
CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

18-Design

•Readings
• OOAD Using the UML
Copyright  1994-1998 Rational Software, all rights reserved

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Analysis and Design Workflow

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Worker Responsibilities

Architect

Software Architecture
Document

Design Model

Designer

Use Case
Realization

Package/
Subsystem Class

Database Designer
Data Model

Architecture
Reviewer

Design
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So what do we do next?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Analysis Overview

Use-Case Model

Use-Case Realization

Supporting Documents
 Architecture Document
 Glossary
 Supplemental Specs

Analysis Classes

Design ModelAnalysis Model

OR

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is a Use-Case Realization?

Use Case Use Case Realization

<<realizes>>

Class Diagrams

Sequence Diagrams Collaboration
Diagrams

Use Case Realization
Documentation

Use Case Model Design Model

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Analysis Steps

•Supplement the Descriptions of the Use Case

•For each use case realization
•Find Classes from Use-Case Behavior

•Distribute Use-Case Behavior to Classes

•For each resulting analysis class
•Describe Responsibilities

•Describe Attributes and Associations

•Qualify Analysis Mechanisms

•Unify Analysis Classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

University Course Registration System

Submit Grades

Professor

View Report Card

Select Courses to Teach

Student

Course Catalog

Register for Courses

Maintain Student Information

Maintain Professor InformationRegistrar

Billing SystemClose Registration

Login

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is an Analysis Class?

<<entity>>

<<boundary>>

<<control>>

<<control>>

<<boundary>>

<<entity>>

System
boundary

Use-case
behavior
coordination

System
information

•Early conceptual model
•Functional requirements
•Model problem domain

• Likely to change
•Boundary
• Information used
•Control logic

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Roles

Customer

Boundary Class -- Model
interaction between the
system and its environment

Entity Class -- Store and
manage information in the
system

Control Class -- Coordinate
the use case behavior

Collaboration Diagram

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Entity & Control Classes

Course
(from University Artifacts)

CourseOffering
(from University Artifacts)

Grade
(from University Artifacts)

Student
(from University Artifacts)

Professor
(from University Artifacts)

Schedule
(from University Artifacts)

RegistrationController
(from Registration)

SubmitGradesController
(from Student Evaluation)

SelectCoursesToTeachController
(from Registration)

MaintainProfessorController
(from Registration)

MaintainStudentController
(from Registration)

ReportCardController
(from Student Evaluation)

CloseRegistrationController
(from Registration)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Analysis Classes

Student Course Catalog SystemRegister for Courses

Use Case Model
Analysis Model

RegistrationController

Schedule

MainForm

CourseCatalogSystem

MaintainScheduleForm

For each use case flow of events:
• Identify analysis classes
• Allocate use-case responsibilities to analysis classes
• Model analysis class interactions in interaction diagrams

:Client

:Supplier

1: PerformResponsibility

Client Object

Supplier Object

Message

Link

Collaboration Diagrams

1: PerformResponsibility

Client Object Supplier Object

Message

:Client :Supplier

Focus of Control

Reflexive
Message

Object Lifeline

Sequence Diagrams

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Collaboration Diagram

 : Student

 : Maintain
ScheduleForm

 : Registration
Controller

:Schedule

 : CourseCatalog
System

 : Main
Form

5: // select 4 primary and 2 alternate offerings()
1: // select maintain schedule()

3: // get course offerings()
6: // add courses to schedule()

7: // create with offerings()

2: // open schedule form()

4: // get course offerings(
)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Sequence Diagram

 : Student : Maintain
ScheduleForm

 : Registration
Controller

 : Schedule : MainForm : CourseCatalog
System

5: // select 4 primary and 2 alternate offerings()

6: // add courses to schedule()

7: // create with offerings()

1: // select maintain schedule()

2: // open schedule form()

3: // get course offerings()

4: // get course offerings()

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Collaboration Vs Sequence Diagrams

• Collaboration Diagrams
• Use in Use Case

Analysis
• Show relationships in

addition to interactions
• Better for visualizing

patterns of collaboration
• Better for visualizing all

of the effects on a given
object

• Easier to use for
brainstorming sessions
(reordering of messages
easier)

• Sequence Diagrams
• Use in Use Case Design

• Show the explicit
sequence of messages

• Better for visualizing
overall flow

• Better for real-time
specifications and for
complex scenarios

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Responsibilities

•What are responsibilities?

•How do we find them?

Class Name

Responsibility 1

Responsibility 2

Responsibility N

•First cut at class operations
•Actions that object can perform
•Knowledge object maintains
•Non-functional requirements

•Class should have multiple responsibilities

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities

RegistrationController

// add courses to schedule()

<<control>>

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

Schedule

// create with offerings()

<<entity>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Attributes, Association, Aggregation

ClassName
<<stereotype>>

Attribute : Type = InitValue
Attribute : Type = InitValue
Attribute : Type = InitValue

CourseOffering
<<entity>>

number :String=“100”
startTime : Time
endTime: Time
days: enum

Attribute

Course
Reflexive
association

is a pre-requisite of
Simple
association

CourseOffering

Schedule

Student

Association

Whole/aggregate part
0..4

0..2

CourseOfferingSchedule

primaryCourses

alternateCourses

0..*

0..*

0..*1

Student

Aggregation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Finding Relationships

:Client :Supplier

1: PerformResponsibility

Link

Client Supplier

Association

Collaboration
Diagram

Class
Diagram

0..*

Prime suppliers

0..*

Client Supplier

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities from a
Collaboration Diagram

 : Student

 : Maintain
ScheduleForm

 : Registration
Controller

:Schedule

 : CourseCatalog
System

 : Main
Form

5: // select 4 primary and 2 alternate offerings()

1: // select maintain schedule()

3: // get course offerings()
6: // add courses to schedule()

7: // create with offerings()

2: // open schedule form()

4: // get course offerings()

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

RegistrationController

// add courses to schedule()

<<control>>

Schedule

// create with offerings()

<<entity>>

Register for Courses use case

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities from a
Sequence Diagram

 : Student : Maintain
ScheduleForm

 : Registration
Controller

 : Schedule : MainForm : CourseCatalog
System

5: // select 4 primary and 2 alternate offerings()

6: // add courses to schedule()

7: // create with offerings()

1: // select maintain schedule()

2: // open schedule form()

3: // get course offerings()

4: // get course offerings()

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

RegistrationController

// add courses to schedule()

<<control>>

Schedule

// create with offerings()

<<entity>>

Register for Courses use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What are Roles?

•The “face” that a class plays in the association

Pre-requisites

Instructor

Course

CourseOffering Professor Department

Department head

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Finding Relationships

MainForm

// select maintain schedule()

<<boundary>> MaintainScheduleForm

+ // open()
+ // select 4 primary and 2 alternate offerings()

<<boundary>>

1 0..11

CourseCatalogSystem

// get course offerings()

<<boundary>>
1 0..*

RegistrationController

// add courses to schedule()
// get course offerings ()

<<control>>

1

1

Schedule

// create with offerings()

<<entity>>

1

0..1

 : Student

 : Maintain
ScheduleForm

 : Registration
Controller

:Schedule

 : CourseCatalog
System

 : Main
Form

5: // select 4 primary and 2 alternate offerings()

1: // select maintain schedule()

3: // get course offerings()
6: // add courses to schedule()

7: // create with offerings()

2: // open schedule form()

4: // get course offerings()

• MaintainScheduleForm does not
make any sense outside of the
context of a particular use
session.

• Only one MaintainScheduleForm
can be active at any one time, or
none may be active

• one controller for each Schedule
being created (e.g., each Student
registration session).

• only one CourseCatalogSystem
instance for possibly many
MaintainScheduleForms

• serializes access

• Many MaintainScheduleForms
can be active at one time (for
different sessions/students).

legacy system.

View of Participating Classes (VOPC) diagram.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architectural Design Overview

Supplementary
Specifications

Architecture Document

Analysis Classes

Design Model

Design
Guidelines

Glossary

Architectural
Design

Design Model

Design
Guidelines

Classes and
Subsystems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Classes

In analysis, we had one
application with many

different forms …

LogonForm
<<boundary>>

CloseRegistrationForm
(from Registrar Interface)

<<boundary>>MaintainScheduleForm
(from Student Interface)

<<boundary>>

MaintainProfessorForm
(from Registrar Interface)

<<boundary>>

MaintainStudentForm
(from Registrar Interface)

<<boundary>>

ReportCardForm
(from Student Interface)

<<boundary>>

SelectCoursesForm
(from Professor Interface)

<<boundary>> SubmitGradesForm
(from Professor Interface)

<<boundary>>

MainForm
<<boundary>>

1

0..1
0..1

1

1 0..1

1

0..1

0..1

1

0..1

1

0..1

1

0..1

1

0..10..1

During design, some
analysis classes may

be split, joined,
removed, etc.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Classes (cont.)

In design, the one
application becomes

three applications, each
with it’s own forms ...

MaintainScheduleForm

(from Student Interface)

<<boundary>>

ReportCardForm

(from Student Interface)

<<boundary>>

MainStudentForm

(from Student Interface)

<<boundary>>

1

0..1

1

0..1

MaintainStudentForm

(from Registrar Interface)

<<boundary>>
MaintainProfessorForm

(from Registrar Interface)

<<boundary>>
CloseRegistrationForm

(from Registrar Interface)

<<boundary>>

MainRegistrarForm

(from Registrar Interface)

<<boundary>>

1

0..*

1

0..*

1

0..1

(from Professor Interface)

SubmitGradesForm
<<boundary>>

SelectCoursesForm

(from Professor Interface)

<<boundary>>

MainProfessorForm

(from Professor Interface)

<<boundary>>

11

0..1 0..1

LogonForm
<<boundary>>

CloseRegistrationForm
(from Registrar Interface)

<<boundary>>MaintainScheduleForm
(from Student Interface)

<<boundary>>

MaintainProfessorForm
(from Registrar Interface)

<<boundary>>

MaintainStudentForm
(from Registrar Interface)

<<boundary>>

ReportCardForm
(from Student Interface)

<<boundary>>

SelectCoursesForm
(from Professor Interface)

<<boundary>> SubmitGradesForm
(from Professor Interface)

<<boundary>>

MainForm
<<boundary>>

1

0..1
0..1

1

1 0..1

1

0..1

0..1

1

0..1

1

0..1

1

0..1

1

0..10..1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Name

Package Name

Classes & packages

•What is a class?
•A description of a set of objects that share the same
responsibilities, relationships, operations, attributes, and
semantics.

•What is a package?
•A general purpose mechanism for organizing elements
into groups

•A model element which can contain other model
elements

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

A

<<subsystem>>

PackageB

Class B1

Class B2

Client Class

Encapsulation is the key! But note for packages
dependencies should be on public classes

Packages Vs. Subsystems

• Packages provide no
behavior
• Packages are simply

containers of things
which provide
behavior
• Packages help

organize and control
sets of classes that
are needed in
common, but which
aren’t really
subsystems
• Dependencies are on

specific elements
within the Package

• Subsystems provide
behavior, packages
do not

• Subsystems
completely
encapsulate
their contents

• Dependencies are
on the interface of
the subsystem

• Subsystems are
easily replaceable

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling Design Subsystems

CourseCatalog
<<subsystem>>

(from Business Objects)ICourseCatalog

(from CourseCatalog)

FinanceSystem
<<subsystem>>

(from Business Services)
IFinance
System

(from FinanceSystem)

ICourseCatalog

CourseCatalog
<<subsystem>>

CourseCatalog
<<subsystem>>

<<subsystem>> package =
package with a stereotype
of <<subsystem>>

<<subsystem>> proxy class =
class with a stereotype of
<<subsystem>>

Note: Rose does not fully
support subsystems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

DesignClass

Subsystem
<<subsystem>>

DesignClass

DesignClass

DesignClass

Subsystem
<<subsystem>>

Subsystem
<<subsystem>>

Design Classes and Subsystems

• Identifying Design Classes
• analysis class is simple and already represents a single
logical abstraction-> design class
• entity classes survive relatively intact into design.

• Identifying Subsystems
• analysis class is complex, such that it appears to embody
behaviors that cannot be the responsibility of a single class
acting alone, or the responsibilities may need to be reused,
the analysis class should be mapped to a subsystem
•may take a few iterations to stabilize.

• Analysis classes which evolve into
subsystems might include:
• complex services and/or utilities
• user interfaces and external
system interfaces.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design goals

•Properties of a system which make it flexible,
maintainable
•Abstraction

•Modularity
•Cohesion
• how clearly-defined a particular module or procedure is

• a module with high cohesion does one or a few things exceedingly well.

•Coupling
• strength of connections between modules

•what information needs to be communicated between modules

•Goal: High cohesion, low coupling

• Information hiding

•Complexity

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Partitioning Considerations
• Coupling and cohesion
• design elements with tight coupling/cohesion (e.g., lots of relationships and

communication) should be should be placed in the same partition
• design elements with loose coupling/cohesion should be placed in separate

partitions.
• User organization
• not a good long-term strategy because the organizational structure may change
• you want the software and the business organization to be independent

• System distribution
• partitioning to reflect distribution can help to visualize the network communication

which will occur as the system executes., but can make the system more difficult to
change if the Deployment Model changes significantly.

• Secrecy & access control
• functionality requiring special clearance must be partitioned into subsystems that

will be developed independently, with the interfaces to the secrecy areas the only
visible aspect of these subsystems.

• Variability
• partition “optional” functionality

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Typical Layering Approach

General
functionality

Specific
functionality

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Goal is to reduce coupling and to ease maintenance effort

Layering Guidelines

•Visibility
•Dependencies only within current
layer and below

•Volatility
•Upper layers affected by
requirements changes
•Lower layers affected by
environment changes

•Generality
•More abstract model elements in
lower layers

•Number of layers
•Small system: 3 layers
•Complex system: 5-7 layers

User Interface
<<layer>>

Business Services
<<layer>>

Business Objects
<<layer>>

System
<<layer>>

Middleware
<<layer>>

java

global

Base Reuse

global

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Layers & Visibility

User Interface
<<layer>>

Business Services
<<layer>>

Business Objects
<<layer>>

System
<<layer>>

Middleware
<<layer>>

java

global

Base Reuse

global

PackageB

Class B1

Class B2

PackageA

Class A1

Class A3

Class A2
A

B

Public visibility

Private visibility

Only public
classes can be

referenced outside
of the owning

package

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Layering

•Concentrate on encapsulating change

•Package dependencies are not transitive, thus one layer
can shield another from change

•Upward dependencies should be resolved in design
•e.g., call backs can be replaced with the “subscribes to”
association whose source is a class (called the
subscriber) and whose target is a class (called the
publisher)
• subscriber specifies a set of events and is notified when one
of those events occurs in the target

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Back to layers

Registrar
Interface

GUI Framework

Student
Interface

Secure
Interfaces

(from Security)

The applications need to
retain the current user's
context

Professor
Interface

SecureUser
<<interface>>

+ getUserId() : UniqueId

(from Secure Interfaces)

+ getAccess(SecureData) : SecurityAccess
+ setAccess(SecureData, SecurityAccess)

(from GUI Framework)
LogonForm

+ open()

0..1

1

MainApplicationForm

+ start()

(from GUI Framework)

0..1

1

A bi-directional relationship exists between
the GUI Framework and the other interface
packages because the Logon Form needs
to be able to notify the application forms

Window
(from java.awt)

View

+ open()
+ refresh()
+ close()
+ update()

1

0..*

1

0..*

inherits frominherits from

inherits from

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

User Interface Layer: Main Forms

MaintainScheduleForm
(from Student Interface)

<<boundary>>

ReportCardForm
(from Student Interface)

<<boundary>>

MainStudentForm
(from Student Interface)

<<boundary>>

1

0..1

1

0..1

MaintainStudentForm
(from Registrar Interface)

<<boundary>>
MaintainProfessorForm

(from Registrar Interface)

<<boundary>>
CloseRegistrationForm

(from Registrar Interface)

<<boundary>>

MainRegistrarForm
(from Registrar Interface)

<<boundary>>

1

0..*

1

0..*

1

0..1 (from Professor Interface)
SubmitGradesForm

<<boundary>>
SelectCoursesForm

(from Professor Interface)

<<boundary>>

MainProfessorForm
(from Professor Interface)

<<boundary>>

11

0..1 0..1

MainApplicationForm

(from GUI Framework)

<<boundary>>
LogonForm

(from GUI Framework)
1 0..1inherit from the MainApplicationForm

 that came from the GUI framework

LogonForm was
reverse engineered

From GUI framework

aggregation relationships
to be addressed
in Class Design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More Layers

Database
(from OODBMS)

Objectstore
(from OODBMS)

OODBMSTransaction
(from OODBMS)

IPersistent
(from OODBMS)

<<Interface>>

sql
(from RelationalDBMS)

<<utility>>

RDBMSTransaction
(from RelationalDBMS)

Relational
DBMS

OODBMS

Middleware

UniqueId
(from Secure Interfaces)

SecurityAccess
(from Secure Interfaces)

SecureData

(from Secure Interfaces)

SecureUser

(from Secure Interfaces)

UserSecurityContext
(from Security Manager)

Security
Secure

InterfacesSecurity
Manager

<<subsystem>>Contains

2 packages

System

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

So Where Are We?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Concurrency Overview

Supplementary
Specifications

Describe
Concurrency

Process Model

• the independent threads of control are
identified and the identified model elements
(subsystems and classes) are mapped to
these threads of control.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

•Processes may be modeled using
•Active classes (Class Diagrams) and Objects
(Interaction Diagrams)
• “owns” it’s own thread of execution and can initiate control activity
• may execute in parallel (i.e., concurrently) with other active classes.

•Components (Component Diagrams)

•Relationships

<<stereotype>>
Component Name

<<stereotype>>
Name Process1.exe

<<stereotype>>
Name

<<stereotype>>
Name

Modeling Processes

<<stereotype>> can be
 <<process>> or <<thread>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling Processes: Class Diagram

composition

dependency

<<process>>
CourseCatalogSystemAccess

<<thread>>
CourseCache

<<process>>
CourseRegistrationProcess

<<thread>>
OfferingCache

1

1

1

1

<<process>>
StudentApplication

CourseCache and OfferingCache
are used to asynchronously
retrieve items from the legacy
system. This will improve
response time.

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Mapping Design Elements to
Processes

StudentApplication

<<process>>
MainStudentForm

(from Student Interface)

<<boundary>>

1 1

CourseRegistrationProcess

<<process>>
RegistrationController

(from Registration)

<<control>>

1 1

CourseCatalogSystemAccess

<<process>>
CourseCatalog

(from CourseCatalog)

<<subsystem>>
1 1

1

CourseCache

<<thread>>

1

Course

(from University Artifacts)

<<entity>>0..*1

OfferingCache

<<thread>>

1

1

CourseOffering

(from University Artifacts)

<<entity>> 0..*
1

• The classes associated
with the individual user
interfaces were mapped to
the application processes.
• The classes associated

with the individual
business services were
mapped to the controller
processes.
• The classes associated

with access to the external
systems were mapped to
the access processes
• For the threads,

composition is used to
show what design
elements have been
mapped to them.

Proxy
due to Rose

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

So Where Are We?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Distribution Overview

Describe
Distribution

Process Model

Implementation Model

Deployment Model

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why Distribute?

•Reduce processor load

•Special processing requirements

•Scaling concerns

•Economic concerns

•Distribution Patterns
•Client/Server
• 3-tier

• Fat-Client

•Web Application

•Distributed Client/Server

•Peer-to-peer

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Distribution patterns
• Common services
• Presentation Services
• UI including, the visual appearance of output and how user input is handled

• Business Services
• Business rules and logic

• Data Services
• Data relationships, efficiency of storage, and data integrity

• Patterns
• One-Tier
• Two-Tier
• Fat Client -- client has its presentation and business services; server has

the data services
• Thin Client -- client has the presentation services; server has the business

and data services
• Three-tier
• client has presentation services; server has business services; separate

(logical) server has data services.
•Web-tier
• client accesses a web server that at least handles presentation services;

web server may have its own business and data services or it may utilize
one or more servers that handle business and data services

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Node #1
<<Node>>

Processor #1

<<Processor>>

Device #1
<<Device>>

Connection

Deployment Model Modeling Elements

•Node
•Physical run-time computational resource

•Processor
•Execute system software

•Device
•Support devices

•Typically controlled by a Processor

•Connection
•Communication mechanisms

•Physical medium

•Software protocol

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Deployment Diagrams

Component

Interface

Component

Node #1
<<Node>>

Node #2
<<Node>>

Object

<<connection type>>
Connection

Object

Process-1
Process-2
...

Process-1
Process-2
...

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Process-to-Node Allocation

External
Desktop PC

StudentApplication

Desktop PC

Registration
Server

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

Course
Catalog

<<legacy>>

Billing
System

<<legacy>>

<<Internet>>

<<Campus LAN>>

Dial up access
and behind
campus firewall

<<Campus LAN>>
<<Campus LAN>>

StudentApplication
ProfessorApplication
RegistrarApplication

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Distribution Pattern: Proxy

1

0..*

RemoteDistributedControllerProxyDistributedController

SecureUser
(from Secure Interfaces)

<<Interface>>1

0..*

+currentUser
+currentUser

RegistrationController
(from Student Activities)

<<controller>>
RemoteRegistrationController

(from Student Activities)

0..11

Naming
(from java.rmi)

<<utility>>

client server
secure user instance is created
on the client and passed to the
server when the remote
controller is created

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

 : RemoteTimecard

Lookup("RemoteTimecardController")

SomeForm
Controller

 : Naming : ProxyDistributed
Controller

3: new()

1: new(SecureUser)

2: lookup(String)

4: setSession(SecureUser)

5: DoSomething

6: DoSomething

All calls to the proxy controller are
forwarded to the remote controller

The connection between the
proxy and remote controller
is established when the
proxy controller is created

The current user context is
passed to the server for later
access checks

Design Distribution Pattern: Proxy

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

design
view

deployment
view

process
view

implementation
view

Use -Case
View

Use cases

Components

Classes, interfaces,
collaborations

Active classes Nodes

Organization
Package, subsystem

Dynamics
Interaction

State machine

The Rational 4+1 Views

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Affect on Process Model Associations

MainStudentForm
(from Student Interface)

MaintainScheduleForm
(from Student Interface)

<<boundary>>
0..1

1

StudentApplication
<<process>>

1

1

RegistrationController
(from Student Activities)

<<control>>

1

1

RegistrationControllerProcess
<<process>>

RemoteRegistrationController
(from Student Activities)

<<control>>

0..11

1

1

