
CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

19-Design

•Readings
•OOAD Using the UML
•Copyright 1994-1998 Rational Software, all rights reserved

• [Partly] posted

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

design
view

deployment
view

process
view

implementation
view

Use -Case
View

Use cases

Components

Classes, interfaces,
collaborations

Active classes Nodes

Organization
Package, subsystem

Dynamics
Interaction

State machine

Views & Workflows

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Worker Responsibilities

Architect

Software Architecture
Document

Design Model

Designer

Use Case
Realization

Package/
Subsystem Class

Database Designer
Data Model

Architecture
Reviewer

Design
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Use Case Analysis Overview

Use-Case Model

Use-Case Realization

Supporting Documents
 Architecture Document
 Glossary
 Supplemental Specs

Analysis Classes

Design ModelAnalysis Model

OR

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

What is a Use-Case Realization?

Use Case Use Case Realization

<<realizes>>

Class Diagrams

Sequence Diagrams Collaboration
Diagrams

Use Case Realization
Documentation

Use Case Model Design Model

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Alternatives

•RUP begins with Analysis classes we found
by analyzing Collaboration & Sequence
Diagrams (these derived from the Use Cases
during Use Case Analysis), then is refined by
defining Operations, States, Attributes,
Associations and Generalizations (in Class
Design)
•Some other approaches:
• Noun Phrase Approach
• Common Class Patterns
• CRC (Class-Responsibility-Collaboration)

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Noun Phrase Approach

• Examine the requirements and underline each noun
• Each noun is a candidate class

• Divide list of candidate classes into

• Relevant Classes
• Part of the application domain; occur frequently in reqs

• Irrelevant Classes
• Outside of application domain

• Fuzzy Classes
• Unable to be declared relevant with confidence; require
additional analysis

• Experience will eventually enable designers to avoid
generating irrelevant classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Fuzzy

Find Classes from requirements

•Consider the following University
Enrollment system specification
•each university major has a number of
required courses and a number of
elective courses.

Course

Major

RequiredCourse

ElectiveCourse

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Classes, Relationships & Attributes

•A course can be part of any number of majors

•Each major specifies minimum total credits required

•Students may combine course offerings into

programs of study suited to their individual needs and

leading to the degree/major in which enrolled

CourseOffering

SudyprogramStudent

ElectiveCourseMajor

CompulsoryCourseCourse

Fuzzy classesRelevant classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Noun Phrase Approach

•may help in identifying domain objects

•not good at identifying objects that live in the
application domain

•Thus, it can help at the beginning of analysis, but you
will not return to it as you move into design

•Finding good objects during design means identifying
abstractions that are part of your application domain and
its execution machinery

•Objects that are part of your application domain will have
a tenuous connection, at best, to real-world things
• e.g. what’s the correspondence of a scrollbar to the real
world

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Common Class Patterns

• Derive classes from the generic classification
theory of objects
• Concept class
• a notion shared by a large community

• Events class
• captures an event that demarks intervals within a system

• Organization class
• a collection or group within the domain

•People class
• roles people can play

•Places class
• a physical location relevant to the
system

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Common Class Patterns

• Rumbaugh proposed a different scheme
• Physical Class (Airplane)

• Business Class (Reservation)

• Logical Class (FlightTimeTable)

• Application Class (ReservationTransaction)

• Computer Class (Index)

• Behavioral Class (ReservationCancellation)

• These taxonomies are meant to help a designer think
of classes, however it is difficult to be systematic

• Probably only useful during early analysis

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

CRC Cards

• CRC = Candidates, Responsibilities, Collaborators

• Meant primarily as a brainstorming tool for analysis and
design
• In place of use case diagrams ⇒ use index cards

• In place of attributes and methods ⇒ record
responsibilities

•See Object Design by Wirfs-Brock and McKean, ©
2003

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Index Cards

• On the unlined side of the
index card
•write an informal
description of each
candidate class’ purpose
and role

•On the lined side of the
index card
• identify responsibilities and
collaborators

Document
Purpose: A Document acts
as a container for graphics
and text
Role: Container
Pattern: Composite text,graphics, other

elements

Inserts and removes

Knows storage location

TextFlowKnows contents

←candidateDocument

responsibilities collaborators

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Model

Maintain problem
 related information

Broadcast change
 notification

MVC using CRC cards

View

Render the Model Controller
 Model
Transform coordinates Controller

Interpret user input View
 Model
Distribute control

class

responsibilities

collaborators

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Not Just Index Cards

• Post-It Notes can be used for even less “structure”;
•might be easier when brainstorming

Document
Purpose: A document
Represents a container
that holds text and/or
graphics that the user
 can enter and visually
arrange on pages

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Why index cards?

• Forces you to be concise and clear and focus on major
responsibilities since you must fit everything onto one index
card
• Inherent Advantages
• cheap, portable, readily available, and familiar
• gives people a "feel" for the design
• can propose and test changes to the design rapidly (all you
have to do is make new cards)
• focus on responsibilities as opposed to ”n:m attribute" design
as promoted by OMT, Booch, etc
• affords Spatial Semantics…
• close collaborators can be overlapped
• vertical dimension can be assigned meanings
• abstract classes and specializations can form piles

 …which provides benefits
• Beck and Cunningham report that they have seen designers talk

about a new card by pointing at where it will be placed

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Architectural Design Overview

Supplementary
Specifications

Architecture Document

Analysis Classes

Design Model

Design
Guidelines

Glossary

Architectural
Design

Design Model

Design
Guidelines

•• Design and ImplementationDesign and Implementation
MechanismsMechanisms

•• Design Classes and SubsystemsDesign Classes and Subsystems

•• Reuse OpportunitiesReuse Opportunities

•• Refined Architectural Layers andRefined Architectural Layers and
PartitionsPartitions

Architect
Architectural

Design
Describe

Concurrency
Describe

Distribution

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Describe Concurrency

•Concurrency Requirements driven by:
• degree to which the system must be distributed
• degree to which the system is event-driven
• computational intensity of key algorithms
• degree of parallel execution supported by the environment

•Modeling Processes map on independent threads of control
supported by environment
•Processes - stand-alone, heavyweight flow of control that may
be divided into individual threads
•Threads- lightweight flow of control which run in the context of
an enclosing process

•Mapping Processes onto the Implementation Environment
•Distributing Model Elements Among Processes

Process Model

Describe
Concurrency

Supplementary
Specifications

Architect
Architectural

Design
Describe

Concurrency
Describe

Distribution

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Example

composition
<<process>>

CourseCatalogSystemAccess

<<thread>>
CourseCache

<<process>>
CourseRegistrationProcess

<<thread>>
OfferingCache

dependency

1

1

1

1

<<process>>
StudentApplication

Class Diagram

<<process>>
CourseCatalogSystemAccess

<<thread>>
OfferingCache

<<thread>>
CourseCache

<<process>>
CourseRegistrationProcess

dependency

<<process>>
StudentApplication

Component Diagram

CourseCatalogSystemAccess

Remote

(from java.rmi)

CourseRegistrationProcess

Runnable

(from java.lang) OfferingCache

Thread
(from java.lang)

1

CourseCache

1

1

1

Mapping to Implementation

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Example

StudentApplication
<<process>>

MainStudentForm

(from Student Interface)

<<boundary>>

1 1

CourseRegistrationProcess
<<process>>

RegistrationController

(from Registration)

<<control>>

1 1

CourseCatalogSystemAccess
<<process>>

CourseCatalog

(from CourseCatalog)

<<subsystem>>
1 1

CourseCache

<<thread>>

1

1

Course

(from University Artifacts)

<<entity>>0..*1

OfferingCache
<<thread>>

1

1

CourseOffering

(from University Artifacts)

<<entity>> 0..*
1

Mapping Design Elements to Processes
UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

So Where Are We?

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Describe Distribution Overview

Describe
Distribution

Process Model

Implementation Model

Deployment Model

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Why Distribute?

•Reduce processor load

•Special processing requirements

•Scaling concerns

•Economic concerns

•Distribution Patterns
•Client/Server
• 3-tier

•Fat-Client

•Web Application

•Distributed Client/Server

•Peer-to-peer

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Distribution patterns
• Common services
• Presentation Services
• UI including, the visual appearance of output and how user input is handled

• Business Services
• Business rules and logic

• Data Services
• Data relationships, efficiency of storage, and data integrity

• Patterns
•One-Tier
• Two-Tier
• Fat Client -- client has its presentation and business services; server has

the data services
• Thin Client -- client has the presentation services; server has the business

and data services
• Three-tier
• client has presentation services; server has business services; separate

(logical) server has data services.
•Web-tier
• client accesses a web server that at least handles presentation services;

web server may have its own business and data services or it may utilize
one or more servers that handle business and data services

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Node #1
<<Node>>

Processor #1

<<Processor>>

Device #1
<<Device>>

Connection

Deployment Model Modeling Elements

•Node
•Physical run-time computational resource

•Processor

•Execute system software

•Device
•Support devices

•Typically controlled by a Processor

•Connection
•Communication mechanisms

•Physical medium

•Software protocol

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Deployment Diagrams

Component

Interface

Component

Node #1
<<Node>>

Node #2
<<Node>>

Object

<<connection type>>
Connection

Object

Process-1
Process-2
...

Process-1
Process-2
...

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Process-to-Node Allocation

External
Desktop PC

StudentApplication

Desktop PC

Registration
Server

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

Course
Catalog

<<legacy>>

Billing
System

<<legacy>>

<<Internet>>

<<Campus LAN>>

Dial up access
and behind
campus firewall

<<Campus LAN>>
<<Campus LAN>>

StudentApplication
ProfessorApplication
RegistrarApplication

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Design Distribution Pattern: Proxy

1

0..*

RemoteDistributedControllerProxyDistributedController

SecureUser

(from Secure Interfaces)

<<Interface>>1

0..*

+currentUser
+currentUser

RegistrationController
(from Student Activities)

<<controller>>
RemoteRegistrationController

(from Student Activities)

0..11

Naming
(from java.rmi)

<<utility>>

client server

secure user instance is created
on the client and passed to the
server when the remote
controller is created

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

 : RemoteTimecard

Lookup("RemoteTimecardController")

SomeForm
Controller

 : Naming : ProxyDistributed
Controller

3: new()

1: new(SecureUser)

2: lookup(String)

4: setSession(SecureUser)

5: DoSomething

6: DoSomething

All calls to the proxy controller are
forwarded to the remote controller

The connection between the
proxy and remote controller
is established when the
proxy controller is created

The current user context is
passed to the server for later
access checks

Design Distribution Pattern: Proxy

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Affect on Process Model Associations

MainStudentForm

(from Student Interface)

MaintainScheduleForm

(from Student Interface)

<<boundary>>
0..1

1

StudentApplication
<<process>>

1

1

RegistrationController

(from Student Activities)

<<control>>

1

1

RegistrationControllerProcess
<<process>>

RemoteRegistrationController

(from Student Activities)

<<control>>

0..11

1

1

StudentApplication

<<process>>
MainStudentForm

(from Student Interface)

<<boundary>>

1 1

CourseRegistrationProcess

<<process>>
RegistrationController

(from Registration)

<<control>>

1 1

CourseCatalogSystemAccess

<<process>>
CourseCatalog

(from CourseCatalog)

<<subsystem>>
1 1

CourseCache

<<thread>>

1

1

Course

(from University Artifacts)

<<entity>>0..*1

OfferingCache

<<thread>>

1

1

CourseOffering

(from University Artifacts)

<<entity>> 0..*
1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Design Iterations

•Architectural Design
•decide what the infrastructure is (the pieces/parts of the
architecture, if you will, and how they interact).

•Use Case Design
•determine the responsibilities of the system are allocated
to the pieces/parts.

•Subsystem and Class design
•detail the specifics of the pieces/parts.
• adjust the classes to the particular products in use, the
programming languages, distribution, adaptation to
physical constraints (e.g. limited memory), performance,
use of component environments such as COM or
CORBA, and other implementation technologies

• There is frequent iteration between Class Design,
Subsystem Design, and Use Case Design.

Architectural
Design

Describe
Concurrency

Describe
Distribution

Subsystem
Design

Class
Design

Use-Case
Design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Class Design Overview

Supplementary
Specifications

Architecture
Document

Analysis Classes

Design Model

Design
Guidelines

Use-Case Model

Use-Case Realization

Class
Design

Design
Classes

• ensure that the classes provide
the behavior the use-case
realizations require

• ensure that it is straightforward
to implement the classes

• handle non-functional
requirements related to classes

• incorporate the design
mechanisms used by the
classes

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 18

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Class Design Steps

•Create Initial Design Classes

•Define Operations

•Define States

•Define Attributes

•Define Associations

•Define Generalizations

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Class Design

• strategy:
•how the analysis classes will be realized in the
implementation

•how design patterns can be used to help solve
implementation issues

•how the architectural mechanisms will be realized in
terms of the defined design classes.

•boundary, control and entity stereotypes are most useful
during Use Case Analysis
• no longer need to make the distinction

•design patterns will be introduced, as needed,
throughout Class Design.

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 19

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

How Many Classes Are Needed?

•Many, simple classes means that each class
• encapsulates less of the overall system intelligence

• is more reusable

• is easier to implement

• A few, complex classes means that each class
• encapsulates a large portion of the overall system
intelligence

• is less likely to be reusable

• is more difficult to implement

• A class should have a single well focused purpose
• a class should do one thing and do it well!

• how does this relate to my earlier suggestion that
classes have multiple responsibilities?

•Class should have multiple
responsibilities

•Actions that object can perform
•Knowledge object maintains
•Non-functional requirements

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Designing Boundary Classes

•User interface (UI) boundary classes
•What user interface development tools will be used?

•How much of the interface can be created by the
development tool?

• “Reverse Engineering”

•External system interface boundary classes

•Usually model as subsystem

MainForm

SubWindow

DropDownListButton

MainWindow

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 20

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Design View
FatClass

- transientBookeeping

+ getCommonlyUsedAtt1()
+ getCommonlyUsedAtt2()
+ getRarelyUsedAtt3()
+ getRarelyUsedAtt4()

FatClassDataHelper
+ commonlyUsedAtt1
+ commonlyUsedAtt2

FatClassLazyDataHelper
+ rarelyUsedAtt3
+ rarelyUsedAtt4

1 1

Analysis View

FatClass
- transientBookeeping
+ commonlyUsedAtt1
+ commonlyUsedAtt2
+ rarelyUsedAtt3
+ rarelyUsedAtt4

<< entity >>

Designing Entity Classes

•Entity objects are often passive and persistent

•Performance requirements may force some re-factoring

1

0..*

RemoteDistributedControllerProxyDistributedController

SecureUser
(from Secure Interfaces)

<<Interface>>1

0..*

+currentUser
+currentUser

RegistrationController
(from Student Activities)

<<controller>>
RemoteRegistrationController

(from Student Activities)

0..11

Naming
(from java.rmi)

<<utility>>

client server

External
Desktop PC

StudentApplication

Registration
Server

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

<<Internet>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Designing Control Classes

•What Happens to Control Classes?
•Are they really needed?
• if just “pass-throughs” from the boundary classes to the
entity classes, they may be eliminated.

•Should they be split?
•might depend on distribution, e.g., proxy-remote

•Control classes may become true design classes for
any of the following reasons:
• they encapsulate significant control flow behavior,
• the behavior they encapsulate is likely to change
• the behavior must be distributed across multiple
processes and/or processors
• the behavior they encapsulate requires some transaction
management.

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 21

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Operations

•Messages displayed in interaction diagrams

• Implement rules

•Operations can lead to new class definitions

:ClassA

// Perform responsibility

:ClassB :ClassA

performResponsibility():result

:ClassB

Student
- name : String
- dateOfBirth : Date

+ canEnroll() : Boolean
hasTakenPrerequisites() : Boolean
hasScheduleConflict() : Boolean

every class should have:
•Manager functions
• Implementor functions
•Access functions
•Helping functions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Utility Classes

•What is a Utility Class?
•Utility is a class stereotype

•Used for a class that contains a collection of free
subprograms

•Why use it?

•To provide services that may be (re)useful in a variety of
contexts

•To wrap non object-oriented libraries or applications

 <<utility>>
 MathPack

-randomSeed randomSeed : long = 0: long = 0
-pi : double = 3.14159265358979-pi : double = 3.14159265358979

+sin (angle : double) : double
+cos (angle : double) : double
+random() : double

sql

+ bind()
+ execsql()
+ startTrans()
+ commit()
+ fetch()
+ getResults()

<<utility>>

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 22

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Identify and Define the States

•Significant, dynamic attributes

•Existence and non-existence of certain links

•explicitly define what it means to be in a particular state.

numStudents < 10

Open

The maximum number of students per course offering is 10

numStudents > = 10

Closed

Teaching On Sabbatical

Link to CourseOffering
Exists

Link to CourseOffering
Doesn’t Exist

Professor

CourseOffering

0..*

0..1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Identify the Events & Transitions

•Events
•One event may trigger the
sending of another event
•An activity can also send
an event to another object

•Transitions
•For each state, determine
what events cause
transitions to what states,
including guard conditions,
when needed
•Transitions describe what
happens in response to
the receipt of an event

State B

do: ^TargetObject.event

State A

event ^TargetObject.event

State A

State B

do: activity

event[condition] / action

State C

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 23

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Add Activities and Actions

•Activities
•Associated with a state
•Start when the state is
entered
•Take time to complete
• Interruptible

•Actions
•Associated with a
transition
•Take an insignificant
amount of time to
complete
•Non-interruptible

activity

State A

State B
do: activity

event[condition] / action

State C
entry: action

action

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Statechart

Initialize

do: Initialize course
 object

do: Assign professor
to course

Open

entry: Register a
 student

Closed

do: Report
course is full

Canceled

do: Send cancellation
notices

 addStudent/
 numStudents = 0

cancelCourse

RegistrationComplete

do: Generate class
 roster

cancelCourse
[numStudents = 10]

cancelCourse

registration closed[
numStudents > = 3]

registration closed[
numStudents < 3]

Unassigned

addStudent

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 24

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Statechart with Nested States
superstate

substate

Initialize Register

Open
entry: Register a student

Unassigned

do: Assign professor to course

Open

Closed Canceled

RegistrationComplete

do: Generate class roster

 Add student / numStudents = 0

[numStudents = 10]

cancelCourse

registration closed[
numStudents > = 3]

registration closed[
numStudents < 3]

addStudent

do: Report course is closed

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Example: Define Attributes

CourseOffering
- number : String = "100"
- startTime : Time
- endTime : Time
- days : Enum
/- numStudents : int: = 0

+ addStudent(studentSchedule : Schedule)

private to
support

encapsulation

derived attribute

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 25

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Derived attributes and relationships shown with / / in front of the name

Derived relationship (from Registers-for and Scheduled-for)

Constraint expression for derived attribute

Derived attribute

Derived attributes, associations, and roles

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Copyright © 1997 by Rational Software Corporation

Associations & Dependencies

• association

• visibility
• attribute (field) visibility: B is an attribute of A
• remains an association

• parameter visibility: B is a parameter of a method A
• becomes a dependency

• local visibility: B is a (non-parameter) local object in a method of A
• becomes a dependency

• global visibility: B is in some way globally visible
• becomes a dependency

A B

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 26

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Define Dependencies

+ notifyOfferingSelection(offering : CourseOffering)

Global visibility

Field visibility

 -> association

Local visibility
 -> dependency

MainStudentForm

+ registerForCourses()

(from Student Interface)

<<boundary>>

ICourseCatalog
(from CourseCatalog)

<<Interface>>

RemoteRegistrationController

+ getOfferings(curriculum)

+ saveSchedule(theSchedule : Schedule)

(from Registration)

Naming

+ lookup()

(from java.rmi)

RegistrationController

getOfferings(curriculum)
notifyOfferingSelection(offering : CourseOffering)
new(context : SecureUser)
saveSchedule(sched : Schedule)
cancelSchedule(sched : Schedule)

<<control>>

1

1

Schedule
<<entity>>

MaintainScheduleForm

displayOfferings()
selectCurriculum() : Curriculum
selectOffering() : CourseOffering
save()
cancel()
update(changedItem : ISubject)
displaySchedule()

<<boundary>>

1 1

0..1

1

0..1

0..1

Parameter visibility

 -> dependency

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Example: Composition

notifyOfferingSelection(offering : CourseOffering)

RegistrationController

getOfferings(curriculum)

new(context : SecureUser)

saveSchedule(sched : Schedule)

cancelSchedule(sched : Schedule)

<<control>>MaintainScheduleForm

displayOfferings()

selectCurriculum() : Curriculum

selectOffering() : CourseOffering

save()

cancel()

update(changedItem : ISubject)

displaySchedule()

<<boundary>>

1 1

association relationship has
been refined into a composition
relationship.
MSF represents a session
RC never exists outside of session

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 27

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Truck

tonnage

GroundVehicle

weight
licenseNumber

Car

owner

register()

getTax()

Person

0..*

Trailer

1
ancestor

decendent

generalization

size

Generalization (Inheritance)

• One class inherits from another

• not just finding common attribute, operations and relationships
• more about the responsibilities and essence of the classes.
• avoid “skyscrapers”; the hierarchies should look like small,

independent “forests

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

What is Polymorphism?

•The ability to hide many
different implementations
behind a single interface

•Use generalization to
support polymorphism

Tube

Pyramid

Cube

Shape

Draw
Move
Scale
Rotate

<<interface>>

Animal

talk ()

Lion Tiger

talk () talk ()

Without Polymorphism With Polymorphism

if animal = “Lion” then
do the Lion talk

else if animal = “Tiger” then
do the Tiger talk

end

do the Animal talk

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 28

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Define Generalizations

MaintainScheduleForm
(from Student Interface)

<<boundary>>

ReportCardForm
(from Student Interface)

<<boundary>>

MainStudentForm
(from Student Interface)

<<boundary>>

1

0..1

1

0..1

MaintainStudentForm
(from Registrar Interface)

<<boundary>>
MaintainProfessorForm

(from Registrar Interface)

<<boundary>>
CloseRegistrationForm

(from Registrar Interface)

<<boundary>>

MainRegistrarForm
(from Registrar Interface)

<<boundary>>

1

0..*

1

0..*

1

0..1 (from Professor Interface)
SubmitGradesForm

<<boundary>>
SelectCoursesForm

(from Professor Interface)

<<boundary>>

MainProfessorForm
(from Professor Interface)

<<boundary>>

11

0..1 0..1

MainApplicationForm

(from GUI Framework)

<<boundary>>
LogonForm

(from GUI Framework)
1 0..1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 29

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Strategy - where are we?

•made an initial attempt at defining the architecture
• defined the major elements of our system
• the subsystems, their interfaces, the design classes, the
processes and threads
• relationships & how these elements map into the hardware on
which the system will run.

•Now, concentrate on
•making sure that there is consistency from beginning to end of
use case implementation, i.e., that nothing has been missed
(i.e., this is where we make sure that what we have done in
the previous design activities is consistent with regards to the
use case implementation).

•we do some Use Case Design before Subsystem Design
• Subsystem Design, Class Design and Use Case Design
activities are tightly bound and tend to alternate between one
another.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Design Element Interactions
(Register For Courses - Set-Up)

Give current user context
wide open access

No Conflict

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)
8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 30

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

serverclient

Design Classes Relationships

1

MainStudentForm

+ registerForCourses()

(from Student Interface)

<<boundary>>

ICourseCatalog

(from CourseCatalog)

<<Interface>>

RemoteRegistrationController

+ getOfferings(curriculum)
+ notifyOfferingSelection(offering : CourseOffering)
+ saveSchedule(theSchedule : Schedule)

(from Registration)

1

1

Naming

+ lookup()

(from java.rmi)

RegistrationController

getOfferings(curriculum)
notifyOfferingSelection(offering : CourseOffering)
new(context : SecureUser)
saveSchedule(sched : Schedule)
cancelSchedule(sched : Schedule)

<<control>>

1

1

Schedule
<<entity>>

1

0..1

MaintainScheduleForm

displayOfferings()
selectCurriculum() : Curriculum
selectOffering() : CourseOffering
save()
cancel()
update(changedItem : ISubject)
displaySchedule()

<<boundary>>

1 1

0..1

0..1

0..1

View of Participating Classes (VOPC) diagram.

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

Register for Courses

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Deployment

Works similar to Observer.
Cache will notify when Course
has been retrieved

Give current user context
wide open access

No Conflict

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)
8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

Subsystem Interface

Client Server

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 31

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

More steps

•Annotate the sequence diagrams

•Unify classes & subsystems

•merge similar model elements

•use inheritance to abstract model elements

 : Actor1 : ClassA : ClassB

1: Do Something

2: Do Something More
Scripts can be used to
describe the details
surrounding these
messages.

Notes can include
more information
about a particular
diagram element

Script

Note

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 32

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Strategy -- where are we?

• have defined subsystems, their interfaces, and their
dependencies as “containers” of complex behavior that, for
simplicity, we treat as a ‘black box’
•made an initial cut at some design classes, which have been
allocated to subsystems
• need to flesh-out the details of the internal interactions
•what classes exist in the subsystem to support?
• how do they collaborate to support, the responsibilities
documented in the subsystem interfaces?
• In Subsystem Design, we look at the responsibilities of the
subsystems in detail, defining and refining the classes that are
needed to implement those responsibilities, refining
subsystem dependencies, as needed. The internal
interactions are expressed as collaborations of classes and
possibly other components or subsystems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Strategy

•need to do some Use Case Design before Subsystem
Design

•after Analysis and Architectural Design

•usually only have sketchy notions of responsibilities of
classes and subsystems

•details need to get worked out in Use Case Design,
before one is really ready to design the classes and
subsystems

•Reminder: there is frequent iteration between Use Case
Design, Subsystem Design and Class Design.

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 33

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Subsystem Design Overview

Use-Case Realization

Design Subsystems and Interfaces

Subsystem
Design

Use Case Realization

Design Subsystems and Interfaces

Design Classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Interface and Subsystem

•What is an interface?
•a model element which defines a set of behaviors (a set
of operations) offered by a classifier model element
(specifically, a class, subsystem or component)

•What is a subsystem?

•Contains other model elements and has behavior

•Realizes one or more interfaces

<<subsystem>>
Finance System

Financial
Transaction

FinancialTransaction
<<Interface>>

realizes
<<subsystem>>
Finance System

Recall: packages provide no behavior; they are simply containers of things which
provide behavior

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 34

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Distribute Subsystem Responsibilities

• Identify or reuse existing classes and/or subsystems

•Allocate subsystem responsibilities to classes and/or
subsystems

• Incorporate the applicable mechanisms (e.g.,
persistence, distribution, etc.)

•Document collaborations with “interface realization”
diagrams
•1 or more sequence diagrams per interface operation

•Revisit Architectural Design
•Adjust subsystem boundaries and/or dependencies, as
needed

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Subsystem design

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)
8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

Subsystem Interface

Client Server

Flesh out

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 35

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Local Subsystem Interaction
:CourseOffering
List

Do until fetch
returns Not
Found status

The string represents
 some criteria.
Sometimes a more
robust solution with
a query object is
used.

Get attribute values
from raw data

 : Course
Offering

CourseCatalog
Client

 : CourseCatalog : DBCourse
Offering

 : RDBMSTransaction : sql

1: getCourseOfferings(string)

5: getCourseOfferings(string)

9: parseResults()

10: new(offeringId, number, startTime, endTime, days, courseId)

2: new

3: start()
4: startTrans()

6: bind()

7: execsql(String)

8: fetch()

11: add (CourseOffering)

12: commit()
13: entTrans()

6: new()

CourseCatalog Interaction
•“looks inside” the subsystem
•one or more per subsystem

RDBMS
Retrieve

untyped object
because we don’t care
who the client is.

no time to discuss DB
design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Document Subsystem Elements

CourseCatalog

+ getOfferings()

<<subsystem>>

sql

+ bind()
+ execsql()
+ startTrans()
+ commit()
+ fetch()
+ endTrans()

(from RelationalDBMS)

<<utility>>

RDBMSTransaction

+ start()
+ commit()
+ rollback()
+ new()

(from RelationalDBMS)

DBCourseOffering

+ getCourseOfferings()
+ parseResults()11

CourseOffering

+ getCourseId()
+ addStudent()
+ new()
+ getNumber()
+ getStartTime()
+ getEndTime()
+ getDays()
+ getNumStudents()
+ removeStudent()
+ update()

(from University Artifacts)

<<entity>>
0..*

1

0..*

CourseOfferingList

+ new()
+ add()

(from University Artifacts)

List
(from Base Reuse)

<CourseOffering>
<<bind>>

ICourseCatalog

1

0..*

create one or more class
diagrams showing the
elements contained by the
subsystem, and their
associations with one
another

A state diagram may be
needed to document the
possible states the
subsystem can assume

CMPSCI520/620 Design

Rick Adrion 2004 (except where noted) 36

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Client Support
<<subsystem>>

Server Support
<<subsystem>>

More
flexible

Server

Client Support
<<subsystem>>

Server Support
<<subsystem>>

Server
<<Interface>>Client

(from Client Support)

Describe Subsystem Dependencies

•Subsystem layering using direct dependency

•Subsystem layering using interface dependency

Not
recommended

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2004ALL 2004

Describe Subsystem Dependencies

ICourseCatalog
Registration CourseCatalog

<<subsystem>>

University
Artifacts

RelationalDBMS

