

*may help in identifying domain objects
. e - . . *not good at identifying objects that live in the
Each major specifies minimum total credits required application domain
«Students may combine course offerings into «Thus, it can help at the beginning of analysis, but you
will not return to it as you move into design

leading to the degree/major in which enrolled *Finding ,9°°d objects during design means identify!ng
abstractions that are part of your application domain and

its execution machinery
*Objects that are part of your application domain will have

* A course can be part of any number of majors

programs of study suited to their individual needs and

Relevant classes Fuzzy classes

Course CompulsoryCourse a tenuous connection, at best, to real-world things

Maior ElectiveCourse ¢ e.g. what's the correspondence of a scrollbar to the real
J world

Student Sudyprogram

CourseOffering

UNIVERSITY. OF MASSAGHUSETTS ANHERST D

UNIVERSITY OF'MASSACHUSETTS AMHERST: "

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMFUTER Common Class Patterns

* Derive classes from the generic classification
theory of objects

 Concept class
e a notion shared by a large community
e Events class

¢ Organization class

e a collection or group within the domain
*People class

eroles people can play
*Places class

e a physical location relevant to the
system

UNIVERSITY OF'MASSACHUSETTS AMHERST: 54D

©Rick Adrion 2004 (except where noted)

e captures an event that demarks intervals within a system

COMFUTER Common Class Patterns

¢ Rumbaugh proposed a different scheme
¢ Physical Class (Airplane)
* Business Class (Reservation)
« Logical Class (FlightTimeTable)
« Application Class (ReservationTransaction)
e Computer Class (Index)
 Behavioral Class (ReservationCancellation)

e These taxonomies are meant to help a designer think
of classes, however it is difficult to be systematic

e Probably only useful during early analysis

UNIVERSITY: OF MASSACHUSETTS AMHERST "D

CMPSCI520/620 Design

COMPUTER
SCIENCE

CRC Cards

¢ CRC = Candidates, Responsibilities, Collaborators

e Meant primarily as a brainstorming tool for analysis and
design

* In place of use case diagrams = use index cards

* In place of attributes and methods = record
responsibilities

*See Object Design by Wirfs-Brock and McKean, ©
2003

UNIVERSITY OF'MASSACHUSETTS AMHERST: "

©Rick Adrion 2004 (except where noted)

COMAHE Index Cards

¢ On the unlined side of the
index card
e write an informal
description of each
candidate class’ purpose

* On the lined side of the
index card
« identify responsibilities and
collaborators

UNIVERSITY OF MASSACHUSETTS AMHERST:

and role
<candidate

Document Document
Purpose: A Document acts Knowslcontents E———
as a confainer for graphics Knows storage location
and text . -
Role: Container nserts and removes
Pattern: Composite text graphics, other

elements

responsibilities collaborators

CMPSCI520/620 Design

COENES MVC using CRC cards “%tiiet Not Just Index Cards

* Post-It Notes can be used for even less “structure”;
emight be easier when brainstorming

View.

collaborators

|

Render the Model Controller
Model Document

Transform_coordinates Controller Pur-pose: A document
— Represents a container
Interpret user input View that holds text and/or

Model .
Model Distribute control graphics that the user
ode can enter and visually
arrange onh pages

Maintain problem
related information

Broadcast change
notification

UNIVERSITY OF'MASSACHUSETTS AMHERST: DEPAR:- UNIVERSITY. OF MASSACHUSETTS AMHERST-DEPAR:

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMPER Why index cards?

« Forces you to be concise and clear and focus on major
responsibilities since you must fit everything onto one index
card

* Inherent Advantages

« cheap, portable, readily available, and familiar
* gives people a "feel" for the design
« can propose and test changes to the design rapidly (all you
have to do is make new cards)
« focus on responsibilities as opposed to "n:m attribute" design
as promoted by OMT, Booch, etc
« affords Spatial Semantics...
¢ close collaborators can be overlapped
« vertical dimension can be assigned meanings
« abstract classes and specializations can form piles
...which provides benefits
e Beck and Cunningham report that they have seen designers talk
about a new card by pointing at where it will be placed

UNIVERSITY OFMASSACHUSETTS: AMHERS!

©Rick Adrion 2004 (except where noted)

COMPITER Architectural Design Overview

* Design and Implementation

S Mechanisms
l Design Classes and Subsystems
o * Reuse Opportunities
lossary Architecturd Document

Design
Guidelines

Design

oeson - » Refined Architectural Layers and
Partitions

Supplementary
Specifications

Analysis Classez ﬁ

Design Model

S »n»

Architectural Describe Describe
Architect Design Concurrency Distribution

UNIVERSITY OF MASSACHUSETTS AMHER:!

CMPSCI520/620 Design

COMPUTER : COMPUTER
seience Describe Concurrency seienee Example
- . i 1] <<thread>>
S »»» >[EEE> > ==/ Class Diagram
D Architectural Describe Describe Process Model <<process>> A Component Diagram
Architect Design D CourseCatalogSystemAccesq —

Concurrency Requirements driven by: dependency ~~—_ .
e degree to which the system must be distributed
. . . C RegistrationP -7
«degree to which the system is event-driven ourseTeg oM oo
. <<process>> thread:
» computational intensity of key algorithms %CourseCatangSystemAcoesJ'""> % CZZ,;S&ZESJ
«degree of parallel execution supported by the environment StudentApplication 7\ renendoncy
* Modeling Processes map on independent threads of control —— —oromose
supported by environment —\:\

* Processes - stand-alone, heavyweight flow of control that may % <<process> I
be divided into individual threads Mapping to Implementation i
* Threads- lightweight flow of control which run in the context of O [CourseCatalogSystemAcceds ;
an enclosing process — .
. . . Remote Runnable \ Thread
» Mapping Processes onto the Implementation Environment (rom javami (rom java g 1 (rom java g
. . . ‘ CourseRegistrationProcess ‘
« Distributing Model Elements Among Processes ‘ |

UNIVERSITY OF'MASSACHUSETTS AMHE

UNIVERSITY. OF MASSACHUSETTS AMHERS

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

CONPUTER £ ample PONENE So Where Are We?

<<boundary>>
<<process>> , ry O
g MainStudentForm
StudentApplication O D
f (from Student Interface)
' D Architectural Architectural Describe Describe Review the ~Architecture
Architect Lozl Design C Distributi i Reviewer
<< >>
<<process>> Redist (tz'om(';OIt . /
CourseRegistrationProcess egistra !0" ?n rofler I
f (from Registration) ,\ / (
<<subsystem>> O ‘./ "’.
<<process>> j "l courseCatalo pasicass SHbEVEe Review the
CourseCatalogSystemAccess 9 Lozl CeElgn Use-C: Design Design
(from CourseCatalog - sl g e
Designer Design Reviewer
1
1
Class
Design
1 1 —t
— 0. <<entity>>
i CourseCache
CourseOffering @ OfferingCache (from University Artifacts) D Database
(from University Artifacts) e
Database &
Designer

Mapping Design Elements to Processes

UNIVERSITY OF MASSACHUSETTS AMH|

UNIVERSITY OF'MASSACHUSETTS AMHé:

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

PINTENER Describe Distribution Overview CONTEVER Why Distribute?
== ¢ Reduce processor load

= = Special processing requirements
= *Scaling concerns

= =
Process Model « Economic concerns
« Distribution Patterns
{I «Client/Server
{l ; Deployment Model * 3-tier
- : « Fat-Client
{j »Web Application
¢ Distributed Client/Server

Implementation Model e Peer-to-peer

UNIVERSITY OF'MASSACHUSETTS AMHERST: 3 UNIVERSITY OF MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMPUTER ry: : . COMPUTER :
seience Distribution patterns seienee Deployment Model Modeling Elements
'] ']
e« Common services +Node
« Presentation Services . i .
« Ul including, the visual appearance of output and how user input is handled ° PhyS|caI run-time CompUtat|0n3| resource |<<Node>>
* Business Services Node #1
 Business rules and logic * Processor
« Data Services e Execute system software
« Data relationships, efficiency of storage, and data integrity «Devi
« Patterns evice
e One-Tier e Support devices <<Processor>>
e Two-Tier . Processor #1
« Fat Client -- client has its presentation and business services; server has .Typlca”y controlled by a Processor
the data services :
 Thin Client -- client has the presentation services; server has the business * Connection
and data services « Communication mechanisms i
e Three-tier .) Conpection
« client has presentation services; server has business services; separate ePhysical medium
logical) server has data services. -
. Wéb_gtier) * Software protocol <;De‘_”°‘;>1>
evice

« client accesses a web server that at least handles presentation services;
web server may have its own business and data services or it may utilize
one or more servers that handle business and data services

UNIVEHSITYOFMASSACHUSETTSAMHERST-- ARG OB COMPU TR SCIRNGE # B MBS OLoo8 Ba0 AL LAa005 S ok, UNIVEFISITYOFMASSACHUSETTSAMHERST-‘” ARTENT O COMPUTER SOIENGE £ CMPOC o0 BE AN Ba0IE k.

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

CMTNER Deployment Diagrams

<<Node>>
Node #1

% Component [o Object

S
N

Y
<<connection typex\ AN

Process-1
Process-2

Connection Y
Y

<<Node>>
Node #2
Component

| I Object

Interfag

UNIVERSITY OF'MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

Process-1
Process-2

P ie! Process-to-Node Allocation

Dial up access
_{and behind
- |campus firewall

Desktop P

External
Desktop P

<<Campus LAN
StudentApplication

ProfessorApplication
RegistrarApplication

StudentApplication

<<Internet:

Registration
erver

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

<<legacy>>
Course
Catalog

UNIVERSITY OF MASSACHUSETTS AMHERST:

14

CMPSCI520/620 Design

COMPUTER
SCIENCE

Design Distribution Pattern: Proxy

ProxyDistributedController
S —

<<controller>>
RegistrationController

(from Student Activities)

UNIVERSITY:OF'MASSACHUSETTS AMHER

<<{itility>>
N@ming
(frorh java.rmi)
RemoteDistributedController
I
[
0.*
+currentUs
rentUsel
<{Interface>> 1
JecureUser
(frony Secure Interfaces)
k— 0..1] RemoteRegistrationControllef
(from Student Activities)

«Iient

servel

secure user instance is created
on the client and passed to the
server when the remote
controller is created

©Rick Adrion 2004 (except where noted)

COMPUTER

seience Design Distribution Pattern: Proxy

SomeForm | | : ProxyDistribute
Controller

: Naming : RemoteTimecard
Controller

1: new(SecureUser)

Lgokup("RemoteTime:

-ardControIIer“)ﬁ

2: lookup(String)

The connection
proxy and remot
is established wi
proxy controller i

vetween the!
e controller
en the

s created

3: new()

The current user context is

UNIVEFISITYOFMASSACHUSETTSAMHE: R DEDARVENT A B OMPUTE SOIENGEH CMPICE 80 00 AL P0G ok

5: DoSomething

4: setSession(SecureUser)

-|passed to the server for later
access checks

6: DoSomething

forwarded to the remote controller

All calls to the proxy controller are ﬁ

15

CMPSCI520/620 Design

COMPUTER
SCIENCE

Affect on Process Model Associations

<<boundary>

ManStudentForm

(rom Student intetace)

<<process>>

<<process>>

PPl

MainStudentForm
(from Student Interface)

0.1
<<boundary>>

laintainScheduleForm

m Student Interface)

1

<<control>>
i ontroller

1

<<control>>
i ontroller

(from Student Activities| 1

(from Student Activities)

©Rick Adrion 2004 (except where noted)

UNIVEFISITYOFMASSACHUSETTSAMH- T DEPAR VBN DR COMPU TR S CIANGE - MBS Ol b0 EALLO08 ik

COMPUTER
SCIENCE

So Where Are We?

UNIVERSITY. OF MASSACHUSETTS AMHE

@)
LJ

Architect

Architectural

Analysis Design C

Architectural Describe Describe
o "

@)
L

Review the Architecture

Reviewer

Qo

Designer

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

@)
L]

Design
Reviewer

Database
Designer

Database
Design

16

CMPSCI520/620 Design

COMTIER Design Iterations COMPIER Class Design Overview

N < ensure that the classes provide

¢ Architectural Design

*decide what the infrastructure is (the pieces/parts of the

architecture, if you will, and how they interact). [IiIp—EHh—1»
° Use Case Design Architectural Describe

the behavior the use-case
realizations require
« ensure that it is straightforward

Describe

B to implement the classes

i Architectur:)

Design Concurrency Distribution Analy3|s Cl Documente « handle non-functional
edetermine the responsibilities of the system are allocated Design requirements related to classes
to the pieces/parts. Supplementary Guidelines

* Subsystem and Class design
detail the specifics of the pieces/parts. _
e adjust the classes to the particular products in use, the {
programming languages, distribution, adaptation to

physical constraints (e.g. limited memory), performance,
use of component environments such as COM or

CORBA, and other implementation technologies /g \ Design
e There is frequent iteration between Class Design, o e % Classes
Subsystem Design, and Use Case Design. b
Class

« incorporate the design
mechanisms used by the
classes

Specifications

~ -

Use-Case Realization

Design

Design Model Use-Case Model
UNIVERSITY OF'MASSACHUSETTS AMHEHL__

UNIVERSITY:OF MASSACHUSETTS AMHEF{

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

FONiNE Class Design Steps

« Create Initial Design Classes
e Define Operations

e Define States

e Define Attributes

e Define Associations

e Define Generalizations

UNIVERSITY OF'MASSACHUSETTS AMHERST: DEP

©Rick Adrion 2004 (except where noted)

CONMTER Class Design

e strategy:

ehow the analysis classes will be realized in the
implementation

*how design patterns can be used to help solve
implementation issues

*how the architectural mechanisms will be realized in
terms of the defined design classes.

*boundary, control and entity stereotypes are most useful
during Use Case Analysis

 no longer need to make the distinction

e design patterns will be introduced, as needed,
throughout Class Design.

UNIVERSITY OF MASSACHUSETTS AMHERST: D. ARTENT O COMPUTER SOIENGE £ CMPOC o0 BE AN Ba0IE k.

18

CMPSCI520/620 Design

COMPUTER

*is more reusable
¢ is easier to implement

e encapsulates a large portion of the
intelligence

¢is less likely to be reusable
«is more difficult to implement

e a class should do one thing an
e how does this relate to my

UNIVERSITY: OF MASSACHUSETTS AMHERST. X HDET

©Rick Adrion 2004 (except where noted)

« A class should have a single well foci

seieice HOow Many Classes Are Needed?

e Many, simple classes means that each class
e encapsulates less of the overall system intelligence

A few, complex classes means that each class

overall system

«Class should have multiple
responsibilities
Actions that object can perform
*Knowledge object maintains
*Non-functional requirements

rlier suggestion that
classes have multiple responsibilities?

COiHE: Designing Boundary Classes

e User interface (Ul) boundary classes
*What user interface development tools will be used?

*How much of the interface can be created by the
development tool?

«“Reverse Engineering”
 External system interface boundary classes
e Usually model as subsystem

MainWindow L SubWindow
MainForm _T_I/_T_
Button DropDownList

UNIVERSITY OF MASSACHUSETTS AMHERST: ;

19

CMPSCI520/620 Design

CIMTIER Designing Entity Classes

« Entity objects are often passive and persistent
 Performance requirements may for

External
Deskiop PC

StudentApplication

ce some re-factoring

<<internet’y e

Registration
erver

CourseRegistrationProcess

TeachingC

StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

Analysis View

| Design View
<< entity >> . EatCla:
EaiCla: "
S - | .
L omoneSeRl . geiGommoniyseants
+ commonlyUsedAtt2 | + getCommonlyUsedAtt2
+ rarelyUsedAtt3
+ rarelylisedAttd

+ getRarelyUsedAtt3(
. +
I

I EatClassD:

+ commonlyUsedAtt1 + rarelyUsedAtt3
1 |+ commonlyUsedAtt2

+ rarelyUsedAttd
UNIVERSITY OF'MASSACHUSETTS AMHERST: "

EaiClassl azyD)

©Rick Adrion 2004 (except where noted)

CMTNE Designing Control Classes

*What Happens to Control Classes?
¢ Are they really needed?

«if just “pass-throughs” from the boundary classes to the
entity classes, they may be eliminated.

e Should they be split?
e might depend on distribution, e.g., proxy-remote

« Control classes may become true design classes for
any of the following reasons:

ethey encapsulate significant control flow behavior,
ethe behavior they encapsulate is likely to change

«the behavior must be distributed across multiple
processes and/or processors

management.

UNIVERSITY OF MASSACHUSETTS AMHERST:

«the behavior they encapsulate requires some transaction

20

CMPSCI520/620 Design

COMPUTER H COMPUTER HH
seienee Operations seience Utility Classes
e Messages displayed in interaction diagrams *What is a Utility Class?
-ClassA :ClassB « Utility is a class stereotype
! ! ! ! »Used for a class that contains a collection of free
L'/l Perform res| or}sibility - I performResponsibiIity():resu't subprograms
! ! ! ! *Why use it?
* Implement rules every class should have: «To provide services that may be (re)useful in a variety of
s Student «Manager functions contexts
- name . otrin i
. tateoiBih “Date * Implementor functions «To wrap non object-oriented libraries or applications
*Access functions —<uiies
+ canEnroll() : Boolean * Helping functions ity srt]yl
hasTakenPrerequisites() : Boolean S
hasScheduleConflict() : Boolean o double = 3.14156265358979 + bind() 0
. . e +sin (angle : double) : double + execsq|
« Operations can lead to new class definitions Lot e Goubi) - cautie + startTrans()
+random() : double + commit()
+ fetch()
+ getResults()

UNIVERSITY OF MASSACHUSETTS AMHERST:

UNIVERSITY OF'MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMPUTER
SCIENCE

Identify and Define the States

Link to CourseOffering Link to CourseOffering Professor
Exists Doesn’t Exist
0.1
Teaching On Sabbatical
0.*
CourseOffering

« Significant, dynamic attributes
The maximum number of students per course offering is 10

numStudents < 10 numStudents >= 10

Open Closed

* Existence and non-existence of certain links

« explicitly define what it means to be in a particular state.

UNIVERSITY! OF MASSACHUSETTS AMHERS!

©Rick Adrion 2004 (except where noted)

CONMTER |dentify the Events & Transitions

*Events

*One event may trigger the
sending of another event

 An activity can also send
an event to another object

e Transitions

*For each state, determine
what events cause
transitions to what states,
including guard conditions,
when needed

¢ Transitions describe what
happens in response to
the receipt of an event

do: "TargetObject.event

event[cgndition] / action

State B State C
do: activity

UNIVERSITY:OF MASSACHUSETTS AMHEF{

22

CMPSCI520/620 Design

CIMPIER Add Activities and Actions

¢ Activities
¢ Associated with a state

« Start when the state is
entered

e Take time to complete
e Interruptible

event[cpndition] / action

e Actions activity State B
¢ Associated with a do: activity
transition

e Take an insignificant
amount of time to
complete

*Non-interruptible

UNIVERSITY:OF'MASSACHUSETTS AMHER

©Rick Adrion 2004 (except where noted)

action

CUPHH Statechart

addStudent

entry: Register a
tudent

— addStudent/
Initialize | Unassigned numStudents =0 |
do: Initialize cours do: Assign professor
urse

cancelCourse
cancelCourse
registration closed[istration closed
registration close
Canceled numStudents <3] numStudents > =3]
do: Send cancellation
notices
é [numStudents = 10
cancel Course| Closed

do: Report RegistrationComplete]
i ldo: Generate class

roster

UNIVERSITY OF MASSACHUSETTS AMHER:!

23

CMPSCI520/620 Design

PINTEVER Statechart with Nested States

superstate
-
Substate |
RegistrationComplet registration closed|
(do: Generate dlass rogfS~~aumStudents > = 3]

do: Assign professor to cojirse

entry: Register a stud

[numStudents = 10]

registration closed[
numStudents <

\

Add student / numStudents = 0

addStudent

Canceled Closed

]

cancelCourse

-

do: Report course is closed

/

UNIVERSITY! OF MASSACHUSETTS AMHERS

©Rick Adrion 2004 (except where noted)

COMPUTER

seienee Example: Define Attributes

private to
support
encapsulation

CourseOffering

- number : String = "100"

- startTime : Time

- endTime : Time

- days : Enum

/- numStudents : int: =0 derived attribute

+ addStudent(studentSchedule : Schedule)

UNIVERSITY- OF MASSACHUSETTS AMHER:S:S

24

CMPSCI520/620 Design

““:!‘.';'E'JE'E Derived attributes, associations, and roles ““E‘.';'E',IE'E Associations & Dependencies

e association

Constraint expression for} derived attribute

{age = currentDate — dateO1Birth
Student Course Course Ai 87 — <
Offering
name * Registers-for * * Scheduled-for 1| crseCode
ssn registrants term crseTitle « visibility
dateOfBirth section creditHrs « attribute (field) visibility: B is an attribute of A
lage Derived attribute * remains an association
* | fparticipants parameter visibility: B is a parameter of a method A
* becomes a dependency
[Takes « local visibility: B is a (non-parameter) local object in a method of A
Derived relationship (from Registers-for and Scheduled-for) * becomes a dependency
« global visibility: B is in some way globally visible

Derived attributes and relationships shown with / in front of the name « becomes a dependency

Copyright © 1997 by Rational Software Corporation

UNIVERSITY.:OF MASSACHUSETTS AMHERST A "DE|

UNIVERSITY OF'MASSACHUSETTS AMHERST: = *DER

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMFUTER Define Dependencies COMFUTER Example: Composition

<<boundary>>
MainStudentForm
ce)
+ registerForCourses()
<<boundary>>
! Global visibility MaintainScheduleForm <<control>>
P Naming | RegistrationController
0.1 rom java.rmi)
<<boundary>> _-“7|+ lookup() displayOfferings() 1 1
MaintainScheduleForm <<control>> selectCurriculum() : Curriculum getOfferings(curriculum)
RegistrationController RemoteRegistrationController . . : ‘—‘ . . . : . :
diﬁplatéoﬁem}gs(z) IR s oo 1 |(from Redgistration) selectOffering() : CourseOffering notifyOfferingSelection(offering : CourseOffering
iselectCurriculum() : Curriculum gel erings(curriculum, .
selectOffering() : CourseOffe notifyOfferingSelection(offering : Courseoﬁm-) getOfferings(curriculum) save() new{context : Securelser)
save() new(context : SecureUser) + notifyOfferingSelection(offering : CourseOffering; cancel() saveSchedule(sched : Schedule)
icancel() saveSchedule(sched : Schedule) + saveSchedule(theSchedule : Schedule) .
update(changeditem : ISubjégt) |cancelSchedule(sched : Schedule) I update(changedItem : ISubject) cancelSchedule(sched : Schedule)
displaySchedule() i displayScheduIe()
0.1 & Local visibility - -
Fiold visibil /V] > dependency association relationship has
ield visibili 0.1 o - " ; i
' <oty Parameter visibility| <<interace>> been refined into a composition
-> association ICourseCatalog . .
pSchedue > dependency |tiom CourseCatalog) relationship.

MSF represents a session
RC never exists outside of session
UNIVEFISITYOFMASSACHUSETTSAMH:E” N DEPARTMENT OF COMPUTER SOIENGE+ CMPSOE S0 R0 DOGA k.

UNIVEFISITYOFMASSACHUSETTSAMH:” T DEPAR VBN DR COMPU TR S CIANGE - MBS Ol b0 EALLO08 ik

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMPUTER . : : COMPUTER . :
seieice Generalization (Inheritance) seieice WWhat is Polymorphism?
e One class inherits from another « The ability to hide many : e
. different implementations saneece> =7
croundyehicle owner | Person behind a single interface X | Pyramic |
ancestor weight Draw K - - - -4
licenseNumber |0..* 1 Move
Scale q~ -
Rotate S~ o Cube
generalization
. . Animal
Car Truck Trailer *Use generallzatlon.to —
decendent size | tonnage [<—— support polymorphism talk ()
getTax() Without Polymorphism With Polymorphism
« not just finding common attribute, operations and relationships if a"ig‘ai: "I'_-_i°”’; t:;(en do the Animal talk
R o the Lion ta - .
. mor-e about the respon3|b|.llt|es ahd essence of th.e classes. else if animal = “Tiger” then Lion Tiger
 avoid “skyscrapers”; the hierarchies should look like small, do the Tiger talk alk talk
independent “forests end alk (alk (

UNIVERSITY OF'MASSACHUSETTS AMHERST: " UNIVERSITY OF MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

EOMEIE! Define Generalizations "ttt So Where Are We?

<<boundary>>
MainApplicationForm LogonForm O
(from GUI) T O/(lumGU\ O - D
D Architectural Architectural Describe ~ Describe Review the ~Architecture
Architect (oD Design C DI Reviewer
| /
<<boundary>> M
MainStudentForm
(from Student Interface) { v
Y » ©)
% 0.1 Use-Case Subsystem Review the D
<<boundary>> <<boundary>> Analysis Design
intail Use-C Design Design
MaintainScheduleForm ReportCardForm <<boundary>> Designer Se o ¢ Revieaer
from Student Interface) (from Student Interfack) : 9 esign
(from Professor Interface)
Class

<<boundary>>

MainRegistrarForm 1 1 N
(from Registrar Interface) / \ Design | |
0.1 0.1
B e -
SelectC i
0. 0. 0.1 from Professor Interface)) |(from Professor Interfack) D Database
Design

Database
Designer

(from Registrar Interface) from Registrar Interface) from Registrar Interface)

UNIVERSITY. OF MASSACHUSETTS AMHE

UNIVERSITY: OFMASSACHUSETTSAMH- ST DEPAR TGN O O0)

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMPIER Strategy - where are we?

e made an initial attempt at defining the architecture
« defined the major elements of our system
« the subsystems, their interfaces, the design classes, the
processes and threads
e relationships & how these elements map into the hardware on
which the system will run.
* Now, concentrate on
e making sure that there is consistency from beginning to end of
use case implementation, i.e., that nothing has been missed
(i.e., this is where we make sure that what we have done in
the previous design activities is consistent with regards to the
use case implementation).
*we do some Use Case Design before Subsystem Design
e Subsystem Design, Class Design and Use Case Design
activities are tightly bound and tend to alternate between one
another.

UNIVERSITY OFMASSACHUSETTS: AMHERS!

©Rick Adrion 2004 (except where noted)

COMPUTER

Design Element Interactions

)SCIENCE (Register For Courses - Set-Up)

; ; : MainStuden : Maintain : Registratiol
- Student Form ScheduleFo Controller

1; registerForCourses()

2: open()

: new(SecureUs

4: 1

er)

okup("RemoteR

ClientSchedul

: Schedule

degistrationCo

: Naming | : RemoteRegistrati : ICourse

Controller Catalog

No Conflict™
ntroller")

UNIVERSITY OF MASSACHUSETTS AMHERST:

5: setSession(SecureUser)
6: selectCurriculum()
7: getOfferings(curriculum)
8: getOfferings(curriculum)
10: displayOfferings()
11: new(Student)
12: displaySchedule()

9: getQfferings(curriculum, semester)

Give current yser conte!
wide open ac¢ess

29

CMPSCI520/620 Design

c”%'i'[’ﬁ&'[‘ Design Classes Relatior;ships c%;';'[%'[‘ Deployment

?Q\ Subsystem Interface

Register for Courses

: RemoteRegistratio ICourse

: MainStuden : Maintain : Registration |ClientSchedulg| : Namin:
. Form ScheduleFo Controller : Schedule Controller
: Student
1; registerForCourses()
2: open()
: new(SecureUser)
4: 1ookup("RemoteRegistrationCantroller”)
5: setSession(SecureUser)
sl 6: selectCurriculum()
e i , 7 geOfrngs(cureiur)
RegistrationController . Re'ﬂmeResiSfraﬁOnCO"fmﬂef 8: getOfferings(curriculum)
displalg)ﬁeriﬂgs(()) N 1 ; 1 (from 9: getQfferings(curriculum, semester)
IselectCurriculum() : Curriculum 5 R - 10: displayOfferings()
cuum o T e Ot oo oifaring - . + getOfferings(curriculum)
:::I‘:')O"e"“g“ aCourseOffering | 9 ering 2CourseOffering) + notifyOfferingSelection(offering : CourseOffering) Z|
cancel() chedulefsched—Schadule! + saveSchedule(theSchedule : Schedule) 11: new(Student)
update(changeditem : ISubject) cancelSchedule(sched : Schedule)]) \évgcfﬁg ﬂm'%ﬁt@ REZ?IH(/:%{J e
displaySchedule() 12: digplaySchedule) has been retrieved

View of Participating Classes (VOPC) diagram.
UNIVERSITY. OF MASSACHUSETTS ANHERST ¥ DEPARTIVMENT OF COMPUTE

IVERSITY.:OF MASSACHUSETTS AMHERST - DEPARTMENT QR B OMPUT!

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

CONPITER More steps PONENE So Where Are We?

¢ Annotate the sequence diagrams o @)
D Architectural Architectural Describe Describe Review the Architecture

1 1: Do Something, ;

Scripts can be used to |

Seript —> describe It:ge Jetalls | 2o Something Mgre
mes: | - |

regrl : %
| o \
more information
> |about a particular
Note t

diagram element O
Use-Case Subsystem
Analysis

Design

/
- 5

Review the

e Unify classes & subsystems Kol Use oo Desion Desin.
emerge similar model elements
Class
euse inheritance to abstract model elements peson ||
o .
Database Dasign:
Designer

UNIVERSITY OF'MASSACHUSETTS - AM UNIVERSITY OF MASSACHUSETTS AMH:

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

COMPIER Strategy -- where are we?

« have defined subsystems, their interfaces, and their
dependencies as “containers” of complex behavior that, for
simplicity, we treat as a ‘black box’

*made an initial cut at some design classes, which have been
allocated to subsystems

* need to flesh-out the details of the internal interactions
e what classes exist in the subsystem to support?

*how do they collaborate to support, the responsibilities
documented in the subsystem interfaces?

¢ In Subsystem Design, we look at the responsibilities of the
subsystems in detail, defining and refining the classes that are
needed to implement those responsibilities, refining
subsystem dependencies, as needed. The internal
interactions are expressed as collaborations of classes and
possibly other components or subsystems

UNIVERSITY OF'MASSACHUSETTS AMHERST: 54D

©Rick Adrion 2004 (except where noted)

“itict Strategy

*need to do some Use Case Design before Subsystem
Design
« after Analysis and Architectural Design
eusually only have sketchy notions of responsibilities of
classes and subsystems

edetails need to get worked out in Use Case Design,
before one is really ready to design the classes and
subsystems
*Reminder: there is frequent iteration between Use Case
Design, Subsystem Design and Class Design.

UNIVERSITY OF MASSACHUSETTS AMHERST: DE¢

32

CMPSCI520/620 Design

COMPUTER

Use-Case Realization

UNIVERSITY! OF MASSACHUSETTS AMHERS

©Rick Adrion 2004 (except where noted)

seience SUbsystem Design Overview

Design Subsgystems and Intekfaces

\I Use Case Realization

Design Classes

CONTETER Interface and Subsystem

*What is an interface?

«a model element which defines a set of behaviors (a set
of operations) offered by a classifier model element
(specifically, a class, subsystem or component)

*What is a subsystem?
«Contains other model elements and has behavior

*Realizes one or more interfaces —

<<Interface>>
FinancialTransaction

j <<subsystem>>

realizes Finance System

<<subsystem>>

O_ Finance System

Financial
Transaction

Recall: packages provide no behavior; they are simply containers of things which
provide behavior

UNIVERSITY:OF MASSACHUSETTS AMHER:S:S

33

CMPSCI520/620 Design

COMPUTER ~:) TIIT COMPUTER :
seience Distribute Subsystem Responsibilities seinee Subsystem design
Subsystem Interface
° Identlfy or reuse eXiSting Classes and/or SUbSyStems % :MainStudenF : Maintain :Re?is(ratioﬁ ClientSchedule| : Naming | : RemoteRegistratit : ICourse
. Fe ScheduleF Controll : Schedul Controll Catalog
* Allocate subsystem responsibilities to classes and/or St) S =
subsystems Zopon) oo Flesh out
. new(sSecureuser,
‘ Inco‘rporate the a_ppll?able mechanisms (e'g" 4: Iookup("RemoteRegistrationController”)
perSIStence, d|str|but|0n, etC) 5: setSession(SecureUser)
. . P . . ,, 6: selectCurriculum()
* Document collaborations with “interface realization 7 JotOforings(cupiouum)
diagrams ; 8: getOfferings(curriculum)
«1 or more sequence diagrams per interface operation 10: displayOfferings() § getClfergs(curouy, semesten
¢ Revisit Architectural Design e 41: now(studen
* Adjust subsystem boundaries and/or dependencies, as 12: displaySchedule()
needed <

UNIVERSITY OF'MASSACHUSETTS AMHERST: UNIVERSITY OF MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

seienee Local Subsystem Interaction seience Document Subsystem Elements
CourseCatall : CourseCatalo : DBCours : Course ||: RDBMSTransaction H :sql ” B}urseoﬁefrng RDBMSTransaction
it Offering Offering List C_reate one or rqore class (from RelationalDBMS)
untyped object diagrams showing the 0
1: getCourseOfferings(strin: no time to discuss DB i +start().
g gs(string) e we don't care o elements contained by the o[commi)
- A g b 1 d thei -+ rollback()
, who the client is. supsystem, an elr + new()
The string represents e . ot ; <<utility>>
some criteria. % 2: new associations with one 1 sal
. fi Relatior 1S)
:)(;T::\;Tjﬁz r:n‘zlrt : 3: start() A another pom—— [DBCourssofern] rom Relatiol
a query object is - 4: startTrans(O— CourseCatalog + bind()
Tt inas(stri + getCourseOfferings() + execsql()
used. -5 getCourseOfferings(string) 6: new() ICourseCatalog + getOfferings() | + garseResuns() { + startTrans()
6: bind() ~.o 1 + commit()
. S~ + fetch()
.) AN 0.* +endTrans()
. 7: execsq|(String) - e
Do until fet <<entity>>
returns Not ute values j - 8: fetch() > RDBMS List CourseOffering|
Found status i (from Uni ity Arti
data 19: p: ults() Retrieve (from Base Reuse) e
+ getCourseld() A state di b
oihd + addStudent() state diagram may be
ew(offeringld, number, startTime, endTime, days, courseld <<bind>> + new|
(offering y:) <CourspOrtering i ge"\‘(&mbgro needed to document the
777777 -—_._____11: add (CourseOffering) 7: g::g‘%@lﬂg&(g) pOSS|b|e states the
CourseCatalog Interaction; 12 commit) CourseOfferingList™ +getDays() subsystem can assume
« PR ST i 13: entTrans()) (from University Artifacts) | |+ getNumStudents()
*“looks inside” the subsystem & Lepn;g;/ee()student(,
. . +
*one or more per subsystem L oo

UNIVERSITY OF'MASSACHUSETTS AMHE UNIVERSITY. OF MASSACHUSETTS AMHERS

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 Design

EoNrE Describe Subsystem Dependencies COMPUTER

seienee Describe Subsystem Dependencies

* Subsystem layering using direct dependency

<<subsystem>> <<subsystem>> <<subsystem>>
Client Support {------------ >{ Server Support Not Registration ICourseCatalog CourseCatalog
recommended _
* Subsystem layering using interface dependency
P
<<subsystem>> <<subsystem>> K%
Client Support |---oooeeomoo ><>7 Server Support University
Artifacts
Server More RN
flexible n
Client <<Interface>> RelationalDBMS
(from Client Support) ~ f=-==-==-==--=-- >| Server

UNIVERSITY! OF MASSACHUSETTS AMHERS!

UNIVERSITY:OF MASSACHUSETTS AMHERi

©Rick Adrion 2004 (except where noted)

