
CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Announcements

•SRS Interviews
•TODAY 1pm CSB 303 Shlomo Zilberstein

•WED in class Peterson/Zinn (OIT) & Battisti (CCBIT)

•Office Hours
•Tuesday (3-4)

•VOTE tomorrow!

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

15-Design

•Readings
•David Parnas “On the Criteria To Be Used in
Decomposing Systems into Modules,” Comm. ACM 15,
12 (Dec. 1972), 1053-1058
•David Parnas“On the design and development of
program families” IEEE Trans. On SE., vol. SE-2, pp.1-9,
Mar. 1976
•Davis, A. M. “Software Requirements: Analysis and
Specification”. Prentice-Hall, 1990.
•Michael Jackson, Software Requirements &
Specifications: A Lexicon of Practice, Principles and
Prejudices (ACM Press Books) Addison-Wesley Pub Co;
1st edition (1995)
•David Budgen, Software Design (2nd Edition) Pearson
Addison Wesley; 2nd edition (2003)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

History of Software Design

• 1960s
• Structured Programming
• (“Goto Considered Harmful”, E.W.Dijkstra)
• Emerged from considerations of formally specifying the semantics of

programming languages, and proving programs satisfy a predicate.
• Adopted into programming languages because it’s a better way to think

about programming

• 1970s
• Structured Design
• Methodology/guidelines for dividing programs into subroutines.

• 1980s
•Modular (object-based) programming
• Ada, Modula, Euclid, …
• Grouping of sub-routines into modules with data.

• 1990s
• Object-Oriented Languages started being commonly used
• Object-Oriented Analysis and Design for guidance.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

On the Criteria for Decomposing Systems into Modules. David Parnas. CACM, 1972

Key Word In Context

"The KWIC index system accepts an ordered set of lines,
each line is an ordered set of words, and each word is
an ordered set of characters.

Any line may be ‘circularly shifted’ by repeatedly
removing the first word and appending it at the end of
the line.

The KWIC index system outputs a listing of all circular
shifts of all lines in alphabetical order."

KWIC example “borrowed” from Software Architectures © David Garlan

Pipes and Filters
Architectures for Software Systems

and Filters Pipes

Architectures for Software Systems

Filters Pipes and

for Software Systems Architectures

Pipes and Filters

Software Systems Architectures for

Systems Architectures for Software

KWIC

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Considerations

•Change in Algorithm
•e.g., batch vs. incremental

•Change in Data Representation
•e.g., line storage, explicit vs implicit shifts

•Change in Function
•e.g., eliminate lines starting with trivial words

•Performance
•e.g., space and time

•Reuse
•e.g., sorting

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Stepwise Refinement Strategy

Pipes and Filters

Architectures for Software Systems

and Filters Pipes

Architectures for Software Systems

Filters Pipes and

for Software Systems Architectures

Pipes and Filters

Software Systems Architectures for

Systems Architectures for Software

KWIC

Input Shift Alphabetize Output

Input OutputKWIC

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

KWIC Modularization

Master control

Input medium Output medium

Characters Index
Alphabetized

Index

Input Circular Shift Alphabetizer Output

Direct Memory Access

System I/O

Subprogram Call

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Advantages & Disadvantages

• Advantages
• computations can share the same storage
• allow efficient data representation
• has a certain intuitive appeal
• distinct computational aspects are isolated in different modules

•Disadvantages
• serious drawbacks in terms of its ability to handle changes
• a change in data storage format will affect almost all of the

modules
• changes in algorithm and enhancements to system function are

not easily handled
• reuse is not well-supported because each module of the
system is tied tightly to this particular application.

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Alternative Modularization

•Each major step in the processing ⇔ module, but now
add Information hiding
•Each module hides design decisions from all others.
• Lines -- how characters/lines are stored
•Circular Shifter -- algorithm for shifting, storage for shifts
•Alphabetizer -- algorithm for alpha, laziness of alpha

•Maintain same flow of control, but organize solution
around set of data managers (objects):
• for initial lines
•shifted lines
•alphabetized lines

•Each manager handles the representation of the data &
provides a procedural interface for accessing the data

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Input medium

Input

•Module 1: Input
•Reads data lines
and stores using
“Line Storage”

KWIC Modularization 2

Lines

se
tc

(i,
w

,j,
c)

ge
tc

(i,
w

,j)

n
W

or
ds

(i)

• Module 2: Line storage
•Manages lines and characters;

procedural interface

• Storage format: not specified at
this point

Circular Shifter

ge
tc

(i,
w

,j)

n
W

or
ds

(i
)

cs
se

tu
p

•Module 3: Circular Shift
•Provides access functions to
characters in circular shifts

•Requires CSSETUP as
initialization after Input is done

Alphabetizer

do
A

lp
h

Ith
(i)

•Module 4: Alphabetize
•Provides index of circular shift

•ALPH called to initialize after
Circular Shift

Output medium

Output

•Module 5: Output
•Prints formatted
output of shifted lines

Master control

•Module 6: Master
Control
•Handles sequencing
of other modules

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comparisons

•Change in Algorithm
•Solution 1: batch algorithm wired into
•Solution 2: permits several alternatives

•Change in Data Representation
•Solution 1: Data formats understood by many modules
•Solution 2: Data representation hidden

•Change in Function
•Solution 1: Easy if add a new phase of processing
•Solution 2: Modularization doesn’t give particular help

• Independent Development
•Solution 1: Must design all data structures before parallel work
can proceed; complex descriptions needed
•Solution 2: Must design interfaces before parallel work can
begin; simple descriptions only

•Comprehensibility
•Which is better?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Summary

•Every architect should have a standard set of
architectural styles in his/her repertoire
• it is important to understand the essential aspects of
each style: when and when not to use them

•examples: pipe and filters, objects, event-based systems,
blackboards, interpreters, layered systems

•Choice of style can make a big difference in the
properties of a system
•analysis of the differences can lead to principled choices
among alternatives

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Structured Design & Analysis
• Definition
• SA&D a data-oriented approach to conceptual modeling

• DFD central

• Typically used for information systems, occurs in many legacy
systems

• Modeling process:
•Model of current physical system only useful as basis for the logical

model

• Distinction between indicative and optative models is very important

2. Current
logical system

1. Current
physical system

3. New logical
system

4. New physical
system

Abstract
(essential functions)

Concrete
(detailed model)

indicative
(existing system)

optative
(new system)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Source: Adapted from Svoboda, 1990, p258-263

Modeling tools

•Data flow diagram
•Context diagram (“Level 0”)
• whole system as a single process

• Intermediate level DFDs decompose each process
• Functional primitives are processes that cannot be
decomposed further

•Data dictionary
•Defines each data element and data group
•Use of BNF to define structure of data groups

• Primitive Process Specification
•Each functional primitive has a “mini-spec”
• These define its essential procedural steps
•Expressed in English narrative, or some form of pseudo-code

• Structured Walkthrough

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Level N: subprocesses

Hierarchies of DFDs

ticket
system

booking
system

customer

ticketsbooking
confirmation

booking
request

customer
query

Level 0: Context Diagram

1. determine
form of
travel

2.
check

schedule

3.
reserve
seats 4.

issue
tickets

Timetables

Fare tables

customer

booking
system customer

travel
request

customer
query

schedule

proposed
itinerary proposed

itinerary

booked
itinerary

fares

tickets

booking
confirmation

Level 1: Whole System

booking
request

Level 2: subprocesses

3.1
request
reser-

vations

3.2.
confirm
booking

3.3.
collate

confirm-
ations

booking
systemReq id.

Req id.

seat
data

booking
confirmation

booking
request

seating prefscheck
schedule

issue
tickets

Proposed
itinerary

booked
itinerary

booking
request

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example Data Dictionary
Mailing Label =

customer_name +
customer_address

customer_name =
customer_last_name +
customer_first_name +
customer_middle_initial

customer_address =
local_address +
community_address + zip_code

local_address =
house_number + street_name +
(apt_number)

community address =
city_name + [state_name |
province_name]

Example Data Dictionary
Mailing Label =

customer_name +
customer_address

customer_name =
customer_last_name +
customer_first_name +
customer_middle_initial

customer_address =
local_address +
community_address + zip_code

local_address =
house_number + street_name +
(apt_number)

community address =
city_name + [state_name |
province_name]

Source: Adapted from Svoboda, 1990, p262-4

Example Mini-Spec

FOR EACH Shipped-order-detail

GET customer-name + customer-
address

FOR EACH part-shipped

GET retail-price

MULTIPLY retail-price by
quantity-shipped

TO OBTAIN total-this-order

CALCULATE shipping-and-handling

ADD shipping-and-handling TO total-
this-order

TO OBTAIN total-this-invoice

PRINT invoice

Example Mini-Spec

FOR EACH Shipped-order-detail

GET customer-name + customer-
address

FOR EACH part-shipped

GET retail-price

MULTIPLY retail-price by
quantity-shipped

TO OBTAIN total-this-order

CALCULATE shipping-and-handling

ADD shipping-and-handling TO total-
this-order

TO OBTAIN total-this-invoice

PRINT invoice

Data Dictionary & Process Specs

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

ActivityIncoming
data

Performing
mechanism

Control
data

Transformed
data

Name

ID

Name

Name

ID

NameID

Source: Adapted from Svoboda, 1990, p264-5

DFD variants
• Structured Analysis and Design Technique

(SADT)
• Developed by Doug Ross in the mid-70’s
• Uses activity diagrams rather than dataflow

diagrams
• Distinguishes control data from processing

data

• Structured Analysis and System
Specification (SASS)
• Developed by Yourdon and DeMarco in the

mid-70’s
• ‘classic’ structured analysis

• Structured System Analysis (SSA)
• Developed by Gane and Sarson
• Notational style slightly different from Yourdon

& DeMarco
• Adds data access diagrams to describe

contents of data stores

• Structured Requirements Definition (SRD)
• Developed by Ken Orr in the mid-70’s
• Introduces the idea of building separate

models for each perspective and then merging
them

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Source: Adapted from Davis, 1990, p174

Evaluation of SA&D techniques

• Advantages
• Facilitate communication.
• Notations are easy to learn, and don’t require software expertise
• Clear definition of system boundary
• Use of abstraction and partitioning
• Automated tool support
• e.g. CASE tools provide automated consistency checking

• Disadvantages
• Little use of projection
• even SRD’s ‘perspectives’ are not really projection

• Confusion between modeling the problem and modeling the solution
• most of these techniques arose as design techniques

• These approaches model the system, but not its application domain
• Timing & control issues are completely invisible
• although extensions such as Ward-Mellor attempt to address this

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSP & JSD

•Jackson System Development
•Emphasis on high-level conceptual design

•Develops collection of coordinated graphical depictions
of system

•Strong hints about how to carry them to implementation
decisions

•Strong suggestions about how to go about doing this

•Jackson Structured Programming
•JSD Based on/uses JSP, so let’s look at that first

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSP

•Design is about structure, about the relation of parts to
the whole.

• Programs consist of the following parts or components:
•elementary components

• three types of composite components -- components
having one or more parts:
• sequence -- a sequence is a composite component that
has two or more parts occurring once each, in order.

• selection -- a composite component that consists of two or
more parts, only one of which is selected, once.

• iteration a composite component that consists of one part
that repeats zero or more times.

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

composite components

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Basic program design method (JSP)

• system diagram

• input/output structure diagrams

•program structure diagram

•allocation of operations to program structure
•which part? how many times?

• "read-ahead rule"

• constructive method of design
•not top-down, not stepwise refinement

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSP design method

• consists of the following steps:
1. Draw a system diagram

2. Draw a data structure for each input and output file

3. Draw a single data structure based on
correspondences between the input and output
data structures; this data structure forms the basic
program structure

4. List the operations needed by the program, For
each, ask "Where does it belong (in what program
part?)" "How many times does it occur?" Allocate
the operations to the basic program structure.

5. Translate the program structure into text, specifying
the conditions for iteration and selection

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

multiplication table example

• The required output is:

 1

 2 4

 3 6 9

 4 8 12 16

 10 20 30 40 50 60 70 80 90 100

1. Draw system diagram

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

multiplication table example

2. Draw data structures 3. Form program structure
based on the data
structures from the
previous step.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

multiplication table example

4. List and allocate operations
• elementary operations needed to perform the task,

and for each operation
• "How often is it executed?"

• "In what program component(s) does it belong?”

• The operations must be elementary statements of
some programming language; e.g., Pascal.

operation how often? where?
1 row-no := 1; once at start of program
2 col-no := 1; once per line in part that produces a

line, at start
3 row-no := row-no + 1; 9 times in part that produces a

line
4 col-no := col-no + 1; (row-no)-1 per

line
in part that computes an
element

5 line[col_no] := row_no*col_no once per element in part that computes an
element

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

multiplication table example

5. Code program from structure diagram or structure text

operation how often? where?
1 row-no := 1; once at start of program
2 col-no := 1; once per line in part that produces a

line, at start
3 row-no := row-no + 1; 9 times in part that produces a

line
4 col-no := col-no + 1; (row-no)-1 per

line
in part that computes an
element

5 line[col_no] := row_no*col_no once per element in part that computes an
element

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Difficulties in applying JSP

• The development procedures of a method should be closely
matched to specific properties of the problems it can be used to
solve
• basic JSP requires the problem to possess at least these two

properties:
• the data structures of the input and output files, and the

correspondences among their data components, are such that a
single program structure can embody them all
• each input file can be unambiguously parsed by looking ahead just

one record

• If the file structures do not correspond appropriately it is impossible
to design a correct program structure: this difficulty is called a
structure clash
• If an input file can not be parsed by single look ahead it is

impossible to write all the necessary conditions on the program’s
iterations and selections: this is a recognition difficulty

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Structure Clashes
• three kinds of structure clash
• interleaving clash
• data groups that occur sequentially in one structure correspond

functionally to groups that are interleaved in another structure
• e.g., the input file of a program may consist of chronologically ordered

records of calls made at a telephone exchange; the program must produce
a printed output report of the same calls arranged chronologically within
subscriber. The ‘subscriber groups’ that occur successively in the printed
report are interleaved in the input file

• ordering clash
• corresponding data item instances are differently ordered in two structures
• e.g., an input file contains the elements of a matrix in row order, and the

required output file contains the same elements in column order.
• boundary clash,
• two structures have corresponding elements occurring in the same order,

but the elements are differently grouped in the two structures; the
boundaries of the two groupings are not synchronized.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Boundary clashes

• are surprisingly common
• three well-known examples:
• The calendar consists of years, each year consisting of a number of

days. In one structure the days may be grouped by months, but by
weeks in another structure. There is a boundary clash here: the
weeks and months can not be synchronized.
• A chapter of a printed book consists of text lines. In one structure the

lines may be grouped by paragraphs, but in another structure by
pages. There is a boundary clash because pages and paragraphs
can not be synchronized.
• A file in a low-level file handling system consists of variable-length

records, each consisting of between 2 and 2000 bytes. The records
must be stored sequentially in fixed blocks of 512 bytes. There is a
boundary clash here: the boundaries ofthe records can not be
synchronized with the boundaries of the blocks

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Program decomposition

•Example of a “structure clash”
•an inventory transaction file consists of daily
transactions sorted by part number

•each part number may have one or more transactions
• either a receipt into the warehouse or an order out of the
warehouse

•each transaction contains a transaction code, a part-
identifier, and a quantity received or ordered

•A program is to be written that prints a line for each part
number showing the net daily movement for that part
number into or out of the warehouse
•Assumption: the input file is blocked, with each block
containing a record count followed by a number of records

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation

1. Draw system diagram

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation example

2. Draw data structures

1. Draw new system diagram

Structures
don’t match
“boundary”

clash

Part_no Name Number In/Out Time
02-131 widget 5 out 0815
 07-288 gizmo 5 out 0935
02-131 widget 15 in 1005

….
07-288 gizmo 5 out 1055

Part_no 02-131
Name widget

Number In/Out Time
5 out 0815
15 in 1005

….

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation example

• Program PA consumes the input file of blocks of records
and produces an unblocked file of transactions. Program
PB consumes the groups of unblocked transaction records
and produces the required report.

2. Draw data structures

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Resolution of the structure clash

•decomposing the program P into two programs,
PA and PB as shown below:

•program inversion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Resolution of the structure clash

•decomposing the program P into
two programs, PA and PB as
shown below:

• Implementation
• Batch processing: PA produces
the serial data stream, I, which is
then processed by program PB.
•Parallel processing: cooperating
programs or coroutines or as
independent tasks under control
of a multi-programming task
supervisor

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Program Inversion

• solution of a structure clash more cheaply than
employing Multi-programming
• convert one program that it runs as a subroutine of the
other

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Uses of program inversion

• Interactive conversational programs

• Interrupt handler

• Implementation of pipes & filters and hierarchical
networks

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Significance of Inversion

•many situations appearing in their dynamic, piecemeal
executable form can be recast in their underlying serial form as
a simple program
• any resumable program--one that is alternately activated and
suspended--is an example of inversion

•what is the underlying seriality of its input and output?
• can recast the problem in serial form, and design a simple
program using JSP

• can optimize the design using inversion

• inversion preserves program correctness--it is an algorithmic
transformation--we can be confident about the design of the
inverted (resumable) program

• inversion allows us to extend the range of JSP to many
situations that at first glance do not appear to be amenable to it

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Recognition Difficulties

•A recognition difficulty is present when an input file can
not be unambiguously parsed by single look-ahead
•sometimes the difficulty can be overcome by looking
ahead two or more records

•sometimes a more powerful technique is necessary

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Backtracking technique

1. the recognition difficulty is simply ignored. The program is designed, and
the text for the AGroup and BGroup components is written, as usual. No
condition is written on the Group selection component. The presence of
the difficulty is marked only by using the keywords posit and admit in
place of if and else.

2. a quit statement is inserted into the text of the posit AGroup component
at each point at which it may be detected that the Group is, in fact, not an
AGroup. In this example, the only such point is when the B record is
encountered. The quit statement is a tightly constrained form of GO TO:
its meaning is that execution of the AGroup component is abandoned
and control jumps to the beginning of the admit BGroup component.

3. the program text is modified to take account of side-effects: that is, of the
side-effects of operations executed in AGroup before detecting that the
Group was in fact a BGroup.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sketch

Group

AGroup BGroup

0 0

Group

AGroup BGroup
?P

AGroup BGroup
0!else Q

?A

0!else Q

Assume (posit) Agroup Admit Bgroup

read AGroup unless
discover BGroup record
-> Quit (throw exception)

read BGroup unless
discover AGroup record
-> Quit (throw exception)

• The component attempt to read
Agroup records posits
assume you can read Agroup records
and admits that you (cannot & should)
instead read Bgroup records

• The attempt to read Agroup records is
a call of the subprogram read Agroup
records which may cause an implicit
quit when, in reading, it is discovered
the record is a BGroup record
• an implicit quit is an exception thrown

within a subprogram and not handled
and so is propagated from the
subprogram to its calling environment

• a posit/ admit design must contain a
single posit and at least one admit
connected at the same level

• it can contain any number of, implicit or
explicit, quits within the admit
component at any level

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Central virtues of JSP
• it provides a strongly systematic and prescriptive method for a clearly

defined class of problem
• independent JSP designers working on the same problem produce the same

solution
• JSP keeps the program designer firmly in the world of static structures to

the greatest extent possible.
• only in the last step of the backtracking technique, when dealing with side-

effects, is the JSP designer encouraged to consider the dynamic behavior of
the program
• this restriction to designing in terms of static structures is a decisive

contribution to program correctness for those problems to which JSP can be
applied
• avoids the dynamic thinking -- the mental stepping through the program

execution -- that has always proved so seductive and so fruitful a source of
error.

• Hints
• Don't optimize!!If you have to, do it as the last step, after you have designed

the program properly.
• Use Models not functions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Jackson System Development (JSD)

•Emphasis on high-level conceptual design

•Develops collection of coordinated graphical depictions
of system

•Strong hints about how to carry them to implementation
decisions

•Strong suggestions about how to go about doing this

•Considerable literature delving into the details of JSD

•Product of a commercial company

•Supported by courses, tools, consultants

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD Models Focus on Actions

• JSD produces models of the real world and the way in which
the system to be built interacts with it
• Primary focus of this is actions (or events)
• actions can have descriptive attributes
• set of actions must be organized into set of processes

• Processes describe which actions must be grouped together
and what the "legal" sequences of actions are
•Processes can overlap in various ways
•Processes are aggregated into an overall system model
• using two canonical models of inter-process communication

•Data are described in the context of actions
• in JSD data considerations are subordinate to actions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD - Phases

• the modeling phase
•Entity/action step

•Entity structure step

•Model process step

• the network phase
•connect model processes and functions in a single
system specification diagram (SSD)

• implementation phase
•examine the timing constraints of the system

•consider possible hardware and software for
implementing our system

•design a system implementation diagram (SID)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Student Loan Example
• Functional requirements:
• before getting a loan, there is an evaluation process after which

agreement is always reached
• a TE transaction records each step of the evaluation process
• a TA transaction records the overall loan agreement

• a student can take any number of loans, but only one can be active
at any time
• each loan is initiated by a TI transaction

• the student repays the loan with a series of repayment
• each repayment transaction is recorded by a TR transaction

• a loan is terminated by a TT transaction
• two output functions are desired:
• an inquiry function that prints out the loan balance for any student,
• a repayment acknowledgment sent to each student after payment is

received by the university
• Non Functional requirements
• to be implemented on a single processor
• inquiries should be processed as soon as they are received
• repayment acknowledgments need only be processed at the end of

each day.
• Note: generates a stream of data over a long-period of time

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 1: Entity/action step

•Actions have the following characteristics:
•an action takes place at a point in time

•an action must take place in the real world outside of the
system.

•an action is atomic, cannot be divided into subactions.

•Entities have the following characteristics:
•an entity performs or suffers actions in time.

•an entity must exist in the real world, and not be a
construct of a system that models the real world

•an entity must be capable of being regarded as an
individual; and, if there are many entities of the same
type, of being uniquely named.

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Candidates

•Entities/Description:
•student

•system

•university

• loan

•student-loan

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Actions/Attributes:

• evaluate -action of university? (university performs the evaluation);
action of student? (student is evaluated)
• attributes: student-id, loan-no, date of evaluation, remarks

• agree - action of university? (university agrees to loan); action of
student ? (agrees to loan)
• attributes: student-id, loan-no, date of agreement, amount of loan,

interest rate, repayment period)

• make loan - action of university
• attributes: student-id, loan-no, date of loan, loan amount, interest rate,

repayment period

• initiate - action of university? (university initiates loan); action of
student? (student initiates loan); action of loan? (is initiated)
• attributes: student-id, date initiated

• repay - action of loan? (loan is repaid); action of student? (student
repays the loan);
• attributes: student-id, date of repayment, amount of repayment

• terminate - action of loan (loan is terminated);
• attributes: student-id, date of termination, remarks

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Focus on:

• Entities/Description:
• student

• Actions/Attributes:
• evaluate -action of student; student? (student suffers the
action, is evaluated);
• attributes: student-id, loan-no, date of evaluation, remarks

• agree - action of student
• attributes: student-id, loan-no, date of agreement, amount of loan,

interest rate, repayment period)

• initiate - action of student
• attributes: student-id, date initiated

• repay - action of student
• attributes: student-id, date of repayment, amount of repayment

• terminate - action of student
• attributes: student-id, date of termination, remarks

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 2: Entity structure step

(1) evaluation part
- zero or more evaluate actions

(2) student agrees to loan
(3) loan(s) is (are) made

- zero or more loans.
- loan is a sequence of initiate
action, iteration of repay actions, a
terminate action

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Process

•Primary building block of a JSD design
•contains all actions characterizing a key real-world
process

•Actions are structured into a tree
•only the leaf nodes of the tree are real-world actions

• interior nodes are conceptual

• interior nodes can be annotated to show choice or
iteration

• traversals of this tree constitute the only "legal"
sequences of actions for this process

•Model process tree defines a regular expression
•set of traversals is a regular set

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Processes

• A model process is a particular view of the system

• various model processes provide different views

•model process is multiply instantiated for different instances

•model processes are often annotated with informal
specifications and notations

• same action may appear as part of more than one process

•Model Processes and Data
• actions on data hang off of model process leaf nodes

• global data is necessary too
• for functions that must combine data from >1 model process

• to assure consistency between model processes

• to coordinate between different instances of the same model
process

• to coordinate between different models of the same entity

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 3: Model process step

abstract student entity
in the real world

realization in the
Information system

Use JSP to create a
program for the process

entity structure diagram
describes the structure of

the serial data stream

•a TE transaction records
each step of the evaluation
process
•a TA transaction records the
overall loan agreement
•each loan is initiated by a TI
transaction
•each repayment transaction is
recorded by a TR transaction
•a loan is terminated by a TT
transaction

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Error handling

• a real-time system (but slow-running)
system
• information is collected as it arrives

from the real-world
• entity model process is synchronized

with the actions of the real world entity
• the state vector of a model process's

“program” has a “counter” … and if it
“points” to repay component of a
student's process, then an 'E'
(evaluate), 'A' (agree) or 'I' (initiate)
transaction must be recognized as an
error

counter

state vector (SV) connection
 -- one process can examine
the SV of a 2nd process
 -- the double lines indicate
 that an inquiry process,
over its life, will examine
 many student processes

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Total System Model

•At the Network Phase, weave Model Processes
together incrementally to form the total system
specification
•also add new processes during this phase: e.g., input,
output, user interface, data collection

•Goal is to indicate how model processes communicate
with each other, use each other, are connected to user
and outside world
•Linkage through two types of communication:
•Message passing
•State vector inspection

• Indicates which data moves between which processes
•and more about synchronization

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Process Communication

•Fundamental notion is Data Streams
•can have multiple data streams arriving at an action in a
process

•can model multiple instances entering a data stream or
departing from one

•Two types of data stream communication:
•asynchronous message passing

•State vector inspection

•These communication mechanisms used to model how
data is passed between processes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Message Passing

•Data stream carries a message from one process
activity to an activity in another process
•must correlate with output leaf of sending model process

•must correlate with input leaf of receiving model process

•Data transfer assumed to be asynchronous
• less restrictive assumption

•no timing constraints are assumed

•messages are queued in infinitely long queues

•messages interleaved non-deterministically when
multiple streams arrive at same activity

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

State Vector Inspection

•Modeling mechanism used when one process needs
considerable information about another

•State vector includes
•values of all internal variables

•execution text pointer

•Process often needs to control when its state vector can
be viewed
•process may need exclusive access to its vector

•Could be modeled as message passing, but important
to underscore characteristic differences

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Network Phase -- the SSD
• loan balance inquiry function (LBE) is connected to the Student-1

process by state vector (SV) connection
• The function to produce the student acknowledgments data stream

(ACK) is embedded in the student-1 process in the repays component

• DT is an input signal at the end of the day--a daily time marker--that
tells the payment acknowledgment lister (PAL) function to begin
• The ACK and DT data streams are rough-merged, that is, we don't

know precisely whether a repayment acknowledgment will appear on
today's or tomorrow's daily list.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Designing the LBE function w/ JSP

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Implementation Phase

•Use of inferences encouraged by understandings
gleaned from the network phase

•Network Phase suggests ideal traversal paths through
model processes and their local data
•suggests internal implementation of model processes

•studying use of model processes suggests internal
structure of their data

•Communication by data streams and state vector
inspection often suggest real implementations
•But often not

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The SID
all of the serial data
streams are input to
 the scheduler process

all student processes have an
identical structure; only their
SV are different
--separate the state vectors of
student processes from their
process text (state vector
 separation).
--set of SV is the data base of
our student loan system

student-1 process is inverted
with respect to its data stream,
 S. and is called by the
 scheduler to process a
transaction, and then
 suspended

PAL is inverted with respect to
 both of its inputs, the repayment
 acknowledgment data stream
and the daily marker. PAL is
 invoked by Student-1 whenever
 Student-1 processes a repayment
transaction. The scheduler invokes
PAL directly when it receives a DT
 and this triggers the daily listing

CMPSCI520/620 Design

Rick Adrion 2003 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design of the scheduler in JSP
• records from the serial data stream

(loan balance inquiries and student
loan transactions) are read and
processed in real-time
• at the end of the day, a daily time

marker--perhaps a signal to the
system from the operator--is input

• PAL is invoked & processes
payment acknowledgments that
have been previously generated in
real-time whenever a student
repayment is made and stored in a
buffer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD and JSP
• In JSD, the principles of JSP are extended into the areas of

systems analysis, specification, design and implementation
• In JSP, a simple program describes a sequential process that

communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream
• In JSD, the real world is modeled as a set of sequential model

processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.
• The JSD implementation step embodies the JSP implementation

technique, program inversion, in which a program is transformed
into a procedure
• Other JSP techniques, such as the single read-ahead rule and

backtracking, and principles, such as implementation through
transformation, are used in JSD

