CMPSCI520/620 Design ***DRAFT***

FHbie 17-Design

*Readings
« OOAD Using the UML
Copyright © 1994-1998 Rational Software, all rights reserved

e will post ...

UNIVERSITY-OF MASSACHUSETTS AMHERST + - DEPA

COMPUTER Student Loan Example

 Functional requirements:
« before getting a loan, there is an evaluation process after which
agreement is always reached
< a TE transaction records each step of the evaluation process
« a TA transaction records the overall loan agreement
« a student can take any number of loans, but only one can be active
at any time
« each loan is initiated by a Tl transaction
« the student repays the loan with a series of repayment
« each repayment transaction is recorded by a TR transaction
« a loan is terminated by a TT transaction
« two output functions are desired:
« an inquiry function that prints out the loan balance for any student,

« a repayment acknowledgment sent to each student after payment is
received by the university

* Non Functional requirements
« to be implemented on a single processor
« inquiries should be processed as soon as they are received

« repayment acknowledgments need only be processed at the end of
each day.

« Note: generates a stream of data over a long-period of time

UNIVERSITY- OF MASSACHUSETTS AMHERST:-+-:DE A

©Rick Adrion 2004 (except where noted)

COMPUTER Jackson System Development (JSD)

*Phases

«the modeling phase
« Entity/action step
« Entity structure step
*Model process step

ethe network phase
« connect model processes and functions in a single system

specification diagram (SSD)

eimplementation phase

«examine the timing constraints of the system

« consider possible hardware and software for implementing
our system

«design a system implementation diagram (SID)

UNIVERSITY-OF MASSACRUSETTS: AMHERST - DER/

COMPUTER Step 1: Entity/action step

« Actions have the following characteristics:
ean action takes place at a point in time

ean action must take place in the real world outside of the
system.

ean action is atomic, cannot be divided into subactions.
« Entities have the following characteristics:
ean entity performs or suffers actions in time.

ean entity must exist in the real world, and not be a
construct of a system that models the real world

ean entity must be capable of being regarded as an
individual; and, if there are many entities of the same
type, of being uniquely named.

UNIVERSITY-OF MASSACHUSETTS AMHERST: - DEIJ:'

11/4/04

CMPSCI520/620 Design ***DRAFT***

CONPUTER Candidates

« Entities/Description:
estudent
esystem
e university
eloan
estudent-loan

UNIVERSITY. OF MASSACHUSETTS AMHERST

COMPUTER Focus on:

« Entities/Description:
« student
 Actions/Attributes:

action, is evaluated);
e agree - action of student
interest rate, repayment period)
«initiate - action of student

« attributes: student-id, date initiated
e repay - action of student

« terminate - action of student

UNIVERSITY-OF MASSACHUSETTS AMHERST: :

©Rick Adrion 2004 (except where noted)

« evaluate -action of student; student? (student suffers the

« attributes: student-id, loan-no, date of evaluation, remarks

« attributes: student-id, loan-no, date of agreement, amount of loan,

« attributes: student-id, date of repayment, amount of repayment

« attributes: student-id, date of termination, remarks

CONPUTER Actions/Attributes:

« evaluate -action of university? (university performs the evaluation); action of
student? (student is evaluated)
« attributes: student-id, loan-no, date of evaluation, remarks
« agree - action of university? (university agrees to loan); action of student ?
(agrees to loan)
« attributes: student-id, loan-no, date of agreement, amount of loan, interest
rate, repayment period)
« make loan - action of university
« attributes: student-id, loan-no, date of loan, loan amount, interest rate,
repayment period
« initiate - action of university? (university initiates loan); action of student?
(student initiates loan); action of loan? (is initiated)
« attributes: student-id, date initiated
« repay - action of loan? (loan is repaid); action of student? (student repays
the loan);
« attributes: student-id, date of repayment, amount of repayment
« terminate - action of loan (loan is terminated);
« attributes: student-id, date of termination, remarks

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -

COMPUTER Step 2: Entity structure step
student
evaluate part agree loan part
| -]
evaluate loan
(1) evaluation part initiate repay part terminate
- zero or more evaluate actions 1
(2) student agrees to loan *
(3) loan(s) is (are) made repay

- zero or more loans.

- loan is a sequence of initiate
action, iteration of repay actions, a
terminate action

UNIVERSITY-OF MASSACHUSETTS AMHERST: -

11/4/04

CMPSCI520/620 Design ***DRAFT***

COMPUTER Model Process

process
¢ Actions are structured into a tree

einterior nodes are conceptual

iteration

eset of traversals is a regular set

UNIVERSITY: OF MASSACHUSETTS:AMHERST.

 Primary building block of a JSD design
e contains all actions characterizing a key real-world

eonly the leaf nodes of the tree are real-world actions

einterior nodes can be annotated to show choice or

etraversals of this tree constitute the only "legal”
sequences of actions for this process

*Model process tree defines a regular expression

COMPUTER

EXTERNAL WORLD

STUDENT+0
entity structure diagram

abstract student entity describes the structure of
in the real world the serial data stream

SYSTEM

STUDENT-]

realization in the
Information system

STUDENT-1 seq
read §
EVAL iter (while TE)
process TE; read S
student EVAL end
AGREE seq
process TA: read $
cvaluate parl I qeree I Joan part | AGREE end
LOAN-PART iter (forever)
0 INIT seq
loan
process Tl: read S
I INIT
REPAY iter (while TR)
. ninate process TR: read §
TERM seq
srocess TT: read
TERM end
LOAN-PART end
STUDENT-1 end

UNIVERSITY.OF MASSACHUSETTS AMHERS T - DE?

©Rick Adrion 2004 (except where noted)

seieice Step 3: Model process step

Use JSP to create a

program for the process

-a TE transaction records
each step of the evaluation
process

+a TA transaction records the
overall loan agreement

~each loan is initiated by a Tl
transaction

~each repayment transaction is
recorded by a TR transaction
+a loan is terminated by a TT
transaction

COMPUTER

<cienee Model Processes

* A model process is a particular view of the system
« various model processes provide different views
*model process is multiply instantiated for different instances
*model processes are often annotated with informal
specifications and notations
e same action may appear as part of more than one process
* Model Processes and Data
« actions on data hang off of model process leaf nodes
« global data is necessary too
« for functions that must combine data from >1 model process
« to assure consistency between model processes

« to coordinate between different instances of the same model
process

« to coordinate between different models of the same entity

UNIVERSITY-OF MASSACHUSETTS AMHERST.)

COMPYTER Error handling

. . STUDENT-1 se
« a real-time system (but slow-running) a

read S:
system o EVAL iter (while TE)
« information is collected as it arrives process TE: read S
from the real-world EVAL end
« entity model process is synchronized AGREE seq
with the actions of the real world entity process TA: read S
« the state vector of a model process's AGREE end

LOAN-PART iter (forever)
INIT seq

process T1: read S
INIT
REPAY iter (while TR)
rocess TR: read S
state vector (SV) connection
-- One process can examine
the SV of a 2nd process
-- the double lines indicate
that an inquiry process,
over its life, will examine
many student processes

“program” has a “counter” ... and if it
“points” to repay component of a
student's process, then an 'E' (evalua
'A' (agree) or 'I' (initiate) transaction
must be recognized as an error

STUDENT-0 STUDENT-1

UNIVERSITY-OF MASSACHUSETTS AMHERST. [

11/4/04

CMPSCI520/620 Design ***DRAFT***

CONPUTER Total System Model

* At the Network Phase, weave Model Processes
together incrementally to form the total system
specification

ealso add new processes during this phase: e.g., input,
output, user interface, data collection

*Goal is to indicate how model processes communicate
with each other, use each other, are connected to user
and outside world

¢ Linkage through two types of communication:
*Message passing
« State vector inspection

¢ Indicates which data moves between which processes
eand more about synchronization

UNIVERSITY: OF MASSACHUSETTS:AMHERST. DEP

COMPUTER Message Passing

« Data stream carries a message from one process
activity to an activity in another process

emust correlate with output leaf of sending model process

emust correlate with input leaf of receiving model process
« Data transfer assumed to be asynchronous

eless restrictive assumption

*no timing constraints are assumed

emessages are queued in infinitely long queues

emessages interleaved non-deterministically when
multiple streams arrive at same activity

UNIVERSITY- OF MASSACHUSETTS - AMHERST: =+ D___

©Rick Adrion 2004 (except where noted)

CONPUTER Model Process Communication

* Fundamental notion is Data Streams

ecan have multiple data streams arriving at an action in a
process

«can model multiple instances entering a data stream or
departing from one

* Two types of data stream communication:
easynchronous message passing
« State vector inspection

* These communication mechanisms used to model how
data is passed between processes

UNIVERSITY-OF MASSACHUSETTS: AMHERST. - DEB

CONPUTER State Vector Inspection

¢ Modeling mechanism used when one process needs
considerable information about another

« State vector includes
evalues of all internal variables
e execution text pointer

* Process often needs to control when its state vector can
be viewed

eprocess may need exclusive access to its vector

* Could be modeled as message passing, but important
to underscore characteristic differences

UNIVERSITY-OF MASSACHUSETTS AMHERST. [

11/4/04

CMPSCI520/620 Design ***DRAFT***

CONITES Network Phase -- the SSD

« loan balance inquiry function (LBE) is connected to the Student-1
process by state vector (SV) connection

« The function to produce the student acknowledgments data stream
(ACK) is embedded in the student-1 process in the repavs component

Payment
acknowledgement

lister (PAL)
Loan balance
enquiry function
« DT is an input signal at the end of the day--a daily time marker--that
tells the payment acknowledgment lister (PAL) function to begin
* The ACK and DT data streams are rough-merged, that is, we don't
know precisely whether a repayment acknowledgment will appear on
today's or tomorrow's daily list.

UNIVERSITY:-OF MASSACHUSETTS AMHERS

COMPUTER Implementation Phase

* Use of inferences encouraged by understandings
gleaned from the network phase
¢ Network Phase suggests ideal traversal paths through
model processes and their local data
esuggests internal implementation of model processes
estudying use of model processes suggests internal
structure of their data
« Communication by data streams and state vector
inspection often suggest real implementations
«But often not

UNIVERSITY- OF MASSACHUSETTS - AMHER

©Rick Adrion 2004 (except where noted)

CONHNE! Designing the LBE function w/ JSP

(i) input and output
data structures:

(i) basic program
structure

(i) list of operations
n bl

STUDENT-1
SVs

STUDENT-1
SV

Loan balance
enquiry function

Ceenquiry *

P-reply

for'. stud ent-id, 'is', balance

- oot STUDEN'T SV (student-id)

(iv) elaborated program structurcand text:

C-eng
|

UNIVERSITY-OF MASSACHUSETTS-AMHE]

LBE seq
rea
LBE-BODY itr

I'SV(student-id):
ite 'loan balance for ', stud ent-

get STUDEN

read
j LBE-BODY end
LBE end

¥
Reply

(forever)

et The SID

all of the serial data

streams are input to

the scheduler process
y

Eng..
D1

STUDENT-1

Scheduler

PAL m

all student processes have an
identical structure; only their
SV are different

--separate the state vectors of
student processes from their
process text (state vector
separation).

--set of SV is the data base of
our student loan system

Loan balance
enquiry
function

PAL is inverted with respect to

student-1 process is inverted
with respect to its data stream,|
S. and is called by the
scheduler to process a
transaction, and then
suspended

both of its inputs, the repayment
acknowledgment data stream

and the daily marker. PAL is
invoked by Student-1 whenever
Student-1 processes a repayment
transaction. The scheduler invokes
PAL directly when it receives a DT

and this triggers the daily listing

I R SCIES GRS BOBEOFA e

11/4/04

CMPSCI520/620 Design ***DRAFT***

CONPUTER Design of the scheduler in JSP

« records from the serial data stream

(loan balance inquiries and student
loan transactions) are read and
processed in real-time

« at the end of the day, a daily time
marker--perhaps a signal to the
system from the operator--is input

List of operations:

1-read input

2-call LBE(inrec)

3 SV(student-id)
4-call student-1(srec, ssv)
S-put SSV(student-id)
6-call PAL(DT)

« PAL is invoked & processes
payment acknowledgments that
have been previously generated in
real-time whenever a student

rbe;%fayment is made and stored in a

uffer

Student

Loan balance
i loan part

enquiry
Lk

UNIVERSITY: OF MASSACHUSETTS:AMHERST: ~|:§

CONPUTER Comments/Evaluation

e Focus on conceptual design
«But difficult to build a system this way
*Based upon model of real world
« Careful (and experienced) analysis of the model
generally points suggested implementation tactics,
though
eParnas notions of module not perceptible here
*Not an iterative refinement approach either
« Treatment of data is very much subordinated/secondary
*Does a good job of suggesting possible parallelism
« Contrasts strongly with Objected Oriented notions (eg.
Booch, UML)

UNIVERSITY- OF MASSACHUSETTS - AMHERST:

©Rick Adrion 2004 (except where noted)

CONPUTER JSD and JSP

« In JSD, the principles of JSP are extended into the areas of systems
analysis, specification, design and implementation

« In JSP, a simple program describes a sequential process that
communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream

* In JSD, the real world is modeled as a set of sequential model
processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.

* The JSD implementation step embodies the JSP implementation
technique, program inversion, in which a program is transformed
into a procedure

« Other JSP techniques, such as the single read-ahead rule and
backtracking, and princijples, such as implementation through
transformation, are used in JSD

UNIVERSITY-OF MASSACHUSETTS-AMHERST: '-D

CONPUTER Rational Unified Process

* The Unified Modeling Language (UML) is a language for
specifying, visualizing, constructing, and documenting
the artifacts of a software-intensive system

« A software development process defines Who is doing
What, When and How in building a software product

* The Rational Unified Process has four phases:
Inception, Elaboration, Construction and Transition

* Each phase ends at a major milestone and contains one
or more iterations

« An iteration is a distinct sequence of activities with an
established plan and evaluation criteria, resulting in an
executable release

The RUP presentation is adapted from OOAD Using the UML
Copyright 1994-1998 Rational Software, all rights reserved

UNIVERSITY-OF MASSACHUSETTS AMHERST:

11/4/04

CMPSCI520/620 Design ***DRAFT***

COMPUTER

Business ____)?\
Modeling

Business Model

.qulremEI """" & realized by

supported by

Model ’/’
llementatl ----------------------------- \’//’

Implementation

UNIVERSITY-OF MASSACHUSETTS AMHERST + - DEPA

seieNeE In RUP: Major Workflows Produce Models

Model -/-
nalysis &9 _________________ g =
Design = implemented by

Model
R =g

verified by

B

Test
Model

COMPUTER Requirements Workflow

—

Devel%p Elicit Stakeholder
N

® o
D f D Find Actors \
nd Use Cas D
>
Structurexthe
Dependencies Common Use-Case Model
Vocabulary

A Manage Capture a

@)

Requirements
Reviewer

= >

S L.

User-Interface ~ User-Interface
User-Interface Modeling

_Designer | |
7 pos
Prioritize

Architect Use Cases

Prototyping

Use-Case UDetaiI a / :
Specifier s‘e?(%ase)/ Requirements

Review

UNIVERSITY- OF MASSACHUSETTS AMHERST:-+-:DE A

©Rick Adrion 2004 (except where noted)

COMPUTER The RUP Iterative Model

logically

Iterations

UNIVERSITY-OF MASSACRUSETTS: AMHERST - DER/

Phases
Process Workflows Inception Elaboration Construction | In an iteration,
H ; r ; you walk
Business Modeling : : . through all
Requirements / workflows
Analysis & Design 2
Implementation : T
Test — L: —
Deployment :
Supporting Workflows
onfiguration Mgmt —
Management BN
Workflows .
Environment
gro_u!)_ Preliminary | Iter.| Iter. | lter. | Iter. | Iter. Iter. | lIter.
activities iteration(s)! #1 ' #2 1 #n l#n+e1 lgne2l #m T#met

COMPUTER
SCIEN

Analysis & Design Workflow

Architectural @)
@) Rnaiysis
-l
Architectural Describe Describe Review the Architecture
Architect Design ~ Concurrency Distribution || Achitecture Reviewer
f \ j
o) % o Q
Analysis
Use-Case Reviewthe 1~
i Design esign
Designer @ Degign gn Desion
Class
Design
\
Database Design
Designer

UNIVERSITY-OF MASSACHUSETTS AMHERST: -

11/4/04

CMPSCI520/620 Design ***DRAFT***

CONPUTER Implementation Workflow

Qo

Structure the
Architect Implementation Model

L)

Plan System
System Integrator Integration

o

G(egrale

D

Plan Subsystem

Qo

System
J

Integrate

Integration Implement Subsystem
Classes
Implementer Car
Unit Test
Fix a Defect
Code Reviewer Review Code

UNIVERSITY. OF MASSACHUSETTS AMHERST

CONPUTER 0-O System Development

problem
statement Project0

Requirements
elicitation
nonfunctional Tunctional —~, A
requirements model [

Requirements
analysis

vy ey
s analyss Gyharmic
diagram object model model
PR S v T >
Systom design subSystem
design goals object model decomposition
Object design

Class~——]
T diagram

deliverable
system

UNIVERSITY- OF MASSACHUSETTS - AMHERST: '

©Rick Adrion 2004 (except where noted)

" use case
diagram

Statecha
=
sequence
diagram

CONPUTER Test Workflow

g B~ o Lo
PlanTest ImplementTest Evaluate
Test Designer Design Test] \ Test

Execute Integration
Integration Test.

Tesoler J
5 | (=

est

|
A
)

Performance Execute ::g‘ormancs
Tester

Designer and Packages

D Design Test cm}

Implementer and Subsystems

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -

CONPUTER A Minimal Iterative Process

Getting Started: (do this once)
1. Capture the major functional and non-functional requirements for

the system.
« Express the functional requirements as use cases, scenarios, or
stories.
¢ Capture non-functional requirements in a standard paragraph-style
document.

2. ldentify the classes which are part of the domain being modeled.

3. Define the responsibilities and relationships for each class in the
domain.

4. Construct the domain class diagram.
¢ This diagram and the responsibility definitions lay a foundation for
a common vocabulary in the project.
5. Capture use case and class definitions in an OO CASE tool (e.g.,
Rose) only when they have stablilized.

UNIVERSITY-OF MASSACHUSETTS AMHERST: -

11/4/04

CMPSCI520/620 Design ***DRAFT***

CONPUTER A Minimal Iterative Process

Getting Started: (do this once)
6. Identify the major risk factors and prioritize the most
architecturally significant use cases and scenarios.

* ltis absolutely imperative that the highest risk items and the most
architecturally significant functionality be addressed in the early
iterations. You must not pick the “low hanging fruit’ and leave the
risks for later.

7. Partition the use cases/scenarios across the planned iterations.
8. Develop an lteration plan describing each “mini-project” to be
completed in each iteration.

¢ Describe the goals of each iteration, plus the staffing, the schedule,
the risks, inputs and deliverables.

¢ Keep the iterations focused and limited (2-3 weeks per iteration).
In each iteration, conduct all of the software activities in the
process: requirements, analysis, design, implementation and test.

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

UNIVERSITY. OF MASSACHUSETTS AMHERST

CONPUTE! RUP Design - Where to Begin?

D Architectural Architectural - Describe Describe Review the Architecture
Jr, Analysis Design Concurrency Distribution || Architecture ~ Reviewer

_
L. 5

Review the
Design Design
Reviewer

Use-Case Subsystem
Analysis Design

Designer

Use-Case
Design

Class.
Design

o S
Design

Database
Designer

UNIVERSITY- OF MASSACHUSETTS - AMHERST: '

©Rick Adrion 2004 (except where noted)

CONPUTER A Minimal Iterative Process

For each iteration: (repeat until done)
1. Merge the functional flow in the use cases/scenarios with the classes
in the domain class diagram
* Produce sequence (and collaboration) diagrams at the analysis level.
2. Test and challenge the sequence diagrams on paper, or whiteboard
« Discover additional operations and data to be assigned to classes
* Validate the business process captured in the flow of the sequence
diagram
3. Develop statechart diagrams for classes with “significant” state
e Statechart events, actions, and most activities will become operations
on the corresponding class
4. Enhance sequence diagrams and statechart diagrams with design
level content
¢ Identify and add to the class diagram and sequence diagrams any
required support or design classes (e.g. collection classes, GUI and
other technology classes, etc.)
5. Challenge the sequence diagrams on paper/whiteboard, discovering
additional operations and data assigned to classes.

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -

CONPUTER Architectural Analysis Topics

«Key Architectural Analysis Concepts
* Modeling Conventions

¢ Analysis Mechanisms

*Key System Concepts

e Initial Architectural Layers

¢ Architectural Analysis Checkpoints

UNIVERSITY-OF MASSACHUSETTS AMHERST: -

11/4/04

CMPSCI520/620 Design ***DRAFT*** 11/4/04

EOMPUTER 441 View” Model FHHeEE Packages

- o « a general purpose mechanism for organizing elements into groups
l\// -\ /) » a model element which can contain other model elements
= Logical View Implementation View - * uses

« organize the model under development
« configuration management
« can related to one another using a dependency relationship

u i‘%‘
ctionality

) E
Analysts/Designers Fu

Programmers
Structure

Software management
Use-Case View

o Dependency relationship
e
= =5 - -
Eake Process View Deployment View -/- ClientPackage SupplierPackage
System integrators System engineering
Performance System topology
Scalability Delivery, installation . . X
Throughput communication * implications

« changes to the Supplier package may affect the Client package

« Client package cannot be reused independently because it depends
on the Supplier package

UNIVERSITY: OF MASSACHUSETTS-AMHERST: ' J UNIVERSITY-OF MASSACHUSETTS-AMHERST: '-5

CONPUTE Example: Modeling Conventions CONPUTER Architectural Mechanisms

*Use Case View

*Use Cases will be named with short active phrases such
as “Submit Grades”

e Logical View

* Analysis Mechanisms (conceptual)
* Design Mechanisms (concrete)
« Implementation Mechanisms (actual)

R . Required Implementation
*A Use Case Realization package will be created that Furcllctionality Eni\)rironment
includes:
« At least one realization per use case traced to the use case f - x nalizad by alient rrstanedsy | COTS Products
i ici i i dlass es wsing' constraine
« A “View Of Participating Classes” diagram that shows the Mechanisms Datahases
participants in the realization and their relevant relationships e Case odd |:> <:| L‘:g Technology

«Classes will be named with noun names matching the H
problem domain as much as possible.

“responsible far'
Supplemertary
Specifications

o
L]

Architect

UNIVERSITY-OF MASSACHUSETTS AMHERST:

UNIVERSITY-OF MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted) 10

CMPSCI520/620 Design ***DRAFT***

Sample Analysis Mechanisms

Persistency
Communication (IPC and RPC)
Message routing

Distribution
Transaction management
Process control and synchronization (resource contention)

Information exchange, format conversion
e Security
Error detection / handling / reporting

Redundancy
Legacy Interface

UNIVERSITY: OF MASSACHUSETTS, AMHEF(_

Typical Layering Approach

COMPUTER
CIENCE
Specific
functionality
seiere Distinct application subsystem that
make up an application - contairs the
value acking s developed by the
onganization

Business specific - contains a number
of reusable syhsystems specific to the

type of business.

Middleware - offers subsystens for utiliy
c] dasses and plaformindependent services

for distributed object computing in
heterogeneous ernvironments andso on.

Middleware
System software - contains the software for
the actua infrastructure such as operating
il to specific device

drivers and so on.

System software

11/4/04

Identify Key Concepts

« Define preliminary entity analysis classes
*Domain knowledge
*Requirements
*Glossary
*Domain Model, or the Business Model (if exists)

« Define analysis class relationships
*Model analysis classes and relationships on Class

Diagrams
eInclude brief description of analysis class

*Map analysis classes to necessary analysis

mechanisms
Analysis classes will evolve

UNIVERSITY-OF MASSACHUSETTS: AMHEH_

SCIENCE
1 1 1
Registrarinterface Studentinterface Professorinterface
(from User Interface) (from User Interface)| |(from User Interface)
v
pras Registration , Student Evaluation
e (from Business Services)| (from Business Services)

High-Level Organization of the Model
User Interface Layer

Business Services Layer

i
i
i
1
1
1
1
1
1
I
1
I
I
!

Course Catalog
(from Business Objects)

Business Objects Layer

A v\"‘
' e
{
vy e T
“>~4 University Artifacts -
(from Business Objects)

General
functionality

UNIVERSITY-OF MASSACHUSETTS AMHEH?_S

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS, AMHEI‘._

11

CMPSCI520/620 Design ***DRAFT***

COMPITER Architectural Analysis

e General
«Is the package partitioning and layering done in a logically
consistent way?
*Have the necessary analysis mechanisms been identified?
« Packages

*Have we provided a comprehensive picture of the services of
the packages in upper-level layers?

e Classes

*Have the key entity classes and their relationships been
identified and accurately modeled?

*Does the name of each class clearly reflect the role it plays?

*Have the entity classes been mapped to the necessary
analysis mechanisms?

UNIVERSITY. OF MASSACHUSETTS:AMHERST 3D

CONTHTE! Use Case Analysis Overview

%cﬁb

Use-Case Model

OO O

Analysis Classes

pporting D
Architecture Document

Glossary

Supplemental Specs

Use-Case Realization Analysis Model Design Model

UNIVERSITY- OF MASSACHUSETTS -AMHE

©Rick Adrion 2004 (except where noted)

COMPUTER
seinee 90 whgat do we do next?
o
- -
D Architectural Architectural Describe Describe Review the Architecture
Analysis Design Concurrency Distribution Architecture Reviewer

Architect

Use-Case
Analysis

Designer

i 5

Review the
Design Design
Reviewer

Subsystem
Design

Use-Case
Design

Class
Design

o
[] utabe

Database Dozl
Designer

UNIVERSITY:OF MASSACHUSETTS AMHERS]

COMPUTER What is a Use-Case Realization?

Use Case Model Design Model
Q <<realizes>> STTTSS
-------------------------------- AR v
Use Case Use Case Realization

s O\Q
E:B Sequence Diagrams Collaboration
— - iagrams

Use Case Realization
Documentation

Class Diagrams

UNIVERSITY-OF MASSACHUSETTS, AMHER___

11/4/04

12

CMPSCI520/620 Design ***DRAFT***

COMPUIER Use Case Analysis Steps

* Supplement the Descriptions of the Use Case
* For each use case realization
¢Find Classes from Use-Case Behavior
«Distribute Use-Case Behavior to Classes
e For each resulting analysis class
*Describe Responsibilities
eDescribe Attributes and Associations
*Qualify Analysis Mechanisms
« Unify Analysis Classes

UNIVERSITY: OF MASSACHUSETTS-AMHERST: ﬁ

CONPUTER What is an Analysis Class?

System coordination

boundary

System

« Early conceptual model
*Functional requirements
*Model problem domain

<<boundary>> «Likely to change
H) *Boundary

<<boundary>> «Information used
A « Control logic
@ <<control>>
Use-case
behavior <<control>>

information

Q <<entity>>

<<entity>>

UNIVERSITY-OF MASSACHUSETTS AMHERST: 2

©Rick Adrion 2004 (except where noted)

COMPUTER

seieNeE University Course Registration System

/'
8

Student

UNIVERSITY-OF MASSACHUSETTS-AMHERS:

ProlessN

g S

O Registrar Maintain Professor Information
View Report Card

Maintain Student Information
Register for CourN%
O/Co:se Catalog / \

Close Registration

Billing System
Select Courses to Teach

-

Submit Grades

COMPUER The Roles

x

Customer

system

UNIVERSITY-OF MASSACHUSETTS AMHERS®

Collaboration Diagram

\

Entity Class -- Store and \
manage information in the

Boundary Class -- Model
"""" S interaction between the .
system and its environment Control Class -- Coordinate

\
1 @ : the use case behavior
U

11/4/04

13

CMPSCI520/620 Design ***DRAFT***

CONPUTER Example: Entity & Control Classes

O Q Q

Course CourseOffering Grade
(from University Artifacts) (from University Artifacts) (from University Artifacts)

O Q

Student Professor Schedule
(from University Artifacts) (from University Artifacts) (from University Artifacts)

O O

ontroller Cl i ontroller Mair itController
(from Registration) (from Registration) (from Registration)

eNie

O

MaintainProfessorController SelectCoursesToTeachController ReportCardController
(from Registration) (from Regjstration) (from Student Evaluation)

O

SubmitGradesController
(from Student Evaluation)

UNIVERSITY. OF MASSACHUSETTS AMHERST

COMPUTER Class Responsibilities from a
science Collaboration Diagram

2>\// open schedule form()
Register for Courses use case

1: 1/ select matfi:
5 J¢Select 4 primary and 2 *eema«e offerings|

‘ ‘“' : Maintain ”
: Student
3: // get c ;g}:a«emgs() <<boundary>>
6:// add chifses to schedule() MaintainScheduleForm
: Registration]
vl :"" : // get course offefiqgs(j) | Controller Il select 4 primary and 2 alternate offerings()
SEER 1/ open ()
[RTe %wllh offerings()
<<boundary>> <<entity>>
MainForm Schedule
Schedule
I select wls() Il create with offerings()
<<control>> <<boundary>>
ontroller CourseCatalogSystem
1 add courses to schedule() Il get course offerings()

UNIVERSITY- OF MASSACHUSETTS - AMHERST: :

©Rick Adrion 2004 (except where noted)

CONPUTE Describe Responsibilities

«First cut at class operations
Actions that object can perform
+Knowledge object maintains
*Non-functional requirements

«Class should have multiple responsibilities

@ ResponsibilityA// HO o

Class Name

*What are responsibilities?
*How do we find them?

o] O

Responsibility 2

00| {000 | oo
000 || 000 | {000

Responsibility N

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -

Class Responsibilities from a
COMER Sequence IC)Diagram

X

: Student

MainForm :Maintain | : Registration

Controller

CourseCatal : Schedule
ystem

9

! Register for Courses use case
1 E,]ect maintain schedulel

2:// open s
rings()
t coursg <<boundary>>
5: /1 elect 4 primary and 2 alternate offgnings() l MaintainScheduleForm
6: /'add courses to sghedule() /I selact 4 primary and 2 alternate offerings()
\7: /f create with offerinds(). 1 open\)
d<boundary>> <<entity>>
MainForm Schedule
Ul select mxm%cheduls() Il create with offerings()
<<control>> <<boundary>>
RegistrationController CourseCatalogSystem
/1 add courses to schedule() 1l get course offerings()

UNIVERSITY-OF MASSACHUSETTS AMHERST: -

11/4/04

14

CMPSCI520/620 Design ***DRAFT***

“"'ﬁgﬁﬁ':‘ What are Roles?

* The “face” that a class plays in the association

g z Instructor __/ Department head g 2

CourseOffering Professor Department

Pre-requisites

Course

UNIVERSITY: OF MASSACHUSETTS/AMHER!

©Rick Adrion 2004 (except where noted)

COMPUTER

scienee Example: Finding Relationships

+ MaintainScheduleForm does not | ————

make any sense outside of the I ——
context of a particular use <<boundary>> [
session. MainForm

<<boundary>>
MaintainScheduleForm

- Only one

MaintainScheduleForm can be
active at any one time, or none

I/ select maintain schedule()

™y be active

114 1/ open()
+ Il select 4 primary and 2 alternate offerings()

legacy system.

1

zﬁpen schedufé form()
s

<<boundary>>
urseC

<<control>>

ntroller

Il select m:
5;

figin Schedule()
lect 4 primary and 2 alternate offerings(
—>

: Maintain

1/ get mursye{gs()

ﬂmﬁf?ées to schedule()

get codrse offerings ()

Student

3: 1/ get edn
6444

: Registration|
1/ get course offerings()| Controler

%wllh offering;

CourseCatalods
System

721l cre;

Lo offerings()|

idd chi¥fses to schedule(

0,

registration session)
+ only one CourseC

0.1
one controller for each Schedule 1
being created (e.g., each Student
<<entity>>
Schedule

instance for possibly many
MaintainScheduleForms
* serializes access

() Many MaintainScheduleForms

can be active at one time (for
different sessions/students).

I create with offerings()

UNIVERSITY-OF MASSACHUSETTS:AMHERS:

View of Participating Classes (VOPC) diagram.

11/4/04

15

