
CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

17-Design

•Readings
• OOAD Using the UML
Copyright  1994-1998 Rational Software, all rights reserved

•will post …

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Jackson System Development (JSD)

•Phases
• the modeling phase
•Entity/action step

•Entity structure step

•Model process step

• the network phase
• connect model processes and functions in a single system
specification diagram (SSD)

• implementation phase
• examine the timing constraints of the system

• consider possible hardware and software for implementing
our system

• design a system implementation diagram (SID)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Student Loan Example
• Functional requirements:
• before getting a loan, there is an evaluation process after which

agreement is always reached
• a TE transaction records each step of the evaluation process
• a TA transaction records the overall loan agreement

• a student can take any number of loans, but only one can be active
at any time
• each loan is initiated by a TI transaction

• the student repays the loan with a series of repayment
• each repayment transaction is recorded by a TR transaction

• a loan is terminated by a TT transaction
• two output functions are desired:
• an inquiry function that prints out the loan balance for any student,
• a repayment acknowledgment sent to each student after payment is

received by the university
• Non Functional requirements
• to be implemented on a single processor
• inquiries should be processed as soon as they are received
• repayment acknowledgments need only be processed at the end of

each day.
• Note: generates a stream of data over a long-period of time

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 1: Entity/action step

•Actions have the following characteristics:
•an action takes place at a point in time

•an action must take place in the real world outside of the
system.

•an action is atomic, cannot be divided into subactions.

•Entities have the following characteristics:
•an entity performs or suffers actions in time.

•an entity must exist in the real world, and not be a
construct of a system that models the real world

•an entity must be capable of being regarded as an
individual; and, if there are many entities of the same
type, of being uniquely named.

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Candidates

•Entities/Description:
•student

•system

•university

• loan

•student-loan

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Actions/Attributes:
• evaluate -action of university? (university performs the evaluation); action of

student? (student is evaluated)
• attributes: student-id, loan-no, date of evaluation, remarks

• agree - action of university? (university agrees to loan); action of student ?
(agrees to loan)
• attributes: student-id, loan-no, date of agreement, amount of loan, interest

rate, repayment period)
• make loan - action of university
• attributes: student-id, loan-no, date of loan, loan amount, interest rate,

repayment period

• initiate - action of university? (university initiates loan); action of student?
(student initiates loan); action of loan? (is initiated)
• attributes: student-id, date initiated

• repay - action of loan? (loan is repaid); action of student? (student repays
the loan);
• attributes: student-id, date of repayment, amount of repayment

• terminate - action of loan (loan is terminated);
• attributes: student-id, date of termination, remarks

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Focus on:

• Entities/Description:
• student

• Actions/Attributes:
• evaluate -action of student; student? (student suffers the
action, is evaluated);
• attributes: student-id, loan-no, date of evaluation, remarks

• agree - action of student
• attributes: student-id, loan-no, date of agreement, amount of loan,

interest rate, repayment period)

• initiate - action of student
• attributes: student-id, date initiated

• repay - action of student
• attributes: student-id, date of repayment, amount of repayment

• terminate - action of student
• attributes: student-id, date of termination, remarks

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 2: Entity structure step

(1) evaluation part
- zero or more evaluate actions

(2) student agrees to loan
(3) loan(s) is (are) made

- zero or more loans.
- loan is a sequence of initiate
action, iteration of repay actions, a
terminate action

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Process

•Primary building block of a JSD design
•contains all actions characterizing a key real-world
process

•Actions are structured into a tree
•only the leaf nodes of the tree are real-world actions

• interior nodes are conceptual

• interior nodes can be annotated to show choice or
iteration

• traversals of this tree constitute the only "legal"
sequences of actions for this process

•Model process tree defines a regular expression
•set of traversals is a regular set

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Processes

• A model process is a particular view of the system

• various model processes provide different views

•model process is multiply instantiated for different instances

•model processes are often annotated with informal
specifications and notations

• same action may appear as part of more than one process

•Model Processes and Data
• actions on data hang off of model process leaf nodes

• global data is necessary too
• for functions that must combine data from >1 model process

• to assure consistency between model processes

• to coordinate between different instances of the same model
process

• to coordinate between different models of the same entity

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 3: Model process step

abstract student entity
in the real world

realization in the
Information system

Use JSP to create a
program for the process

entity structure diagram
describes the structure of

the serial data stream

•a TE transaction records
each step of the evaluation
process
•a TA transaction records the
overall loan agreement
•each loan is initiated by a TI
transaction
•each repayment transaction is
recorded by a TR transaction
•a loan is terminated by a TT
transaction

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Error handling

• a real-time system (but slow-running)
system
• information is collected as it arrives

from the real-world
• entity model process is synchronized

with the actions of the real world entity
• the state vector of a model process's

“program” has a “counter” … and if it
“points” to repay component of a
student's process, then an 'E' (evaluate),
'A' (agree) or 'I' (initiate) transaction
must be recognized as an error

counter

state vector (SV) connection
 -- one process can examine
the SV of a 2nd process
 -- the double lines indicate
 that an inquiry process,
over its life, will examine
 many student processes

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Total System Model

•At the Network Phase, weave Model Processes
together incrementally to form the total system
specification
•also add new processes during this phase: e.g., input,
output, user interface, data collection

•Goal is to indicate how model processes communicate
with each other, use each other, are connected to user
and outside world
•Linkage through two types of communication:
•Message passing
•State vector inspection

• Indicates which data moves between which processes
•and more about synchronization

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Process Communication

•Fundamental notion is Data Streams
•can have multiple data streams arriving at an action in a
process

•can model multiple instances entering a data stream or
departing from one

•Two types of data stream communication:
•asynchronous message passing

•State vector inspection

•These communication mechanisms used to model how
data is passed between processes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Message Passing

•Data stream carries a message from one process
activity to an activity in another process
•must correlate with output leaf of sending model process

•must correlate with input leaf of receiving model process

•Data transfer assumed to be asynchronous
• less restrictive assumption

•no timing constraints are assumed

•messages are queued in infinitely long queues

•messages interleaved non-deterministically when
multiple streams arrive at same activity

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

State Vector Inspection

•Modeling mechanism used when one process needs
considerable information about another

•State vector includes
•values of all internal variables

•execution text pointer

•Process often needs to control when its state vector can
be viewed
•process may need exclusive access to its vector

•Could be modeled as message passing, but important
to underscore characteristic differences

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Network Phase -- the SSD
• loan balance inquiry function (LBE) is connected to the Student-1

process by state vector (SV) connection
• The function to produce the student acknowledgments data stream

(ACK) is embedded in the student-1 process in the repays component

• DT is an input signal at the end of the day--a daily time marker--that
tells the payment acknowledgment lister (PAL) function to begin
• The ACK and DT data streams are rough-merged, that is, we don't

know precisely whether a repayment acknowledgment will appear on
today's or tomorrow's daily list.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Designing the LBE function w/ JSP

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Implementation Phase

•Use of inferences encouraged by understandings
gleaned from the network phase

•Network Phase suggests ideal traversal paths through
model processes and their local data
•suggests internal implementation of model processes

•studying use of model processes suggests internal
structure of their data

•Communication by data streams and state vector
inspection often suggest real implementations
•But often not

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The SID
all of the serial data
streams are input to
 the scheduler process

all student processes have an
identical structure; only their
SV are different
--separate the state vectors of
student processes from their
process text (state vector
 separation).
--set of SV is the data base of
our student loan system

student-1 process is inverted
with respect to its data stream,
 S. and is called by the
 scheduler to process a
transaction, and then
 suspended

PAL is inverted with respect to
 both of its inputs, the repayment
 acknowledgment data stream
and the daily marker. PAL is
 invoked by Student-1 whenever
 Student-1 processes a repayment
transaction. The scheduler invokes
PAL directly when it receives a DT
 and this triggers the daily listing

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design of the scheduler in JSP
• records from the serial data stream

(loan balance inquiries and student
loan transactions) are read and
processed in real-time
• at the end of the day, a daily time

marker--perhaps a signal to the
system from the operator--is input

• PAL is invoked & processes
payment acknowledgments that
have been previously generated in
real-time whenever a student
repayment is made and stored in a
buffer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD and JSP
• In JSD, the principles of JSP are extended into the areas of systems

analysis, specification, design and implementation
• In JSP, a simple program describes a sequential process that

communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream
• In JSD, the real world is modeled as a set of sequential model

processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.
• The JSD implementation step embodies the JSP implementation

technique, program inversion, in which a program is transformed
into a procedure
• Other JSP techniques, such as the single read-ahead rule and

backtracking, and principles, such as implementation through
transformation, are used in JSD

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comments/Evaluation

•Focus on conceptual design
•But difficult to build a system this way

•Based upon model of real world

•Careful (and experienced) analysis of the model
generally points suggested implementation tactics,
though
•Parnas notions of module not perceptible here

•Not an iterative refinement approach either

•Treatment of data is very much subordinated/secondary

•Does a good job of suggesting possible parallelism

•Contrasts strongly with Objected Oriented notions (eg.
Booch, UML)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The RUP presentation is adapted from OOAD Using the UML
Copyright 1994-1998 Rational Software, all rights reserved

Rational Unified Process

•The Unified Modeling Language (UML) is a language for
specifying, visualizing, constructing, and documenting
the artifacts of a software-intensive system

•A software development process defines Who is doing
What, When and How in building a software product

•The Rational Unified Process has four phases:
Inception, Elaboration, Construction and Transition

•Each phase ends at a major milestone and contains one
or more iterations

•An iteration is a distinct sequence of activities with an
established plan and evaluation criteria, resulting in an
executable release

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

In RUP: Major Workflows Produce Models

verified by

Test
Model

Test

Implementation
Model

Implementation

implemented by

realized by

Analysis &
Design

Design
Model

Business
Modeling

Business Model

Requirements

Use-Case
Model

supported by

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The RUP Iterative Model

Management

Environment

Business Modeling

Implementation

Test

Analysis & Design

Preliminary
Iteration(s)

 Iter.
#1

Phases
Process Workflows

Iterations

Supporting Workflows

 Iter.
#2

 Iter.
#n

 Iter.
#n+1

 Iter.
#n+2

 Iter.
#m

 Iter.
#m+1

Deployment

Configuration Mgmt

Requirements

Elaboration TransitionInception Construction

Workflows
group
activities
logically

In an iteration,
you walk
through all
workflows

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Requirements Workflow

Use-Case
Specifier

Requirements
Reviewer

User-Interface
Designer

Capture a
Common

Vocabulary

Find Actors
and Use Cases

Review
Requirements

Structure the
Use-Case Model

User-Interface
Prototyping

Detail a
Use Case

Elicit Stakeholder
Needs

Manage
Dependencies

Architect
Prioritize

Use Cases

Develop
Vision

User-Interface
Modeling

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Analysis & Design Workflow

Architect

Designer

Architectural
Analysis

Architecture
Reviewer

Review the
Design

Review the
Architecture

Use-Case
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Database
Designer

Class
Design

SubsystemDesign

Use-Case
 Design

 Database
Design

Design
Reviewer

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Implementation Workflow

Integrate
System

Architect

System Integrator

Implementer

Code Reviewer

Implement
Classes

Perform
Unit Test

Structure the
Implementation Model

Integrate
Subsystem

Review Code

Fix a Defect

Plan System
Integration

Plan Subsystem
Integration

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Test Workflow

Design Test

ImplementTest

Test Designer

Integration
Tester

System Tester

Evaluate
Test

Execute Integration
Test

Execute System
Test

Designer

Design Test Classes
and Packages

Implementer
Implement Test Components

and Subsystems

PlanTest

Performance
Tester

Execute Performance
Test

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Project2

O-O System Development

adapted from Bruegge/Dutoit O-O SW Engr

problem
statement

Requirements
elicitation

Requirements
analysis

System design

system design
object model

design goals subsystem
decomposition

functional
model

nonfunctional
requirements

use case
diagram

analysis
object model

class
diagram

dynamic
model

statechart
diagram

sequence
diagram

Implementation

source
code

Test

deliverable
system

Object design

object design
model

class
diagram

Project0

interviews Project1

 Project3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003
Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

A Minimal Iterative Process

Getting Started: (do this once)
1. Capture the major functional and non-functional requirements for

the system.
• Express the functional requirements as use cases, scenarios, or

stories.
• Capture non-functional requirements in a standard paragraph-style

document.

2. Identify the classes which are part of the domain being modeled.
3. Define the responsibilities and relationships for each class in the

domain.
4. Construct the domain class diagram.
• This diagram and the responsibility definitions lay a foundation for

a common vocabulary in the project.

5. Capture use case and class definitions in an OO CASE tool (e.g.,
Rose) only when they have stablilized.

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

A Minimal Iterative Process
Getting Started: (do this once)
6. Identify the major risk factors and prioritize the most

architecturally significant use cases and scenarios.
• It is absolutely imperative that the highest risk items and the most

architecturally significant functionality be addressed in the early
iterations. You must not pick the “low hanging fruit” and leave the
risks for later.

7. Partition the use cases/scenarios across the planned iterations.
8. Develop an Iteration plan describing each “mini-project” to be

completed in each iteration.
• Describe the goals of each iteration, plus the staffing, the schedule,

the risks, inputs and deliverables.
• Keep the iterations focused and limited (2-3 weeks per iteration).

In each iteration, conduct all of the software activities in the
process: requirements, analysis, design, implementation and test.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

A Minimal Iterative Process

For each iteration: (repeat until done)
1. Merge the functional flow in the use cases/scenarios with the classes

in the domain class diagram
• Produce sequence (and collaboration) diagrams at the analysis level.

2. Test and challenge the sequence diagrams on paper, or whiteboard
• Discover additional operations and data to be assigned to classes
• Validate the business process captured in the flow of the sequence

diagram
3. Develop statechart diagrams for classes with “significant” state
• Statechart events, actions, and most activities will become operations

on the corresponding class
4. Enhance sequence diagrams and statechart diagrams with design

level content
• Identify and add to the class diagram and sequence diagrams any

required support or design classes (e.g. collection classes, GUI and
other technology classes, etc.)

5. Challenge the sequence diagrams on paper/whiteboard, discovering
additional operations and data assigned to classes.

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

RUP Design - Where to Begin?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architectural Analysis Topics

•Key Architectural Analysis Concepts

•Modeling Conventions

•Analysis Mechanisms

•Key System Concepts

• Initial Architectural Layers

•Architectural Analysis Checkpoints

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

“4+1 View” Model

Process View Deployment View

Logical View

Use-Case View

Implementation View

End-user
Functionality

Programmers
Software management

Performance
Scalability
Throughput

System integrators
System topology

Delivery, installation
communication

System engineering

Analysts/Designers
Structure

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Packages

• a general purpose mechanism for organizing elements into groups
• a model element which can contain other model elements
• uses
• organize the model under development
• configuration management

• can related to one another using a dependency relationship

• implications
• changes to the Supplier package may affect the Client package
• Client package cannot be reused independently because it depends

on the Supplier package

ClientPackage SupplierPackage

Dependency relationship

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Modeling Conventions

•Use Case View
•Use Cases will be named with short active phrases such
as “Submit Grades”

•Logical View
•A Use Case Realization package will be created that
includes:
•At least one realization per use case traced to the use case

•A “View Of Participating Classes” diagram that shows the
participants in the realization and their relevant relationships

•Classes will be named with noun names matching the
problem domain as much as possible.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architectural Mechanisms

•Analysis Mechanisms (conceptual)

•Design Mechanisms (concrete)

• Implementation Mechanisms (actual)

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sample Analysis Mechanisms

• Persistency
• Communication (IPC and RPC)
• Message routing
• Distribution
• Transaction management
• Process control and synchronization (resource contention)
• Information exchange, format conversion
• Security
• Error detection / handling / reporting
• Redundancy
• Legacy Interface

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Identify Key Concepts

•Define preliminary entity analysis classes
•Domain knowledge

•Requirements

•Glossary

•Domain Model, or the Business Model (if exists)

•Define analysis class relationships

•Model analysis classes and relationships on Class
Diagrams
• Include brief description of analysis class

•Map analysis classes to necessary analysis
mechanisms

Analysis classes will evolve

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Typical Layering Approach

General
functionality

Specific
functionality

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

High-Level Organization of the Model

Course Catalog
(from Business Objects)

University Artifacts
(from Business Objects)

RegistrarInterface
(from User Interface)

Finance System
(from Business Services)

Student Evaluation
(from Business Services)

Registration
(from Business Services)

StudentInterface
(from User Interface)

ProfessorInterface
(from User Interface)

User Interface Layer

Business Services Layer

Business Objects Layer

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architectural Analysis

•General

• Is the package partitioning and layering done in a logically
consistent way?

•Have the necessary analysis mechanisms been identified?

• Packages

•Have we provided a comprehensive picture of the services of
the packages in upper-level layers?

•Classes

•Have the key entity classes and their relationships been
identified and accurately modeled?

•Does the name of each class clearly reflect the role it plays?

•Have the entity classes been mapped to the necessary
analysis mechanisms?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So whqat do we do next?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Analysis Overview

Use-Case Model

Use-Case Realization

Supporting Documents
 Architecture Document
 Glossary
 Supplemental Specs

Analysis Classes

Design ModelAnalysis Model

OR

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is a Use-Case Realization?

Use Case Use Case Realization

<<realizes>>

Class Diagrams

Sequence Diagrams Collaboration
Diagrams

Use Case Realization
Documentation

Use Case Model Design Model

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Analysis Steps

•Supplement the Descriptions of the Use Case

•For each use case realization
•Find Classes from Use-Case Behavior

•Distribute Use-Case Behavior to Classes

•For each resulting analysis class
•Describe Responsibilities

•Describe Attributes and Associations

•Qualify Analysis Mechanisms

•Unify Analysis Classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

University Course Registration System

Submit Grades

Professor

View Report Card

Select Courses to Teach

Student

Course Catalog

Register for Courses

Maintain Student Information

Maintain Professor InformationRegistrar

Billing SystemClose Registration

Login

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is an Analysis Class?

<<entity>>

<<boundary>>

<<control>>

<<control>>

<<boundary>>

<<entity>>

System
boundary

Use-case
behavior
coordination

System
information

•Early conceptual model
•Functional requirements
•Model problem domain

• Likely to change
•Boundary
• Information used
•Control logic

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Roles

Customer

Boundary Class -- Model
interaction between the
system and its environment

Entity Class -- Store and
manage information in the
system

Control Class -- Coordinate
the use case behavior

Collaboration Diagram

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Entity & Control Classes

Course
(from University Artifacts)

CourseOffering
(from University Artifacts)

Grade
(from University Artifacts)

Student
(from University Artifacts)

Professor
(from University Artifacts)

Schedule
(from University Artifacts)

RegistrationController
(from Registration)

SubmitGradesController
(from Student Evaluation)

SelectCoursesToTeachController
(from Registration)

MaintainProfessorController
(from Registration)

MaintainStudentController
(from Registration)

ReportCardController
(from Student Evaluation)

CloseRegistrationController
(from Registration)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Responsibilities

•What are responsibilities?

•How do we find them?

Class Name

Responsibility 1

Responsibility 2

Responsibility N

•First cut at class operations
•Actions that object can perform
•Knowledge object maintains
•Non-functional requirements

•Class should have multiple responsibilities

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities from a
Collaboration Diagram

 : Student

 : Maintain
ScheduleForm

 : Registration
Controller

:Schedule

 : CourseCatalog
System

 : Main
Form

5: // select 4 primary and 2 alternate offerings()

1: // select maintain schedule()

3: // get course offerings()
6: // add courses to schedule()

7: // create with offerings()

2: // open schedule form()

4: // get course offerings()

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

RegistrationController

// add courses to schedule()

<<control>>

Schedule

// create with offerings()

<<entity>>

Register for Courses use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities from a
Sequence Diagram

 : Student : Maintain
ScheduleForm

 : Registration
Controller

 : Schedule : MainForm : CourseCatalog
System

5: // select 4 primary and 2 alternate offerings()

6: // add courses to schedule()

7: // create with offerings()

1: // select maintain schedule()

2: // open schedule form()

3: // get course offerings()

4: // get course offerings()

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

RegistrationController

// add courses to schedule()

<<control>>

Schedule

// create with offerings()

<<entity>>

Register for Courses use case

CMPSCI520/620 Design ***DRAFT*** 11/4/04

Rick Adrion 2004 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What are Roles?

•The “face” that a class plays in the association

Pre-requisites

Instructor

Course

CourseOffering Professor Department

Department head

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Finding Relationships

MainForm

// select maintain schedule()

<<boundary>> MaintainScheduleForm

+ // open()
+ // select 4 primary and 2 alternate offerings()

<<boundary>>

1 0..11

CourseCatalogSystem

// get course offerings()

<<boundary>>
1 0..*

RegistrationController

// add courses to schedule()
// get course offerings ()

<<control>>

1

1

Schedule

// create with offerings()

<<entity>>

1

0..1

 : Student

 : Maintain
ScheduleForm

 : Registration
Controller

:Schedule

 : CourseCatalog
System

 : Main
Form

5: // select 4 primary and 2 alternate offerings()

1: // select maintain schedule()

3: // get course offerings()
6: // add courses to schedule()

7: // create with offerings()

2: // open schedule form()

4: // get course offerings()

• MaintainScheduleForm does not
make any sense outside of the
context of a particular use
session.

• Only one
MaintainScheduleForm can be
active at any one time, or none
may be active

• one controller for each Schedule
being created (e.g., each Student
registration session).

• only one CourseCatalogSystem
instance for possibly many
MaintainScheduleForms

• serializes access

• Many MaintainScheduleForms
can be active at one time (for
different sessions/students).

legacy system.

View of Participating Classes (VOPC) diagram.

