CMPSCI520/620 Design

CONPUTER Announcements

* SRS Interviews

«TODAY 1pm CSB 303 Shlomo Zilberstein

*WED in class Peterson/Zinn (OIT) & Battisti (CCBIT)
« Office Hours

*Tuesday (3-4)
*VOTE tomorrow!

UNIVERSITY- OF MASSACHUSETTS AMHERST DEP?:\‘

COMPUTER

<cience 15-Design

*Readings

*David Parnas “On the Criteria To Be Used in
Decomposing Systems into Modules,” Comm. ACM 15,
12 (Dec. 1972), 1053-1058

eDavid Parnas“On the design and development of
program families” IEEE Trans. On SE., vol. SE-2, pp.1-9,
Mar. 1976

eDavis, A. M. “Software Requirements: Analysis and
Specification”. Prentice-Hall, 1990.

*Michael Jackson, Software Requirements &
Specifications: A Lexicon of Practice, Principles and
Prejudices (ACM Press Books) Addison-Wesley Pub Co;
1st edition (1995)

eDavid Budgen, Software Design (2nd Edition) Pearson
Addison Wesley; 2nd edition (2003)

UNIVERSITY-OF MASSACHUSETTS AMHERST DEP.Z{

COMPUTER History of Software Design

* 1960s
« Structured Programming
« (“Goto Considered Harmful”, E.W.Dijkstra)
« Emerged from considerations of formally specifying the semantics of
programming languages, and proving programs satisfy a predicate.
« Adopted into programming languages because it's a better way to think
about programming

*1970s
« Structured Design
« Methodology/guidelines for dividing programs into subroutines.
* 1980s
* Modular (object-based) programming
* Ada, Modula, Euclid, ...
« Grouping of sub-routines into modules with data.
* 1990s
« Object-Oriented Languages started being commonly used
 Object-Oriented Analysis and Design for guidance.

UNIVERSITY- OF MASSACHUSETTS AMHERST: =+

©Rick Adrion 2003 (except where noted)

COMPUTER

seience Key Word In Context

"The KWIC index system accepts an ordered set of lines,
each line is an ordered set of words, and each word is
an ordered set of characters.

Any line may be ‘circularly shifted’ by repeatedly
removing the first word and appending it at the end of
the line.

The KWIC index system outputs a listing of all circular
shifts of all lines in alphabetical order."

On the Criteria for Decomposing Systems into Modules. David Parnas. CACM, 1972

and Filters Pipes
Architectures for Software Systems

. Filters Pipes and
Pipes and Filters

for Software Systems Architect
arioctures for sovaro sysoms D K| C - > [Sofvare Systoms pehitures

Pipes and Filters
Software Systems Architectures for
Systems Architectures for Software

KWIC example “borrowed" from Software Architectures © David Garlan

UNIVERSITY- OF MASSACHUSETTS AMHERST:=~ DEP‘{;\‘

CMPSCI520/620 Design

COMPUTER Design Considerations

* Change in Algorithm
ee.g., batch vs. incremental
*Change in Data Representation
ee.g., line storage, explicit vs implicit shifts
¢ Change in Function
ee.g., eliminate lines starting with trivial words
« Performance
ee.g., space and time
*Reuse
ee.g., sorting

UNIVERSITY- OF MASSACHUSETTS AMHERST DEPAF:\

COMPUTER KWIC Modularization

Master control

| Circular Shift | [Alphabetizer | |

Output

Alphabetized

Characters Index [

i

'
— Subprogram Call E
----» System I/O |

fatatatatatats |

UNIVERSITY- OF MASSACHUSETTS - AMHERST: - :DER

©Rick Adrion 2003 (except where noted)

CONPUTER Stepwise Refinement Strategy

and Filters Pipes

Architectures for Software Systems

Pipes and Filters Filters Pipes and

Architectures for Software Systems — KW I C % for Software Systems Architectures
Pipes and Filters

Software Systems Architectures for

Systems Architectures for Software

Input KWIC —{Output

Input Shift Alphabetize — Qutput

UNIVERSITY-OF MASSACHUSETTS AMHERST DEPAF.:\

CONPUTER Advantages & Disadvantages

* Advantages
e computations can share the same storage
« allow efficient data representation
«has a certain intuitive appeal
« distinct computational aspects are isolated in different modules
« Disadvantages
« serious drawbacks in terms of its ability to handle changes
« a change in data storage format will affect almost all of the
modules
« changes in algorithm and enhancements to system function are
not easily handled
e reuse is not well-supported because each module of the
system is tied tightly to this particular application.

UNIVERSITY- OF MASSACHUSETTS AMHERST:=~ DEPAE

CMPSCI520/620 Design

CONPUTER Alternative Modularization

* Each major step in the processing < module, but now
add Information hiding
eEach module hides design decisions from all others.
e Lines -- how characters/lines are stored
« Circular Shifter -- algorithm for shifting, storage for shifts
« Alphabetizer -- algorithm for alpha, laziness of alpha
* Maintain same flow of control, but organize solution
around set of data managers (objects):
«for initial lines
eshifted lines
e alphabetized lines

« Each manager handles the representation of the data &
provides a procedural interface for accessing the data

UNIVERSITY- OF MASSACHUSETTS AMHERST DEPA

COMPUTER Comparisons

¢ Change in Algorithm
« Solution 1: batch algorithm wired into
« Solution 2: permits several alternatives
« Change in Data Representation
« Solution 1: Data formats understood by many modules
« Solution 2: Data representation hidden
¢ Change in Function
« Solution 1: Easy if add a new phase of processing
« Solution 2: Modularization doesn’t give particular help
¢ Independent Development
« Solution 1: Must design all data structures before parallel work
can proceed; complex descriptions needed

« Solution 2: Must design interfaces before parallel work can
begin; simple descriptions only
« Comprehensibility
* Which is better?

UNIVERSITY- OF MASSACHUSETTS AMHERST: =+

©Rick Adrion 2003 (except where noted)

COMPUTER

*Module 1: Input

. - *Module 3: Circular Shift
SCIENCE KWI C M Od u I arlzatl on 2 +Provides access functions to
*Reads data lines

characters in circular shifts
Master control
and stores using

*Requires CSSETUP as
initialization after Input is done
“Line Storage” *Module 6: Master
Control

*Handles sequencing
of other modules

Output

i
-Modulel‘ 5: Output
-Printsi formatted
output of shifted lines
i
i

getc(i,w,j)
nWords(i)

|
|
|
|
i
|
v
(RPN - 112 o e [ouput mecium |

* Manages lines and characters; *Module 4: Alphabetize
procedural interface _ *Provides index of circular shift

+ Storage format: not specified at *ALPH called to initialize after
this point Circular Shift

Circular Shifter Alphabetizer

UNIVERSITY-OF MASSACHUSETTS AMHERST DER‘:?;\

COMPUTER
SCIENCE Summary

« Every architect should have a standard set of
architectural styles in his/her repertoire

«it is important to understand the essential aspects of
each style: when and when not to use them

eexamples: pipe and filters, objects, event-based systems,
blackboards, interpreters, layered systems
« Choice of style can make a big difference in the
properties of a system

eanalysis of the differences can lead to principled choices
among alternatives

UNIVERSITY: OF. MASSACHUSETTS AMHERST.=-[;

CMPSCI520/620 Design

COMPUTER

« Definition
* DFD central

systems
* Modeling process:

« Model of current physical system
model

indicative
(existing system)

seience Structured Design & Analysis

* SA&D a data-oriented approach to conceptual modeling

« Typically used for information systems, occurs in many legacy

only useful as basis for the logical

« Distinction between indicative and optative models is very important

optative
(new system)

3. New logical
system

A,

Y

Abstract 2. Current
(essential functions) logical system
Concrete 1. Current
(detailed model) physical system

4. New physical
system

UNIVERSITY- OF MASSACHUSETTS: AMHE]

COMPUTER

Level 0: Context Diagram
customer

query
—
s

ticket
system

booking ticke

confirma-ion} ’

booking
request
system

Level 2: subprocesses

schedule
Prop

iting

—_

booking
uest
ing
rzm
tickets

booke booking
itinerary data canfirmation

collate
confirm-

Level N: subprocesses

UNIVERSITY- OF MASSACHUSETTS AMHE!

seience Hierarchies of DFDs

Level 1: Whole System

query
H 2 Timetables

schedule

proposed
itinerary Fare tables

booking
confirmation

©Rick Adrion 2003 (except where noted)

CONPUTER Modeling tools

 Data flow diagram
« Context diagram (“Level 0”)
* whole system as a single process
« Intermediate level DFDs decompose each process

« Functional primitives are processes that cannot be
decomposed further

« Data dictionary

« Defines each data element and data group

« Use of BNF to define structure of data groups
 Primitive Process Specification

« Each functional primitive has a “mini-spec”

* These define its essential procedural steps

« Expressed in English narrative, or some form of pseudo-code
e Structured Walkthrough

Source: Adapted from Svoboda, 1990, p258-263

UNIVERSITY-OF MASSACHUSETTS: AMHER:

FIVE Data Dictionary & Process Specs

Example Data Dictionary
Mailing Label = Example Mini-Spec
o Ao FOR EACH Shipped-order-detail

customer_address
customer name = GET customer-name + customer-
customer_last_name + address

customer_first_name + ahi
customer_middle_initial RO ACllpart=hibped
GET retail-price

customer_address =
local_address + MULTIPLY retail-price by
quantity-shipped

community_address + zip_code
local_address = TO OBTAIN total-this-order
(apt_number) CALCULATE shipping-and-handling

house_number + street_name +
community address = ADD shipping-and-handling TO total-
city_name + [state_name | this-order

FIROURER RENE] TO OBTAIN total-this-invoice
PRINT invoice

Source: Adapted from Svoboda, 1990, p262-4

UNIVERSITY-OF MASSACHUSETTS AMHER

CMPSCI520/620 Design

CONPUTER DFD variants

« Structured Analysis and Design Technique
(SADT)
« Developed by Doug Ross in the mid-70’s
« Uses activity diagrams rather than dataflow
diagrams
« Distinguishes control data from processing
data
« Structured Analysis and System
Specification (SASS)
« Developed by Yourdon and DeMarco in the
mid-70’s
« ‘classic’ structured analysis
« Structured System Analysis (SSA)
« Developed by Gane and Sarson
« Notational style slightly different from Yourdon
& DeMarco
« Adds data access diagrams to describe
contents of data stores
« Structured Requirements Definition (SRD)
+ Developed by Ken Orr in the mid-70’s
« Introduces the idea of building separate
models for each perspective and then merging
them

UNIVERSITY- OF MASSACHUSETTS AMHERST

Source: Adapted from Svoboda, 1990, p264-5

Control
data

Incoming®] Activity
data

SADT

Transformed
data

Performing
mechanism

SASS T ==

COMPUTER Evaluation of SA&D techniques

* Advantages
« Facilitate communication.
« Notations are easy to learn, and don’t require software expertise
« Clear definition of system boundary
« Use of abstraction and partitioning
* Automated tool support
« e.g. CASE tools provide automated consistency checking
« Disadvantages
« Little use of projection
« even SRD’s ‘perspectives’ are not really projection
« Confusion between modeling the problem and modeling the solution
« most of these techniques arose as design techniques
» These approaches model the system, but not its application domain
« Timing & control issues are completely invisible
« although extensions such as Ward-Mellor attempt to address this

Fiiie: JSP & JSD

e Jackson System Development

of system

decisions

UNIVERSITY- OF MASSACHUSETTS - AMHERST: =+

©Rick Adrion 2003 (except where noted)

*Emphasis on high-level conceptual design
*Develops collection of coordinated graphical depictions

« Strong hints about how to carry them to implementation

« Strong suggestions about how to go about doing this

e Jackson Structured Programming
*JSD Based on/uses JSP, so let’s look at that first

Source: Adapted from Davis, 1990, p174

UNIVERSITY-OF MASSACHUSETTS AMHERST:+-b):

U ISP

* Design is about structure, about the relation of parts to
the whole.
¢ Programs consist of the following parts or components:
eelementary components
«three types of composite components -- components
having one or more parts:
esequence -- a sequence is a composite component that
has two or more parts occurring once each, in order.
s selection -- a composite component that consists of two or
more parts, only one of which is selected, once.
« iteration a composite component that consists of one part
that repeats zero or more times.

UNIVERSITY: OF. MASSACHUSETTS AMHERST.=-[;

CMPSCI520/620 Design

COMPUTER
SCIENCE

com posite com ponents
Jackson structure Jackson structure Pseudocode
diagram text
do B; do B;
do C; do C;
Aend end
[]
Jackson structure Jackson structure Pseudocode
diagram text
Asel <cond-1> if <cond-1> then
do B doB;
Aalt <cond2> else if <cond2> then
do C; do C;
Aend enaif
Jackson structure Jackson structure Pseudocode
diagram
“ Aiter <cond> while <cond>
doB; doB;
Aend endwhile

UNIVERSITY- OF MASSACHUSETTS AMHERST DER

COMPUTER
SCIENCE

JSP design method

« consists of the following steps:

1. Draw a system diagram
2. Draw a data structure for each input and output file

3. Draw a single data structure based on
correspondences between the input and output
data structures; this data structure forms the basic
program structure

4. List the operations needed by the program, For
each, ask "Where does it belong (in what program
part?)" "How many times does it occur?" Allocate
the operations to the basic program structure.

5. Translate the program structure into text, specifying
the conditions for iteration and selection

UNIVERSITY- OF MASSACHUSETTS - AMHERST: =+ DEP;_

©Rick Adrion 2003 (except where noted)

““ﬂ;ﬂ'ﬁﬁ% Basic program design method (JSP)

e system diagram

e input/output structure diagrams

e program structure diagram

« allocation of operations to program structure
ewhich part? how many times?
«"read-ahead rule"

« constructive method of design
e not top-down, not stepwise refinement

UNIVERSITY-OF MASSACRUSETTS AMHERST 3 DERA

COMPUTER multiplication table example

e The required output is:
1
24
369
481216

1020 30 40 50 60 70 80 90 100
1. Draw system diagram

Generate]
raultiplication Printed
tahle table

UNIVERSITY- OF MASSACHUSETTS AMHERST:=~ DEF?'

CMPSCI520/620 Design

COMPUTER multiplication table example

2. Draw data structures 3. Form program structure
based on the data
structures from the
previous step.

Tahle Produce
Tahle
Lo iy
I |
* *
Eleraent FProduce
Element

UNIVERSITY- OF MASSACHUSETTS AMHERST DEP?:\‘

COMPUTER multiplication table example

4. List and allocate operations
¢ elementary operations needed to perform the task,
and for each operation
¢ "How often is it executed?"
¢ "In what program component(s) does it belong?”
e The operations must be elementary statements of
some programming language; e.g., Pascal.

operation how often? where?

1 row-no :=1; once at start of program

2 col-no :=1; once per line in part that produces a
line, at start

3 row-no :=row-no + 1; 9 times in part that produces a
line

4 col-no := col-no + 1; (row-no)-1 per in part that computes an

line element

5 line[col_no] := row_no*col_no | once per element | in part that computes an

element

COMPUTER multiplication table example

5. Code program from structure diagram or structure text

Produce
Tah]e operation how often? where?

1 row-no = 1; once at start of program

2 cokno = 1; once per fine in part that produces a
line, at start
Produce 3 row-no = row-no + 1; Stimes in part that procuces &
ine
Table Bod: 4 colno = cokno + 1 (row-no)-1 per | in part that computes an
line element

5line[col_no] := row_no"col_no | once per element | in part that computes an
" element

Produce
Line

IC]eaxLine ‘ | Produce ‘ Disp]ay]_,ine|

Line Body

G{Compute *
Elerent

UNIVERSITY- OF MASSACHUSETTS AMHERST: =+

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF MASSACHUSETTS AMHERST: - DER:

CONPUTER Difficulties in applying JSP

« The development procedures of a method should be closely
matched to specific properties of the problems it can be used to
solve

« basic JSP requires the problem to possess at least these two
properties:

« the data structures of the input and output files, and the
correspondences among their data components, are such that a
single program structure can embody them all

« each input file can be unambiguously parsed by looking ahead just
one record

« If the file structures do not correspond appropriately it is impossible
to design a correct program structure: this difficulty is called a
structure clash

« If an input file can not be parsed by single look ahead it is
impossible to write all the necessary conditions on the program’s
iterations and selections: this is a recognition difficulty

UNIVERSITY-OF MASSACHUSETTS AMHERST. = DER?

CMPSCI520/620 Design

COMPUTER Structure Clashes

« three kinds of structure clash
« interleaving clash
« data groups that occur sequentially in one structure correspond
functionally to groups that are interleaved in another structure
« e.g., the input file of a program may consist of chronologically ordered
records of calls made at a telephone exchange; the program must produce
a printed output report of the same calls arranged chronologically within
subscriber. The ‘subscriber groups’ that occur successively in the printed
report are interleaved in the input file
« ordering clash
« corresponding data item instances are differently ordered in two structures
« e.g., an input file contains the elements of a matrix in row order, and the
required output file contains the same elements in column order.
* boundary clash,
« two structures have corresponding elements occurring in the same order,

but the elements are differently grouped in the two structures; the
boundaries of the two groupings are not synchronized.

UNIVERSITY: OF MASSACHUSETTS AMHERST 4D ERA

COMPUTER Program decomposition

* Example of a “structure clash”

ean inventory transaction file consists of daily
transactions sorted by part number

eeach part number may have one or more transactions

« either a receipt into the warehouse or an order out of the
warehouse

eeach transaction contains a transaction code, a part-
identifier, and a quantity received or ordered

*A program is to be written that prints a line for each part
number showing the net daily movement for that part
number into or out of the warehouse

« Assumption: the input file is blocked, with each block
containing a record count followed by a number of records

UNIVERSITY- OF MASSACHUSETTS AMHERST:-~:DE!

©Rick Adrion 2003 (except where noted)

COMPUTER

<cienee Boundary clashes

« are surprisingly common
« three well-known examples:

 The calendar consists of years, each year consisting of a number of
days. In one structure the days may be grouped by months, but by
weeks in another structure. There is a boundary clash here: the
weeks and months can not be synchronized.

« A chapter of a printed book consists of text lines. In one structure the
lines may be grouped by paragraphs, but in another structure by
pages. There is a boundary clash because pages and paragraphs
can not be synchronized.

« A file in a low-level file handling system consists of variable-length
records, each consisting of between 2 and 2000 bytes. The records
must be stored sequentially in fixed blocks of 512 bytes. There is a
boundary clash here: the boundaries ofthe records can not be
synchronized with the boundaries of the blocks

UNIVERSITY-OF MASSACRUSETTS AMHERST:+-DER

COMPUTER

<cience Report generation

1. Draw system diagram

C-Input;
P- Beport

UNIVERSITY: OF MASSACHUSETTS AMHERST=-DEP;

CMPSCI520/620 Design

CONPUTE Report generation example

2. Draw data structures

Inpaut file Report file

Structures Daily Feport
don’t match "
“boundary”

clash

‘ Endline’

FReportbody

m\

=

Part_no 02-131
Name widget
Number In/Out Time

Part_no Name Number In/Out Time w 155 o ?Sg;"
02131 widget 5 out 0815 Transaction
07-288 gizmo 5 out 0935 record

02-131widget 15 in 1005

07-288 gizmo 5 out 1055

UNIVERSITY OF MASSACHUSETTS AMHERST

CONPUTE Report generation example

¢ Program PA consumes the input file of blocks of records
and produces an unblocked file of transactions. Program
PB consumes the groups of unblocked transaction records
and produces the required report.
2. Draw data structures
Program PA Program PB
Input file Inbrjf‘zllfﬁd.\ate Interﬂfgdmte Report file

Dilly i
tm%i‘;;tjoh w— | transactio

SCIENCE

e decomposing the program P into two programs,
PA and PB as shown below:

O Il e O Kl ©

e program inversion

P& produces a record and iorokes
the subroutine PRI which uses it
to produce X

We say that PBI is inverted with
respect to its input file

PE produces ¥, invoking the
subroutine PAI to obtain the
next record,

We say that PAI is inverted with
respect to its output file

UNIVERSITY- OF MASSACHUSETTS AMHERST: -

©Rick Adrion 2003 (except where noted)

CONNHNE! Resolution of the structure clash

UNIVERSITY-OF MASSACHUSETTS AMHERST

COMPUTER Resolution of the structure clash

e decomposing the program P into
two programs, PA and PB as
shown below:

On e Co LG

¢ Implementation

¢ Batch processing: PA produces
the serial data stream, |, which is _PA
then processed by program PB. u

e Parallel processing: cooperating %“\ ﬁA tnracess)
programs or coroutines or as o e uet
independent tasks under control
of a multi-programming task

_‘-—__\\Ri (process)
call PA
supervisor

PB

put
callPB — wget
—— (hrocess)

UNIVERSITY- OF MASSACHUSETTS AMHERST:=~

CMPSCI520/620 Design

COMPUTER Program Inversion

e solution of a structure clash more cheaply than
employing Multi-programming
e convert one program that it runs as a subroutine of the
other

O Il O Kl ©

P& produces a record and iorokes
the subroutine PRI which uses it
to produce X

We say that PBI is rverted with
respect to its input file

PE produces ¥, invoking the
subroutine PAI to obtain the
next record,

We say that PAI is inverted with
respect to its output file

UNIVERSITY. OF MASSACHUSETTS AMHERST 4]

CONPUTER Significance of Inversion

¢ many situations appearing in their dynamic, piecemeal
executable form can be recast in their underlying serial form as
a simple program
«any resumable program--one that is alternately activated and
suspended--is an example of inversion
« what is the underlying seriality of its input and output?
« can recast the problem in serial form, and design a simple
program using JSP
« can optimize the design using inversion
e inversion preserves program correctness--it is an algorithmic
transformation--we can be confident about the design of the
inverted (resumable) program
e inversion allows us to extend the range of JSP to many
situations that at first glance do not appear to be amenable to it

UNIVERSITY- OF MASSACHUSETTS - AMHERST: =+

©Rick Adrion 2003 (except where noted)

CONPUTER Uses of program inversion

¢ Interactive conversational programs
o 0
prograt

e Interrupt handler

« Implementation of pipes & filters and hierarchical
networks

UNIVERSITY-OF MASSACRUSETTS AMHERST 3

CONPUTE Recognition Difficulties

« A recognition difficulty is present when an input file can
not be unambiguously parsed by single look-ahead

*sometimes the difficulty can be overcome by looking
ahead two or more records

esometimes a more powerful technique is necessary

open read;
read;

read read read read read read

UNIVERSITY- OF MASSACHUSETTS AMHERS

10

CMPSCI520/620 Design

COMPUTER Backtracking technique

1. the recognition difficulty is simply ignored. The program is designed, and
the text for the AGroup and BGroup components is written, as usual. No
condition is written on the Group selection component. The presence of
the difficulty is marked only by using the keywords posit and admit in
place of if and else.

2. a quit statement is inserted into the text of the posit AGroup component
at each point at which it may be detected that the Group is, in fact, not an
AGroup. In this example, the only such point is when the B record is
encountered. The quit statement is a tightly constrained form of GO TO:
its meaning is that execution of the AGroup component is abandoned
and control jumps to the beginning of the admit BGroup component.

3. the program text is modified to take account of side-effects: that is, of the
side-effects of operations executed in AGroup before detecting that the
Group was in fact a BGroup.

UNIVERSITY: OF MASSACHUSETTS AMHERS T DERA]

COMPUTER Central virtues of JSP

« it provides a stronglg systematic and prescriptive method for a clearly
defined class of problem

« independent JSP designers working on the same problem produce the same
solution

* JSP keeps the program designer firmly in the world of static structures to
the greatest extent possible.

« only in the last step of the backtracking technique, when dealing with side-
effects, is the JSP designer encouraged to consider the dynamic behavior of
the program

« this restriction to designing in terms of static structures is a decisive
contribution to program correctness for those problems to which JSP can be
applied

« avoids the dynamic thinking -- the mental stepping through the program
execution -- that has always proved so seductive and so fruitful a source of
error.

* Hints

< Don't optimize!!lf you have to, do it as the last step, after you have designed
the program properly.

» Use Models not functions

UNIVERSITY: OF MASSACHUSETTS AMHERST: -~ DERA]

©Rick Adrion 2003 (except where noted)

LT Sketch

« The component attempt to read
Agroup records posits

assume you can read Agroup records
and admits that you (cannot & should)
instead read Bgroup records

The attempt to read Agroup records is
a call of the subprogram read Agroup

records which may cause an implicit

Assume (posit) Agroup Admit Bgroup

quit when, in reading, it is discovered
the record is a BGroup record AGroup BGroup
« an implicit quit is an exception thrown
within a subprogram and not handled | |
and so is propagated from the
subprogram to its calling environment Olelse Olelse
« a posit/ admit design must contain a AGmﬁ BG""R

single posit and at least one admit
connected at the same level

« it can contain any number of, implicit or
explicit, quits within the admit
component at any level

read BGroup unless
discover AGroup record
-> Quit (throw exception)|

read AGroup unless
discover BGroup record
-> Quit (throw exception)|

UNIVERSITY-OF MASSACHUSETTS AMHERST DEPAF.:\

COMPUTER

*« Emphasis on high-level conceptual design

* Develops collection of coordinated graphical depictions
of system

« Strong hints about how to carry them to implementation
decisions

« Strong suggestions about how to go about doing this
« Considerable literature delving into the details of JSD
¢ Product of a commercial company

* Supported by courses, tools, consultants

UNIVERSITY- OF MASSACHUSETTS AMHERST:=~ DEPAE

<eienee Jackson System Development (JSD)

11

CMPSCI520/620 Design

COMPUTER JSD Models Focus on Actions

« JSD produces models of the real world and the way in which
the system to be built interacts with it
 Primary focus of this is actions (or events)
e actions can have descriptive attributes
« set of actions must be organized into set of processes

* Processes describe which actions must be grouped together
and what the "legal" sequences of actions are

* Processes can overlap in various ways

* Processes are aggregated into an overall system model

« using two canonical models of inter-process communication
e Data are described in the context of actions

«in JSD data considerations are subordinate to actions

UNIVERSITY- OF MASSACHUSETTS AMHERST DEPA

COMPUTER Student Loan Example

 Functional requirements:
« before getting a loan, there is an evaluation process after which
agreement is always reached
< a TE transaction records each step of the evaluation process
« a TA transaction records the overall loan agreement
« a student can take any number of loans, but only one can be active
at any time
« each loan is initiated by a Tl transaction
« the student repays the loan with a series of repayment
« each repayment transaction is recorded by a TR transaction
*a loan is terminated by a TT transaction
« two output functions are desired:
« an inquiry function that prints out the loan balance for any student,

« a repayment acknowledgment sent to each student after payment is
received by the university

* Non Functional requirements
« to be implemented on a single processor
« inquiries should be processed as soon as they are received

« repayment acknowledgments need only be processed at the end of
each day.

« Note: generates a stream of data over a long-period of time

UNIVERSITY- OF MASSACHUSETTS AMHERST: =+

©Rick Adrion 2003 (except where noted)

COMPUTER JSD - Phases

«the modeling phase

« Entity/action step

« Entity structure step

*Model process step
«the network phase

econnect model processes and functions in a single

system specification diagram (SSD)

«implementation phase

eexamine the timing constraints of the system

e consider possible hardware and software for
implementing our system

edesign a system implementation diagram (SID)

UNIVERSITY-OF MASSACRUSETTS AMHERST 3 DERA

COMPUTER Step 1: Entity/action step

« Actions have the following characteristics:
ean action takes place at a point in time

ean action must take place in the real world outside of the
system.

ean action is atomic, cannot be divided into subactions.
« Entities have the following characteristics:
ean entity performs or suffers actions in time.

ean entity must exist in the real world, and not be a
construct of a system that models the real world

ean entity must be capable of being regarded as an
individual; and, if there are many entities of the same
type, of being uniquely named.

UNIVERSITY- OF MASSACHUSETTS AMHERST:=~ DEF?'

12

CMPSCI520/620 Design

CONPUTER Candidates

¢ Entities/Description:
estudent
esystem
e university
eloan
estudent-loan

UNIVERSITY OF MASSACHUSETTS AMHERST

COMPUTER Focus on:

« Entities/Description:
« student
 Actions/Attributes:
« evaluate -action of student; student? (student suffers the
action, is evaluated);
« attributes: student-id, loan-no, date of evaluation, remarks
e agree - action of student

« attributes: student-id, loan-no, date of agreement, amount of loan,
interest rate, repayment period)

«initiate - action of student

« attributes: student-id, date initiated
e« repay - action of student

« attributes: student-id, date of repayment, amount of repayment
« terminate - action of student

« attributes: student-id, date of termination, remarks

UNIVERSITY- OF MASSACHUSETTS AMHERST: -

©Rick Adrion 2003 (except where noted)

COMPUTER Actions/Attributes:

« evaluate -action of university? (university performs the evaluation);
action of student? (student is evaluated)
« attributes: student-id, loan-no, date of evaluation, remarks
« agree - action of university? (university agrees to loan); action of
student ? (agrees to loan)

« attributes: student-id, loan-no, date of agreement, amount of loan,
interest rate, repayment period)

* make loan - action of university
« attributes: student-id, loan-no, date of loan, loan amount, interest rate,
repayment period
« initiate - action of university? (university initiates loan); action of
student? (student initiates loan); action of loan? (is initiated)
« attributes: student-id, date initiated
« repay - action of loan? (loan is repaid); action of student? (student
repays the loan);
« attributes: student-id, date of repayment, amount of repayment
« terminate - action of loan (loan is terminated);
« attributes: student-id, date of termination, remarks

UNIVERSITY-OF MASSACHUSETTS AMHERST

COMPUTER . ;
seience Step 2: Entity structure step
student
evaluate part agree loan part
|]
*
evaluate loan

(1) evaluation part mitiate repay part terminate

- zero or more evaluate actions 1
(2) student agrees to loan *
(3) loan(s) is (are) made repay

- zero or more loans.

- loan is a sequence of initiate

action, iteration of repay actions, a

terminate action

UNIVERSITY- OF MASSACHUSETTS AMHERST:=~

13

CMPSCI520/620 Design

CONPUTER Model Process

process
¢ Actions are structured into a tree

einterior nodes are conceptual

iteration

eset of traversals is a regular set

UNIVERSITY- OF MASSACHUSETTS AMHERST

 Primary building block of a JSD design
contains all actions characterizing a key real-world

eonly the leaf nodes of the tree are real-world actions

einterior nodes can be annotated to show choice or

etraversals of this tree constitute the only "legal"
sequences of actions for this process

*Model process tree defines a regular expression

COMPUTER

EXTERNAL WORLD

STUDENT+0
entity structure diagram

abstract student entity describes the structure of
in the real world the serial data stream

SYSTEM

STUDENT-]

realization in the
Information system

STUDENT-1 seq
read S
EVAL iter (while TE)

process TE: read
student EVAL end

AGREE seq

process TA: read S
loan part | AGREL end

c\'uluuu:parl I agree I

REPAY end
IERM seq
rocess TT: read S

TERM end
LOAN-PART end
STUDENT-1 end

LOAN-PART iter (forever)
* INIT seq
loan
process T1: read S
| INIT
REPAY iter (while TR)

UNIVERSITY- OF MASSACHUSETTS - AMHERST: =+

©Rick Adrion 2003 (except where noted)

seience Step 3: Model process step

Use JSP to create a

program for the process

-a TE transaction records
each step of the evaluation
process

+a TA transaction records the
overall loan agreement

~each loan is initiated by a Tl
transaction

~each repayment transaction is
recorded by a TR transaction
-a loan is terminated by a TT
transaction

COMPUTER Model Processes

* A model process is a particular view of the system
« various model processes provide different views
*model process is multiply instantiated for different instances
*model processes are often annotated with informal
specifications and notations
*same action may appear as part of more than one process
* Model Processes and Data
« actions on data hang off of model process leaf nodes
« global data is necessary too
« for functions that must combine data from >1 model process
« to assure consistency between model processes

« to coordinate between different instances of the same model
process

« to coordinate between different models of the same entity

UNIVERSITY-OF MASSACHUSETTS AMHERST:+-b):

COMPTER Error handling

. : STUDENT-I se
« a real-time system (but slow-running) a

read S:

system o EVAL iter (while TE)

« information is collected as it arrives process TE: read S
from the real-world EVAL end

« entity model process is synchronized AGREE seq
with the actions of the real world entity process TA: read S

« the state vector of a model process's AGREL end
“program” has a “counter” ... and if it LOAN-PART iter (forever)
“points” to repay component of a INIT seq
student's process, then an 'E' process T1: read S
(evaluate), 'A' (agree) or 'I' (initiate) INIT
transaction must be recognized as an REPAY iter (while TR)
error rocess TR: read §

state vector (SV) connection
-- One process can examine
the SV of a 2nd process

-- the double lines indicate
that an inquiry process,
over its life, will examine

STUDENT-0 STUDENT-1

many student processes

UNIVERSITY: OF. MASSACHUSETTS AMHERST.=-[;

14

CMPSCI520/620 Design

CONPUTER Total System Model

* At the Network Phase, weave Model Processes
together incrementally to form the total system
specification

ealso add new processes during this phase: e.g., input,
output, user interface, data collection

¢ Goal is to indicate how model processes communicate
with each other, use each other, are connected to user
and outside world

¢ Linkage through two types of communication:
*Message passing
« State vector inspection

¢ Indicates which data moves between which processes
eand more about synchronization

UNIVERSITY- OF MASSACHUSETTS AMHERST DER

COMPITEE Message Passing

« Data stream carries a message from one process
activity to an activity in another process

emust correlate with output leaf of sending model process

emust correlate with input leaf of receiving model process
 Data transfer assumed to be asynchronous

eless restrictive assumption

*no timing constraints are assumed

emessages are queued in infinitely long queues

emessages interleaved non-deterministically when
multiple streams arrive at same activity

UNIVERSITY:OF MASSACHUSETTS AMHERST = DEP;

©Rick Adrion 2003 (except where noted)

CONPUTER Model Process Communication

* Fundamental notion is Data Streams

ecan have multiple data streams arriving at an action in a
process

«can model multiple instances entering a data stream or
departing from one

* Two types of data stream communication:
easynchronous message passing
« State vector inspection

* These communication mechanisms used to model how
data is passed between processes

UNIVERSITY-OF MASSACHUSETTS AMHERST DERR

COMPUTER State Vector Inspection

¢ Modeling mechanism used when one process needs
considerable information about another

« State vector includes
evalues of all internal variables
e execution text pointer

* Process often needs to control when its state vector can
be viewed

eprocess may need exclusive access to its vector

* Could be modeled as message passing, but important
to underscore characteristic differences

UNIVERSITY-OF MASSACRUSETTS AMHERST - DErA

15

CMPSCI520/620 Design

CONPUTE Network Phase -- the SSD CONPUTER Designing the LBE function w/ JSP

« loan balance inquiry function (LBE) is connected to the Student-1 (i) input and output
process by state vector (SV) connection | SVs

« The function to produce the student acknowledgments data stream J— o
(ACK) is embedded in the student-1 process in the repavs component Y -
0 i Loan balance
enquiry function

Payment

acknowledgement re—

lister (PAL) ooty

) (i) list of operations
1 - write 'loan balance for'. stud ent-id, 'is', balance
7 - oet STUDENT SV (student-id)
Loan balance @
enguiry function)
(iv) elaborated program structureand text:

« DT is an input signal at the end of the day--a daily time marker--that

tells the payment acknowledgment lister (PAL) function to begin LBE seq

* The ACK and DT data streams are rough-merged, that is, we don't e —
know precisely whether a repayment acknowledgment will appear on T INTSV(studen
today's or tomorrow's daily list.

get STUDENTSV(student-id);
vrite 'loan balance for ', stud ent-
', balance'

C-eng
|

read
j LBE-BODY end
LBE end

UNIVERSITY-OF MASSACHUSETTS-AMHERS:

UNIVERSITY: OF MASSACHUSETTS AMHERST:

COMPUTER : COMPUTER
<cienee Implementation Phase seieice The SID
. . all of the serial data all student processes have an
*Use of inferences encouraged by understandings streams are input to identical siructure: only their
gleaned from the network phase the scheduler process —-separate the state vectors of
. 7 50 student !pro'cestsets from! their
 Network Phase suggests ideal traversal paths through v Scheduler oy, S2te vetr
model processes and their local data D lq setof Svis ?:deasggase of
esuggests internal implementation of model processes
estudying use of model processes suggests internal STUDENT-1 stud
structure of their data ’ - SVs Loan balance
» Communication by data streams and state vector I:Il‘l‘l‘l'l";‘l
inspection often suggest real implementations ./‘\
) Al PAL is inverted with respect to
° BUt Often not PAL Daily both of its inputs, the repayment
acknowledgment data stream
student-T process is inverted and the daily marker. PAL is
with respect to its data stream, invoked by Student-1 whenever
S. and is called by the Student-1 processes a repayment
scheduler to process a transaction. The scheduler invokes
transaction, and then PAL directly when it receives a DT
sus| ended and this triggers the daily listing
R DEPAR SE-CEke HSEIER RS RO 3

UNIVERSITY: OF MASSACHUSETTS AMHERST:

©Rick Adrion 2003 (except where noted)

CMPSCI520/620 Design

Scheduler

Student

Loan balance
i loan part

enquiry
Lk

UNIVERSITY: OF MASSACHUSETTS AMHERST: i

CONPUIER Design of the scheduler in JSP

« records from the serial data stream
(loan balance inquiries and student
loan transactions) are read and
processed in real-time

« at the end of the day, a daily time
marker--perhaps a signal to the
system from the operator--is input

List of operations:
1-read input

2-call LBE(inrec)
V(student-id)

3-

4-call student-1(srec, ssv)
S-put SSV(student-id)
6-call PAL(DT)

* PAL is invoked & processes
payment acknowledgments that
have been previously generated in
real-time whenever a student
repayment is made and stored in a
buffer

©Rick Adrion 2003 (except where noted)

COMPUIER JSD and JSP

« In JSD, the principles of JSP are extended into the areas of
systems analysis, specification, design and implementation

« In JSP, a simple program describes a sequential process that
communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream

« In JSD, the real world is modeled as a set of sequential model
processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.

* The JSD implementation step embodies the JSP implementation
technique, program inversion, in which a program is transformed
into a procedure

« Other JSP techniques, such as the single read-ahead rule and
backtracking, and principles, such as implementation through
transformation, are used in JSD

UNIVERSITY-OF MASSACHUSETTS AMHERST -

17

