CMPSCI520/620 Design

CONPUTER 18-Design

*Readings
« OOAD Using the UML
Copyright © 1994-1998 Rational Software, all rights reserved

UNIVERSITY- OF MASSACHUSETTS: AMHE]

COMPUTER Worker Responsibilities

TS

Use Case
Realization

—

Package/
Subsystem G359

O
D\

Architect

Design Model

Software Architecture O

Document /y

Database Designer

*

Data Model .

UNIVERSITY- OF MASSACHUSETTS AMHE!

©Rick Adrion 2003 (except where noted)

l\i_—’) \
_ %/
Designer
v
/0

—/ Architecture

Reviewer

o
[

/
*

’ ﬁ
Design
Reviewer

COMPUTER Analysis and Design Workflow

UNIVERSITY-OF MASSACHUSETTS: AMHER§

o
L

Architect

Architectural
Analysis

Architectural Describe Describe
Design Concurrency Distribution

’

Review the
Architecture

/

Architecture
Reviewer

>
Designer

\

@/ ¢

Use-Case
Analysis

Subsystem
Design

Use-Case
Design

Class
Design

Review the
Design

o
L

Design
Reviewer

Database
Designer

Database
Design

CNIE! So what do we do next?

o
)

Architect

Architectural
Analysis

Architectural Describe Describe
Design Concurrency ~Distribution

—i»

Review the
Architecture

Architecture
Reviewer

o
LJ

Designer

Use-Case
Analysis

Subsystem
Design

Use-Case
Design

9
|.»

Class
Design

Review the
Design

o
L

Design
Reviewer

Database
Designer

Database
Design

UNIVERSITY: OF. MASSACHUSETTS AMHE!

CMPSCI520/620 Design

CONHE! Use Case Analysis Overview

D

SO o000

Analysis Classes

— pporting D
B Architecture Document
Glossary
Supplemental Specs

Use-Case Realization Analysis Model Design Model

[
-

UNIVERSITY. OF MASSACHUSETTS: ANHERST:

CNINE Use Case Analysis Steps

* Supplement the Descriptions of the Use Case
* For each use case realization
¢Find Classes from Use-Case Behavior
«Distribute Use-Case Behavior to Classes
e For each resulting analysis class
*Describe Responsibilities
eDescribe Attributes and Associations
*Qualify Analysis Mechanisms
« Unify Analysis Classes

UNIVERSITY- OF MFASSACHUSETTS -AMHER!

©Rick Adrion 2003 (except where noted)

COMPUTER What is a Use-Case Realization?
Use Case Model Design Model
-l screalizes>> . T
Use Case Use Cas; _R;alization

oy *O\,\Q
=5 Sequence Diagrams Collaboration
- jagrams

Use Case Realization
Documentation

Class Diagrams

UNIVERSITY-OF MASSACHUSETTS: AMHER_S

““!‘!-'IE'.IE'E‘ University Course Registration System

/)
8

Student

— \9\4,@

O Registrar Maintain Professor Information
View Report Card

Maintain Student Information
Register for CourN%
Course Catalog / \

P Close Registration Billing System
Select Courses to Teach

ProfessNO

Submit Grades

UNIVERSITY OF MASSACHUSETTS AMHERS

CMPSCI520/620 Design

CONPUTER What is an Analysis

@ <<boundary>>

<<boundary>>

Class?

« Early conceptual model
¢Functional requirements
*Model problem domain

¢ Likely to change
*Boundary
«Information used
« Control logic

<<control>>

A
Use-case @

behavior <<control>>
coordination

System
boundary

System
information

O

<<entity>>

UNIVERSITY- OF MASSACHUSETTS AMHERST

<<entity>>

O @)

Course CourseOffering

@,

@)

Student Professor

O

O

CONPUIER Example: Entity & Control Classes

Q

Grade

(from University Artifacts) (from University Artifacts) (from University Artifacts)

Q

Schedule

(from University Artifacts) (from University Artifacts) (from University Artifacts)

O

RegistrationController Cl i ontroller
(from Registration) (from Registration)

@)

O

(from Registration) (from Regjstration)

O

SubmitGradesController
(from Student Evaluation)

UNIVERSITY- OF MASSACHUSETTS -AMHERS:

©Rick Adrion 2003 (except where noted)

Maintair ontroller
(from Registration)

MaintainProfessorController SelectCoursesToTeachController ReportCardController

(from Student Evaluation)

COMPUIER The Roles

Boundary Class -- Model

’ S interaction between the :
system and its environment Control Class -- Coordinate
the use case behavior

x

Customer

\

Entity Class -- Store and \ .
manage information in the ST T TS T T T
system

UNIVERSITY-OF MASSACHUSETTS AMHERST:

CONPUIER Analysis Classes

O KO

Student Register for Courses Course Catalog System

Use Case Model

For each use case flow of events:
« |dentify analysis classes

« Allocate use-case responsibilities to analysis classes

¢ Model analysis class interactions in interaction diagrams

Schedule CourseCatalogSystem

Analysis Model

RegistrationController

O

:Supplier

Reflexive

1: PerformResponsibility
Focus of Control

Message :Supplier '

Collaboration Diagrams Sequence Diagrams

Client Object Supplier Object
Client Object : Object Lifeline
|_O Link al 1
o Supplier Object Message
lient

Message

UNIVERSITY: OF. MASSACHUSETTS AMHERST:

CMPSCI520/620 Design

CONPUTER Example: Collaboration Diagram CONPUTER Example: Sequence Diagram
_Main
Fom :// open schedule form() %

- Student : MainForm : Maintain : Registration | : CourseCatalog _: Schedule
— ScheduleFori Controller System

ScheduleForm|

1:// select ma‘lj'n schedule()
5; #select 4 primary and 2 alternate offerings —
% —> : Maintain

elect maintain schedule()

2: // open sghedule form()

: Student)
3:// get cq Ldze offerings() 13:/l get course offerinas()
6: // add cpurses to schedule() 4211 get coursé offerings()
1 4: /] get course

: Registration 5: // select 4 primary;and 2 alternate pfferings|
: CourseCatalog: // get course offerings(| Controller alternate gs()
System)

6: // a4dd courses to gchedule()

7 creat$ with offerings() | 7: /I create with offerings(),

:Schedul%

UNIVERSITY-OF MASSACHUSETTS AMHERST

UNIVERSITY OF MASSACHUSETTS AMHERST

COMPUTER : : COMPUTER H T HT
science Collaboration Vs Sequence Diagrams <cienee Describe Responsibilities
. . . e rees «First cut at class operations
. Collabo'ratlon Diagrams » Sequence Diagrams »What are responsibilities? «Actions that oiject can perform
" Rnaaie ¢ Use n Use Case Design How dowe find them? | e et s
« Show relationshi i * Show the eXp“Cit «Class should have multiple responsibilities
o h ps in sequence of messages
addition to interactions Better for visualizi o) o
« Better for visualizing * betler for visualizing — = =
patterns of collaboration overall flow ResponsmllltyA// —= —=
« Better for visualizing all ° Bettelrl forlreal-tlme Class Name
of the effects on a given specifications and for 0 —4 O =
object complex scenarios Resonsibility 2 = —
 Easier to use for P ¥
brainstorming sessions
; | —
(reqrderlng of messages I'O = O =
easier) Responsibility N — —

UNIVERSITY- OF MASSACHUSETTS AMHERST:=~

UNIVERSITY- OF MASSACHUSETTS AMHERST: -

©Rick Adrion 2003 (except where noted)

CMPSCI520/620 Design

CONPUTER Class Responsibilities

<<boundary>>
MaintainScheduleForm

/I select 4 primary and 2 alternate offerings()

// open ()
<<boundary>> <<entity>>
MainForm Schedule

/I select maintain schedule()

/I create with offerings(),

<<control>>
RegistrationController

<<boundary>>
CourseCatalogSystem

/| add courses to schedule()

/I get course offerings()

UNIVERSITY: OF MASSACHUSETTS: AMHER!

P Findi

ng Relationships

Class
Diagram

Collaboration

Diagram :Client
/ Link

Client ' Supplier

1: PerformResponsibility

@ /_>

2
N

O 0¥
Prime suppliers

Client Supplier

Association

UNIVERSITY- OF MFASSACHUSETTS -AMHER!

©Rick Adrion 2003 (except where noted)

WM-';%'E Attributes, Association, Aggregation

<<stereotype>> Q

ClassName Student

Attribute : Type = InitValue
Attribute : Type = InitValue .
Attribute : Type = InitValue Simple

association

ourseOffering

s a pre-requisite of

Schedule

Course

<<entity>> Assoc iati on Reflexive
CourseOffering association

humber :String="100"
ptartTime : Time
endTime: Time

Hays: enum

Whole/aggregate part

Student Schedule CourseOffering

Attribute Aggregation

UNIVERSITY:OF MASSACRUSETTS AMHERST:

00 Class Responsibilities from a
e Collaboration Diagram

Register for Courses use case
1 / hedulel).
l V’Qecl 4 primary and 2 altenate offerings| |
1': Maintain H
Student
3:// get cc uie offerings() <<boundary>>
6:// add es to schedule() MaintainScheduleForm
: Registration|
:c";"‘zcl:“' 1 get course offerings()] Controller Il select 4 primary and 2 alternate offerings()
HE Il open ()

7Hgre %wnn offerings()

<<boundary>> <<entity>>
MainForm Schedule
:Schedule|
W mlecwm) Il create with offerings()
<<control>> <<boundary>>
ontroller CourseCatalogSystem

I/ add courses to schedule() Il get course offerings()

UNIVERSITY- OF MASSACHUSETTS AMHERS

CMPSCI520/620 Design

Class Responsibilities from a

COMPUTER Dia gram

SCIENCE Sequence

Maintain
ScheduleForm)

Student ‘ MainForm ‘ : Registration | [CourseCatal H Schedule

Controller | | System.

Register for Courses use case

lect maintain schedule(

2:J/ open schiedule for

3/ get

<<boundary>>
MaintainScheduleForm

Il selagt 4 primary and 2 alternate offerings()
Il open

5: /1 elect 4 primary and 2 alternate offgings()

®

id courses to schedule()
\7: i create with offerinds()

<d<boundary>> <<entity>>
MainForm Schedule
Il select msm}»\meduls() Il create with offerings()

<<control>> <<boundary>>
RegistrationController CourseCatalogSystem

1/ add courses to schedule() Il get course offerings()

UNIVERSITY: OF MASSACHUSETTS AMHERST: p;

CONPUIER Example: Finding Relationships

+ MaintainScheduleForm doesnot | ——

make any sense outside of the \f\\ <<boundary>>
context of a particular use <<boundary>> [MaintainScheduleForm
session MainForm

+ Onlyone
can be active at any one time, or
none may be active

1 1 |+ 1 open()

+ 1l select 4 primary and 2 alternate offerings()

Il select maintain schedule()

legacy system. P

<<boundary>> y o <<control>>
CourseC: - ionController
I select matntai
s I get Cw,ss}m.ﬁs() ,/Laau@{es to schedule()
get codrse offerings ()
0.1
|- Student < one controller for each Schedule 1
es?e sc?;‘d) e peing created (e.g. each Student
registration session). <<entity>>
+ only one CourseC: Schedule
instance for possibly many
MaintainScheduleForms I create with offerings()
+ serializes access
%wllh offering(} Many MaintainScheduleForms
can be active at one time (for
different sessions/students)

View of Participating Classes (VOPC) diagram.

Schedule|

UNIVERSITY- OF MASSACHUSETTS AMHERST:

::

©Rick Adrion 2003 (except where noted)

CONPUTE What are Roles?

UNIVERSITY-OF MASSACHUSETTS AMHERST:

* The “face” that a class plays in the association

Instructor __/ Department head

CourseOffering

Professor

Pre-requisites

Course

Department

CONPUTER So Where Are We?

o
)

Architect

Architectural
Analysis

Architectural Describe Describe
Design Concurrency ~Distribution

Review the
Architecture

Architecture
Reviewer

o
LJ

Designer

Use-Case
Analysis

Subsystem
=

= Use-Case

Design

Review the
Design

o

Design
eviewer

©)

Database
Designer

Database
Design

UNIVERSITY: OF. MASSACHUSETTS AMHERST:

CMPSCI520/620 Design

COMPUTER

N
N
N

Glossary Architecturd Document
Design
Guidelines

Supplementary
Specifications

OO O

Analysis Classes.

Design Model

UNIVERSITY: OF MASSACHUSETTS: AMH!

seience Architectural Design Overview

N
Design
Guidelines

Design Model

Classes and
Subsystems

CONPUTE Design Classes (cont.)

. <<boundary>>
In design, the one ManStudertform

app/icaﬁon becomes (from Student Interface]
thrge é_zppllcat/ons, each P ; E

with it’s own forms ...

0.1 o <<boundary>>
<<boundary>> porv— MainProfessorForm
MaintainScheduleForm oot ;om‘ (from Professor Interfacg)
(from Student Interface)

(from Student Interfacg) T 7
<<boundary>> g \ 0.1

<<boundary>>

(from Professor Interfacs)

UNIVERSITY: OF WFASSACHUSETTS ANTHE

©Rick Adrion 2003 (except where noted)

MainRegistrarForm <<boundary>>
(from Registrar Interfacg) leciC
(from Professor Interface|
1 1 !
0. o 0.1
c
(from Registrar Interface) | |(from Registrar Interface) | |(from Registrar Interface)

COMPUTER Design Classes

In analysis, we had one
application with many
different forms ...

[<<boundary>
MainForm_fc>
—

0.1
<<boundary>>
intai 4 <<boundary>>
(from Student nteface) CloseRegistrationForn]
(from Regisrar Interface)
<<boundary>>
electC (from Professor Interface)
(from Professor Inerface) <<boundary>>

(from Registrar Interface)

During design, some 0.1
analysis gla.sges may po—
be split, joined, ReportCardForm (fom Registrar Inertace)

(from Student Interface)
removed, etc.

<<boundary>>

UNIVERSITY-OF MASSACHUSETTS: AMHE:

COMPITER Classes & packages

*What is a class?

A description of a set of objects that share the same
responsibilities, relationships, operations, attributes, and
semantics.

Class Name

*What is a package?
A general purpose mechanism for organizing elements
into groups
¢ A model element which can contain other model
elements

Package Name

UNIVERSITY- OF MASSACHUSETTS AMI

CMPSCI520/620 Design

CONPUTER Packages Vs. Subsystems

« Packages provide no « Subsystems provide

behavior behavior, packages Y
« Packages are simply do not ﬁ\
contair?ers of thing‘;y « Subsystems (?’ Peckate)
which provide completely [1 \
behaViOr I t <<subsy:tem>> \
« Packages help encapsuate
their contents

organize and control)
sets of classes that ~ * Dependencies are

are needed in on the interface of
common, but which the subsystem
aren’t really

¢ Subsystems are

subsystems easily replaceable

« Dependencies are on
specific elements
within the Package
Encapsulation is the key! But note for packages

dependencies should be on public classes

UNIVERSITY: OF MASSACHUSETTS AMHERST:

CONPUTE Design Classes and Subsystems

« Identifying Design Classes

e analysis class is simple and already represents a single
logical abstraction-> design class

« entity classes survive relatively intact into design.
« |dentifying Subsystems
« analysis class is complex, such that it appears to embody
behaviors that cannot be the responsibility of a single class
acting alone, or the responsibilities may need to be reused,
the analysis class should be mapped to a subsystem
*may take a few iterations to stabilize. O O
¢ Analysis classes which evolve into
subsystems might include: O
« complex services and/or utilities o O
e user interfaces and external
system interfaces.

UNIVERSITY- OF MASSACHUSETTS AMHERST:

©Rick Adrion 2003 (except where noted)

CONPUTER Modeling Design Subsystems

Note: Rose does not fully
support subsystems

<<subsystem>>
C FinanceSystem
; iy | <<subsystem>>
IFinance (from Business St?[yjces) CourseCatalog
System
(from FinanceSystem) <<subsystem>>|
- : CourseCatalog
*‘ ICourseCatalog
O_ <<subsystem>>
CourseCatalog]
ICourseCatalog (from Business Objects) e

(from CourseCatalog)
<<subsystem>> proxy class =

<<subsystem>> package = class with a stereotype of
package with a stereotype <<subsystem>>
of <<subsystem>>

UNIVERSITY-OF MASSACHUSETTS AMHERST:

CONPUTER Design goals

 Properties of a system which make it flexible,
maintainable

¢ Abstraction

*Modularity
* Cohesion
«how clearly-defined a particular module or procedure is
«a module with high cohesion does one or a few things exceedingly well.
¢ Coupling
« strength of connections between modules
«what information needs to be communicated between modules
¢ Goal: High cohesion, low coupling
e Information hiding

* Complexity

UNIVERSITY: OF. MASSACHUSETTS AMHERST:

CMPSCI520/620 Design

CONITE Partitioning Considerations

« Coupling and cohesion

« design elements with tight coupling/cohesion (e.g., lots of relationships and
communication) should be should be placed in the same partition

« design elements with loose coupling/cohesion should be placed in separate
partitions.

« User organization
« not a good long-term strategy because the organizational structure may change
« you want the software and the business organization to be independent

« System distribution

« partitioning to reflect distribution can help to visualize the network communication
which will occur as the system executes., but can make the system more difficult to
change if the Deployment Model changes significantly.

« Secrecy & access control

« functionality requiring special clearance must be partitioned into subsystems that
will be developed independently, with the interfaces to the secrecy areas the only
visible aspect of these subsystems.

« Variability
« partition “optional” functionality

UNIVERSITY- OF MASSACHUSETTS: AMHE]

COMPUTER |_ayering Guidelines

* Visibility U:::a.xf;;;%
*Dependencies only within current

layer and below
o <<layer>>
o \/olatil |ty Business Servicef

«Upper layers affected by
requirements changes
eLower layers affected by

environment changes

<<layer>>
Business Object

<<layer>>

. Generaﬁty Middieware
*More abstract model elements in
lower layers _
¢ Number of layers —
<<layer>> Base Reuse| java
*Small system: 3 layers Systom N o ‘

e Complex system: 5-7 layers

Goal is to reduce coupling and to ease maintenance effort

UNIVERSITY- OF MASSACHUSETTS AMHE!

©Rick Adrion 2003 (except where noted)

““ﬂ-ﬂ'ﬁﬁ'ﬁ Typical Layering Approach

Specific
functionality

..... make up an application - contairs the
: oftware developed by the

| R TR BREE Distinct application subsystem that

value acking s
onganization
Business specific - contains a number

of reusable syhsystems specific to the
type of business.

Middleware - offers subsystens for utiliy
dasses and platform independent services
for distributed object computing in
heterogeneous ernvironments andso on.
System software - contains the software for
the adud nfrastructure such as operating

Business-specific

Middleware

System software

drivers and so on.

General
functionality

UNIVERSITY-OF MASSACHUSETTS: AMHER:

to specific device

CONITE Layers & Visibility

<<layer>>
User Interfa Only public
classes can be

of the owning
package PackageA

P referenced outside
<<layer>>
Business Services

<<layer>>
Business Objects|

— =l
.
A
Class A3

:
; i
;]
i
\I/ l‘ \é\
PackageB | !
B 3

<<layer>>

Middleware

Class B1 e

Public visibility

v £

<<layer>> Base Reuse java Private visibility
System
lobal lobal

UNIVERSITY: OF MASSACHUSETTS AMHERE

CMPSCI520/620 Design

FHbie Layering

« Concentrate on encapsulating change

* Package dependencies are not transitive, thus one layer
can shield another from change
e Upward dependencies should be resolved in design
ee.g., call backs can be replaced with the “subscribes to”
association whose source is a class (called the
subscriber) and whose target is a class (called the
publisher)

« subscriber specifies a set of events and is notified when one
of those events occurs in the target

UNIVERSITY- OF MASSACHUSETTS AMHERST

““ﬂ-‘;{'ﬁé‘f User Interface Layer: Main Forms

<<boundary>> —
MainAppicationForm [togorfom]

from GUI Framework) f Iy Gul |
inherit from the Mail icati rm "
that came from the GUI framework

<<boundary>>
MainStudentForm

LogonForm was

reverse engineered
From GUI framework

7\ aggregation relationships

to be addressed
in Class Design

<<boundary>>

<<boundary>>
MainRegistrarForm
)
\ 0.1 0.1
1 1 <<boundary>> <<boundary>>
lectCoursesForm
0.* 0. 0.1)
[I 1
B | | | Lo |
(from Registrar Interface) (from Registrar Interface) (from Registrar Interface)
[1

UNIVERSITY- OF MASSACHUSETTS - AMHERST: =+

©Rick Adrion 2003 (except where noted)

CONPUTER Back to layers

A bi-directional relationship exists between
the GUI Framework and the other interface
packages because the Logon Form needs
to be able to notify the application forms

Window
from java. awt
————
——1

inherits from

View

0.* | +open()

0. +refresn)
-1 + close()
+ update()| [
inherits from)i its from
_e 1
MainApplicationForm LogonForm
(from GUI Framework) 1 0.1 (from GUI Framework).

e -
:ID 1 DALl
<<interface>>

SecureUser
(from Secure Interfaces)

+getUserld() : Uniqueld
+ getAccess(SecureData) : SecurityAccess
+ setAccess(SecureData, SecurityAccess)

UNIVERSITY-OF MASSACHUSETTS AMHERST:

CONPUTER More Layers

— —
Relational 00ODBMS
Contai <<subsystem>>| Secure
DBMS Security ontains Security Interfaces
2 packages Manager
Middleware System o UserSecutyContext
)

<<Interface>>
IPersistent
(from 0ODBMS)

00DBMSTransaction : (from Secure L‘N-nm)
(from OODBMS 1 | i
):‘ v \
<<utility>> V |
(from OODBMS) |(from OODBMS | |

fiiom 0ODBMS) - {from DODBMS]

UNIVERSITY: OF. MASSACHUSETTS AMHERST:

10

CMPSCI520/620 Design

CONPUTER So Where Are We?

o
- [/

Architectural Describe Describe Review the Architecture
Design Concurrency Distribution Architecture Reviewer

[T setiecia

Architect (oEED

\

Subsystem
Design

Design Design
Reviewer

Use-Case
Analysis

Designer

Use-Case
Design

Class
Design

o
[7 b

Database =
Designer

UNIVERSITY- OF MASSACHUSETTS, AMHER:

CONITER Modeling Processes

¢ Processes may be modeled using

¢ Active classes (Class Diagrams) and Objects
(Interaction Diagrams)
« “owns” it's own thread of execution and can initiate control activity
« may execute in parallel (i.e., concurrently) with other active classes.

<<stereotype>>
Name Process1.exe

¢ Components (Component Diagrams)

<<stereotype>>—4// <<stereotype>> can be
Component Name <<process>> or <<thread>>

*Relationships

<<stereotype>> N <<stereotype>>
Name Name

UNIVERSITY: OF NFASSACHUSETTS AMHERE

©Rick Adrion 2003 (except where noted)

COMPUTER

<eieice Describe Concurrency Overview

Supplementary
Specifications

- Process Model

« the independent threads of control are
identified and the identified model elements
(subsystems and classes) are mapped to
these threads of control.

UNIVERSITY-OF MASSACHUSETTS: AMHER:

COMPUTER

seienee Modeling Processes: Class Diagram

dependency\

<<thread>>
CourseCache

<<process>> composition
CourseCatalogSystemAccess| /
T

<<thread>>

1 OfferingCache
<<process>>
CourseRegistrationProcess
i CourseCache and OfferingCache
il are used to asynchronously
<<process>> retrieve items from the legacy
StudentApplication system. This will improve

response time.

UNIVERSITY-OF MASSACHUSETTS AMHER

11

CMPSCI520/620 Design

Mapping Design Elements to

COMPUTER
seienee Processes
* The classes associated <<process>> st
with the individual user > o Sttt nrtce
interfaces were mapped to —

the application processes.

The classes associated po— <<control>
with the individual CourseRegstatonProcess RegatetonControter
business services were -
mapped to the controller

processes.

The classes associated <<prosess>>
with access to the external
systems were mapped to
the access processes

For the threads,
composition is used to
show what design it
elements have been
mapped to them.

J pe—

CourseCatalog
from Proxy
due to Rose

UNIVERSITY: OF MASSACHUSETTS: AMHER!

COMPUTER Describe Distribution Overview

==
EE

==/g
Process Model \ D\D/D

{l ! Deployment Model
N ‘:,

Implementation Model

UNIVERSITY- OF MFASSACHUSETTS -AMHER!

©Rick Adrion 2003 (except where noted)

CONPUTER So Where Are We?

o
—» [/

Architectural Describe Describe Review the Architecture
Design Concurrency Distribution Architecture ~ Reviewer

[T setiecia

Architect (oEED

L/
-2 5

Design Design
Reviewer

Use-Case Subsystem
Analysis Design

Designer

Use-Case
Design

@) \
S TS

Database
Database =
Designer

UNIVERSITY-OF MASSACHUSETTS AMHER!

CONPUTER Why Distribute?

*Reduce processor load
 Special processing requirements
« Scaling concerns
« Economic concerns
¢ Distribution Patterns
«Client/Server
* 3-tier
« Fat-Client
«\Web Application
¢ Distributed Client/Server
*Peer-to-peer

UNIVERSITY: OF MASSACHUSETTS AMHER!

12

CMPSCI520/620 Design

COMPUTER Distribution patterns

« Common services
« Presentation Services
« Ul including, the visual appearance of output and how user input is handled
« Business Services
« Business rules and logic
« Data Services
« Data relationships, efficiency of storage, and data integrity
« Patterns
¢ One-Tier
* Two-Tier
« Fat Client -- client has its presentation and business services; server has
the data services

« Thin Client -- client has the presentation services; server has the business
and data services

 Three-tier

« client has presentation services; server has business services; separate
(logical) server has data services.

* Web-tier

« client accesses a web server that at least handles presentation services;
web server may have its own business and data services or it may utilize
one or more servers that handle business and data services

UNIVERSITY- OF MASSACHUSETTS AMHERST

““ﬂ-ﬂ'ﬁﬁ'ﬁ Deployment Model Modeling Elements

*Node
*Physical run-time computational resource [<<Node>>
Node #1

* Processor
*Execute system software

¢Device
. SUppOI‘t devices <<Processor>>
« Typically controlled by a Processor Processor #1
« Connection
« Communication mechanisms c‘,}gecﬁm
¢Physical medium
« Software protocol <<Device>>
Device #1

CONPUTE Deployment Diagrams

<<Node>>
Node #1
% Component L___.| object
N Process-1
N Process-2
<<connection type>> .
Connection N
<<Node>> AN
Node #2 "
Component _C)
Interfade
Process-1
Process-2

UNIVERSITY- OF MASSACHUSETTS - AMHERST: =+

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF MASSACHUSETTS AMHERST:

FOENE! Process-to-Node Allocation

Dial up access
|and behind
campus firewall

Desktop PC|

External
Desktop PC|

<<Campus LAN:

StudentApplication
ProfessorApplication
RegistrarApplication

StudentApplication

<<Internet:

Registration
erver

<<Campus LAN>; <<legacy>>
Billing

System

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

<<legacy>>
Course
Catalog

UNIVERSITY: OF. MASSACHUSETTS AMHERST:

13

CMPSCI520/620 Design

COMPUTER

<<ftility>>
Naming
(frorh java.m)i)

ProxyDistributedController
 —

1 <qInterface>>
JecureUser
(from Secure

+currentUs,

1

<<controller>>

seience Design Distribution Pattern: Proxy

RemoteDistributedController

RegistrationControllet ! k

0.1

from Student Activities|)

«Iient servel

RemoteRegistrationControllel

from Student Activities’

secure user instance is created
on the client and passed to the
server when the remote

UNIVERSITY: OF MASSACHUSETTS: AMHER!

controller is created

Classes, interfaces,
collaborations

Organization Use cases

Package, subsystem Use -Case

View

£
a
NI
-/
process
view

Active classes

UNIVERSITY- OF MFASSACHUSETTS -AMHER!

©Rick Adrion 2003 (except where noted)

o

CNINE The Rational 4+1 Views

g8 ’/!
\.//. N //’
design implementation
view view

Components

deployment

Dynamics
Interaction
State machine

3

view

COMER Design Distribution Pattern: Proxy

SomeForm || : ProxyDistribute : Naming : RemoteTimecard
Controller Controller

Lookup("RemoteTime: ardControIIer")ﬁ

1: new(SecureUser) -
2: lookup(Stririg

The connection between the!
proxy and remote controller
is established when the
proxy controller is created

3: new()

The current user context is
-{ passed to the server for later
access checks

4: setSession(SecureUser)

5: DoSomething

6: DoSomething

All calls to the proxy controller are
forwarded to the remote controller

UNIVERSITY:OF MASSACRUSETTS AMHERST:

““e".'\'ii',lﬁ'é Affect on Process Model Associations

<<process>> <<process>>
StudentApplication; -] RegistrationControllerProcess
[] [!
1
1

0.
<<boundary>>
MaintainScheduleFol
(from Student Interfa¢

e)
——

1
1

~<<control>> <<control>>
RegistrationControl RemoteRegistrationContoller
i {IQS) o Irfmm Student Activities)
! .

UNIVERSITY- OF MASSACHUSETTS AMHERS

14

