
CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

14 - Architecture, Frameworks, Middleware

• Reading & Sources
• David Garlan, “Software Architecture: a Roadmap,”
Proceedings of the conference on The future of Software
engineering, Limerick, Ireland, June 04 - 11, 2000

• M. Shaw and P. Clements,”A field guide to boxology:
Preliminary classification of architectural styles for software
systems,” Proceedings of COMPSAC 1997, August 1997

• M. Shaw and D. Garlan, Tutorial Slides on Software
Architecture http://www-2.cs.cmu.edu/afs/cs/project/tinker-
arch/www/html/Tutorial_Slides/Soft_Arch/quick_index.html

• Garlan, David & Shaw, “An Introduction To Software
Architecture,” Technical report, The Software Engineering
Institute, Carnegie Mellon University

• Ralph E. Johnson, “Frameworks= (Components +
Patterns).”Communications of the ACM, October 1997 Vol. 40,
No. 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Software Architectures

• Architectural taxonomy (“boxology”)
• Architectural patterns & idioms
• Design patterns & idioms
• Reuse

• Class libraries
• Components
• Frameworks
• Middleware

RequirementsRequirements

Detailed
Design

Detailed
Design

High-level
Design

High-level
Design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

independent
components

communicating
processes

event systems

implicit
invocation

explicit
invocation

dataflow

batch
sequential

pipes & filters

virtual machine

rule-based
system

interpreter

data-centered

repository blackboard

call/return

main prog.
& subroutine

object-
oriented

layered

taxonomy

• problem can be decomposed into
sequential stages

• involves transformations on
continuous streams of data

• problem difficult to model

• anticipation of many changes

• reuse

•central issue is understanding the
data

• DB: highly structured & dynamic
• BB: noisy environment

• flexibility-configurability, loose
coupling, reactive tasks

• Styles: Heatbeat, Prod-Con, Client-
Server, token-passing

•simulate functionality which is not
native

•execution engine SW “implemented”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Architectural taxonomy (“boxology”)
• dataflow

• batch sequential
• data flow network
• pipes & filter

• call/return
• main program/subroutines
• abstract data types
• objects
• call based client/server
• layered

• independent components
• communicating processes
• distributed
• event systems (implicit, explicit)

• virtual machine
• interpreter
• rule-based

• data-centered
• repository
• blackboard

can decompose into sequential stages
involves transformations on continuous

(or on very long streams) streams of
data

flexibility, configurability, loose coupling
hierarchies, producer-consumer, tightly

connected

cross-platform
late decision on hardware

focus on management and representation
of data

long-lived (persistent) data is focus on
repositories

stream of incoming requests to access
highly structured data

changing data
 “noisy” input data, uncertain execution

order can not be predetermined,
consider a blackboard

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Views

• What is a view?
• A view is a presentation of a model, which is a complete
description of a system from a particular perspective.

• Proposed views:
• Logical View - captures the object model

• Process View - captures the concurrency and
synchronization aspects

• Development View - captures static organization of the
software in its development environment

• Physical View - captures the way software is mapped on
hardware

• The “4+1” view: these plus scenarios

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

logical
view

physical
view

process
view

development
view

scenarios

end users
• functionality

system engineers
• system topology
• delivery
• installation
• telecommunication

system integrators
• performance
• scalability
• throughput

programmers
• software management

4+1 view of software architecture

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

example: Alcatel PBX
C

F F

primary

backupp
r
i
m
a
r
y

K K K

4+1 views

translation
services

connection
services

numbering
plan

example: Alcatel PBX

conversation

Terminal

Controller

logical view

example: Alcatel PBX

terminal process

connectors
controller process

controller task
(low rate)

controller task
(high rate)

controller task
(Main)

process view

example: Alcatel PBX

layer1

layer3

layer4

lay
er5

layer2

human-computer interface
external systems

.

.

.

.

bindings

development view

physical view

controller terminal numbering
plan

conversation

(1) off-hook

(2) dial tone

(3) digit

(4) digit

(5) open conversation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

design
view

deployment
view

process
view

implementation
view

Use -Case
View

Use cases

Components

Classes, interfaces,
collaborations

Active classes Nodes

Organization
Package, subsystem

Dynamics
Interaction

State machine

The Rational 4+1 Views

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The Rational 4+1 Views

Use cases,
Scenarios
(sequence
diagrams)

Design:
class &
collaboration
diagrams

Process:
class &

statechart
diagrams

Implementation:
component
diagrams

Deployment:
deployment

diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

UML SW Development Life Cycle

• Use-case driven
• use cases are used as a primary artifact for establishing the
desired behavior of the system, for verifying and validating the
system’s architecture, for testing, and for communicating
among the stakeholders of the project

• Architecture-centric
• a system’s architecture is used as a primary artifact for
conceptualizing, constructing, managing, and evolving the
system under development

• Iterative
• one that involves managing a stream of executable releases

• Incremental
• one that involves the continuous integration of the system’s
architecture to produce these releases

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Architectural View Mismatches in UML

• Different UML diagrams present different system views
• redundant information across views

• Key challenge is to ensure inter-view consistency

• Ramifications on round-trip engineering

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Round-Trip Software Engineering Using UMLRound-Trip Software Engineering Using UML

Nenad Medvidovic Assessing the Suitability of UMLAssessing the Suitability of UML
for Modeling Software Architecturesfor Modeling Software Architectures

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Architecture Description Languages

• formal notations for representing and analyzing
architectural designs

• provide both a conceptual framework and a concrete
syntax for characterizing software architectures

• tools for parsing, displaying, compiling, analyzing, or
simulating architectural descriptions.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

ADL Examples
• Adage

• supports the description of architectural frameworks for avionics navigation
and guidance

• Aesop
• supports the use of architectural styles

• C2
• supports the description of user interface systems using an event-based style

• Darwin
• supports the analysis of distributed message-passing systems

• Meta-H
• provides guidance for designers of real-time avionics control software;

• Rapide
• allows architectural designs to be simulated, and has tools for analyzing the

results of those simulations;
• SADL

• provides a formal basis for architectural refinement;
• UniCon

• has a high-level compiler for architectural designs that supports a mixture of
heterogeneous component and connector types;

• Wright
• supports the formal specification and analysis of interactions between

architectural components.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

formal architectural specification.

• module interconnection languages
• static aspects of component interaction
• definition and use of types, variables, and functions among
components

• examples: INTERCOL, PIC, CORBA/IDL
• process algebras

• dynamic interplay among components
• concerned with the protocols by which components
communicate

• examples: Wright (based on CSP), Chemical Abstract
Machine (based on term rewriting)

• event languages
• identification and ordering of events
• event is a very flexible, abstract notion
• example: Rapide

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Evaluation & analysis

• conduct a formal review with external reviewers
• time the evaluation to best advantage
• choose an appropriate evaluation technique
• create an evaluation contract
• limit the number of qualities to be evaluated
• insist on a system architect

• benefits
• financial
• increased understanding and documentation of the
system

• detection of problems with the existing architecture
• clarification and prioritization of requirements
• organizational learning

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Architectural Design Reviews

Prospectus

Requirements

Architecture

High-Level
Design

Low-Level
Design

Planning and
Architecture Phase

Discovery
Review

Architecture
Review

Source:
Joe Maranzano
ATT Bell Labs

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Rational Unified Process

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Benefits

• examples
• AT&T

• 10% reduction in project costs, on projects of 700 staff days
or longer, the evaluation pays for itself.

• consultants
• reported 80% repeat business, customers recognized
sufficient value

• where architecture reviews did not occur
• customer accounting system estimated to take two years,
took seven years, re-implemented three times, performance
goals never met

• large engineering relational database system, performance
made integration testing impossible, project was cancelled
after twenty million dollars had been spent.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Architecture vs Frameworks
•Frameworks

•an object-oriented reuse technique
•used successfully for some time & are an important
part of the culture of long-time object-oriented
developers,

•BUT they are not well understood outside the
object-oriented community and are often misused

•Question:
•are frameworks mini-architectures, large-scale
patterns, or they are just another kind of
component?

•Definitions
•a framework is a reusable design of all or part of a
system that is represented by a set of abstract
classes and the way their instances interact

•a framework is the skeleton of an application that
can be customized by an application developer

Ralph E. Johnson, “Frameworks= (Components+Patterns).”Communications of the ACM, October 1997/Vol. 40, No. 10

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Frameworks & Class Libraries

• developers often do not even know they are using a
framework, but refer to a “class library”

• frameworks differ from other class libraries by reusing
high-level design
• more to learn before a class can be reused

• can never be reused in isolation; typically a set of
classes must be learned at once

• you can often tell that a class library is a framework if
there are dependencies among its components and if
programmers who are learning it complain about its
complexity.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Framework Architecture

Class Library Architecture

ADTs

Strings

Locks
IPC

Math

LOCAL
INVOCATIONS APPLICATION-

SPECIFIC
FUNCTIONALITY

GLUE
CODE

Files

GUI
EVENT
LOOP

Frameworks & Class Libraries

• A class is a unit of abstraction
& implementation in an OO
programming language

• A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Components & frameworks

•Frameworks
•were originally intended to be reusable components

• but reusable O-O components have not found a market

•are a component in the sense that
• venders sell them as products
• an application might use several frameworks.

•BUT
• they more customizable than most components
• have more complex interfaces

•must be learned before the framework can be used

•a component represents code reuse, while
frameworks are a form of design reuse

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Components & frameworks
• frameworks

• provide a reusable context for components
• provide a standard way for components to handle errors,
to exchange data, and to invoke operations on each
other

• “component systems’’ such as OLE, OpenDoc, and Beans, are
really frameworks that solve standard problems that arise in
building compound documents and other composite objects. make
it easier to develop new components

• enable making a new component (such as a user
interface) out of smaller components (such as a widget)

• provide the specifications for new components and a
template for implementing them.

• a good framework can reduce the amount of effort to
develop customized applications by an order of
magnitude

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

 Middleware Bus

Component Architecture

Naming

LockingLogging

Events

Framework Architecture

ADTs

Locks

Strings

Files

INVOKES

Reactor

GUI

DATABASE

NETWORKING

APPLICATION-
SPECIFIC
FUNCTIONALITY CALLBACKS

Frameworks & Components

• A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

• A component is an
encapsulation unit with one
or more interfaces that
provide clients with access to
its services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Comparison

Class Libraries Frameworks
Macro-levelMeso-levelMicro-level

Borrow caller’s threadInversion of
control

Borrow caller’s
thread

 Domain-specific or

 Domain-independent

Domain-specificDomain-independent

Stand-alone
composition entities

“Semi-complete”
applications

Stand-alone
language entities

Components

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Frameworks as Reusable Design

• Are they like other techniques for reusing high-level
design, e.g., templates or schemas?

• templates or schemas
• usually depend on a special purpose design notation
• require special software tools

• frameworks
• are expressed in a programming language
• makes them easier for programmers to learn and to
apply

• no tools except compilers
• can gradually change an application into a framework
• because they are specific to a programming language,
some design ideas, such as behavioral constraints,
cannot be expressed well

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Frameworks
and domain-specific architectures

• A framework is ultimately an object-oriented design, while a
domain-specific architecture might not be.

• A framework can be combined with a domain-specific
language by translating programs in the language into a set
of objects in a framework

• window builders associated with GUI frameworks are
examples of domain-specific visual programming languages

• Uniformity reduces the cost of maintenance
• GUI frameworks give a set of applications a similar look and
feel

• using a distributed object framework ensures that all
applications can communicate with each other.

• maintenance programmers can move from one application to
the next without having to learn a new design

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Overview of Patterns

• Patterns
• present solutions to common software problems
arising within a certain context

• help resolve key software design issues
• Flexibility, Extensibility, Dependability, Predictability,
Scalability,Efficiency

• capture recurring structures & dynamics among
software participants to facilitate reuse of
successful designs

• codify expert knowledge of design strategies,
constraints and best practices

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

software patterns

• record experience of good designers
• describe general, recurring design structures in a
pattern-like format

• problem, generic solution, usage
• solutions (mostly) in terms of O-O models

• crc-cards; object-, event-, state diagrams
• often not O-O specific

• patterns are generic solutions; they allow for design and
implementation variations
• the solution structure of a pattern must be “adapted” to
your problem design

• map to existing or new classes, methods, ...
• a pattern is not a concrete reusable piece of software!

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

qualities of a pattern

• encapsulation and abstraction
• each pattern encapsulates a well-defined problem and its
solution in a particular domain

• serve as abstractions which embody domain knowledge and
experience

• openness and variability
• open for extension or parametrization by other patterns so that
they may work together

• generativity and composability
• generates a resulting context which matches the initial context
of one or more other patterns in a pattern language

• applying one pattern provides a context for the application of
the next pattern.

• equilibrium
• balance among its forces and constraints

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Active Object, Bridge,
Proxy, Wrapper
Façade, & Visitor

Capture the static & dynamic roles &
relationships in solutions that occur
repeatedly

Design patterns

Half-Sync/Half-Async,
Layers, Proactor,
Publisher-Subscriber,
& Reactor

Express a fundamental structural
organization for software systems that
provide a set of predefined subsystems,
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

Architectural
patterns

Optimize for common
case, pass
information between
layers

Document rules for avoiding common
design & implementation mistakes that
degrade performance

Optimization
principle patterns

Scoped lockingRestricted to a particular language, system,
or tool

Idioms

ExamplesDescriptionType

Taxonomy of Patterns & Idioms

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Frameworks and Patterns

• frameworks represent a kind of pattern
• e.g., Model/View/Controller is a user-interface framework
often described as a pattern

• applications that use frameworks must conform to the
frameworks’ design and model of collaboration, so the
framework causes patterns in the applications that use it.

• frameworks are at a different level of abstraction than
patterns
• frameworks can be embodied in code, but only examples
of patterns can be embodied in code.

• a strength of frameworks is that they can be written down
in programming languages and not only studied but
executed and reused directly

• in contrast, design patterns have to be implemented each
time they are used.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Frameworks and Patterns

• design patterns are smaller architectural elements than frameworks
• a typical framework contains several design patterns but the reverse

is never true
• design patterns are the micro-architectural elements of frameworks.

• e.g., Model/View/Controller can be decomposed into three major design
patterns, and several less important ones

• MVC uses the Observer pattern to ensure the view’s picture of the model is
up-to-date, the Composite pattern to nest views, and the Strategy pattern
to cause views to delegate responsibility for handling user events to their
controller.

• design patterns are less specialized than frameworks.
• frameworks always have a particular application domain.
• design patterns can be used in nearly any kind of application.
• more specialized design patterns are certainly possible, even these

wouldn't dictate an application architecture

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Frameworks

• are firmly in the middle of reuse techniques.

• are more abstract and flexible than components,

• are more concrete and easier to reuse than a pure
design (but less flexible and less likely to be applicable)

• are more like techniques that reuse both design and
code, such as application generators and templates.

• can be thought of as a more concrete form of a pattern
• patterns are illustrated by programs, but a framework is
a program

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Application-specific functionality

Framework Characteristics

•Frameworks exhibit
“inversion of control” at
runtime via callbacks

•Frameworks provide
integrated domain-
specific structures &
functionality

•Frameworks are “semi-
complete” applications

Networking Database
GUI

Mission
Computing

Scientific
VisualizationE-commerce

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Using Frameworks Effectively

• Frameworks are powerful, but hard to develop & use
effectively by application developers

• It’s often better to use & customize COTS frameworks
than to develop in-house frameworks

• Components are easier for application developers to
use, but aren’t as powerful or flexible as frameworks

• Successful projects are often organized using the
“funnel” model

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Relation to Middleware

• one of the strengths of frameworks is that they are
represented by traditional object-oriented programming
languages.

• BUT, this is also a weakness of frameworks, however,
and it is one that the other design-oriented reuse
techniques do not share.

• Middleware
• COM, CORBA, etc. address this problem, since they let
programs in one language interoperate with programs in
another

• Other approaches
• some frameworks have been implemented twice so that
users of two different languages can use them, such as
the SEMATECH CIM framework

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

Evolution of Middleware

• Historically, mission-critical apps were
built directly atop hardware & OS
• tedious, error-prone, & costly over
lifecycles

• There are layers of middleware, just like
there are layers of networking protocols

• Standards-based COTS middleware
helps:
• Control end-to-end resources & QoS
• Leverage hardware & software
technology advances

• Evolve to new environments &
requirements

• Provide a wide array of reuseable, off-
the-shelf developer-oriented services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Middleware

• Infrastructure middleware.
• encapsulates core OS communication and concurrency services to

eliminate many tedious, error-prone, and non-portable aspects of
developing and maintaining distributed applications using low-level
network programming mechanisms, such as sockets

• Examples: the Java Virtual Machine (JVM) and the ADAPTIVE
Communication Environment (ACE).

• Distribution middleware
• builds upon the lower-level infrastructure middleware to automate

common network programming tasks, such as parameter
marshaling/demarshaling, socket and request demultiplexing, and
fault detection/recovery

• Examples: Object Management Group's (OMG's) Common Object
Request Broker Architecture (CORBA), Microsoft's Distributed COM
(DCOM), and JavaSoft's Remote Method Invocation (RMI).

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Middleware

• Common middleware services
• augments the distribution middleware by defining domain-independent

services, such as event notifications, logging, multimedia streaming,
persistence, security, transactions, fault tolerance, and distributed
concurrency control

• applications can reuse these services to perform common distribution tasks
that would otherwise be implemented manually.

• Domain-specific Services
• tailored to the requirements of particular domains, such as

telecommunications, e-commerce, health-care, or process automation

• are generally reusable, and thus are the least mature of the middleware layers
today

• embody domain-specific knowledge, however, they have the most potential to
increase system quality and decrease the cycle-time and effort required to
develop particular types of networked applications

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Progress

• significant progress in QoS-
enabled middleware,
stemming in large part from
the following trends:
• years of iteration,
refinement, & successful
use

• maturation of middleware
standards

• .NET, J2EE, CCM
• Real-time CORBA
• Real-time Java
• SOAP & Web Services

• maturation of component
middleware frameworks &
patterns

Year1970 2005

ARPAnet

RPC

Micro-kernels

CORBA & DCOM

Real-time
CORBA

 Component
 Models (EJB)

CORBA Component
Model (CCM)

Real-time CCM

DCE

Web Services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Design

• Readings
• David Parnas “On the Criteria To Be Used in
Decomposing Systems into Modules,” Comm. ACM 15,
12 (Dec. 1972), 1053-1058

• David Parnas“On a ‘Buzzword’: Hierarchical Structure”
IFIP Congress ‘74. North Holland Publishing Company,
1974 pp. 336-339

• David Parnas“On the design and development of
program families” IEEE Trans. On SE., vol. SE-2, pp.1-9,
Mar. 1976

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

History of Software Design

• 1960s
• Structured Programming

• (“Goto Considered Harmful”, E.W.Dijkstra)
• Emerged from considerations of formally specifying the semantics of

programming languages, and proving programs satisfy a predicate.
• Adopted into programming languages because it’s a better way to think

about programming

• 1970s
• Structured Design

• Methodology/guidelines for dividing programs into subroutines.

• 1980s
• Modular (object-based) programming

• Ada, Modula, Euclid, …
• Grouping of sub-routines into modules with data.

• 1990s
• Object-Oriented Languages started being commonly used
• Object-Oriented Analysis and Design for guidance.

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

On the Criteria for Decomposing Systems into Modules. David Parnas. CACM, 1972

Key Word In Context

"The KWIC index system accepts an ordered set of lines,
each line is an ordered set of words, and each word is
an ordered set of characters.

Any line may be ‘circularly shifted’ by repeatedly
removing the first word and appending it at the end of
the line.

The KWIC index system outputs a listing of all circular
shifts of all lines in alphabetical order."

KWIC example “borrowed” from Software Architectures © David Garlan

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

KWIC: Key Word In Context

• Inputs: Sequence of lines
Pipes and Filters

Architectures for Software Systems

• Outputs: Sequence of lines, circularly shifted and
alphabetized

and Filters Pipes

Architectures for Software Systems

Filters Pipes and

for Software Systems Architectures

Pipes and Filters

Software Systems Architectures for

Systems Architectures for Software

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Design Considerations

• Change in Algorithm
• e.g., batch vs. incremental

• Change in Data Representation
• e.g., line storage, explicit vs implicit shifts

• Change in Function
• e.g., eliminate lines starting with trivial words

• Performance
• e.g., space and time

• Reuse
• e.g., sorting

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Stepwise Refinement Strategy

Pipes and Filters

Architectures for Software Systems

and Filters Pipes

Architectures for Software Systems

Filters Pipes and

for Software Systems Architectures

Pipes and Filters

Software Systems Architectures for

Systems Architectures for Software

KWIC

Input Shift Alphabetize Output

Input OutputKWIC

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Solution 1

• Decompose the overall processing into a sequence of
processing steps.
• Read lines; Make shifts; Alphabetize; Print results

• Each step transforms the data completely.

• Intermediate data stored in shared memory.
• Arrays of characters with indexes

• Relies on sequential processing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Solution 1: Modularization

• Module 1: Input
• Reads data lines and stores them in “core”.

• Storage format: 4 chars/machine word; array of pointers
to start of each line.

• Module 2: Circular Shift
• Called after Input is done.

• Reads line storage to produce new array of pairs:
• (index of 1st char of each circular shift,

• index of original line)

• Module 3: Alphabetize
• Called after Circular Shift.

• Reads the two arrays and produces new index.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Solution 1

• Module 4: Output
• Called after alphabetization and prints nicely formatted
output of shifts

• Reads arrays produced by Modules 1 & 3

• Module 5: Master Control
• Handles sequencing of other modules

• Handles errors

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

KWIC Modularization 1

Master control

Input medium Output medium

Characters Index
Alphabetized

Index

Input Circular Shift Alphabetizer Output

Direct Memory Access

System I/O

Subprogram Call

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Properties of Solution 1

• Batch sequential processing.

• Uses shared data to get good performance.

• Processing phases handled by control module.
• So has some characteristics of main program -
subroutine organization.

• Depends critically on single thread of control.

• Shared data structures exposed as inter-module
knowledge.
• Design of these structures must be worked out before
work can begin on those modules.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Advantages & Disadvantages

• Advantages
• computations can share the same storage
• allow efficient data representation
• has a certain intuitive appeal

• distinct computational aspects are isolated in different modules
• Disadvantages

• serious drawbacks in terms of its ability to handle changes
• a change in data storage format will affect almost all of the

modules
• changes in algorithm and enhancements to system function are

not easily handled
• reuse is not well-supported because each module of the
system is tied tightly to this particular application.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Criteria for decomposition

• Modularization 1
• Each major step in the processing was a module

• Modularization 2
• Information hiding

• Each module has one or more "secrets”
• Each module is characterized by its knowledge of design decisions

which it hides from all others.

• Lines
• how characters/lines are stored

• Circular Shifter
• algorithm for shifting, storage for shifts

• Alphabetizer
• algorithm for alpha, laziness of alpha

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Solution 2

• Maintain same flow of control, but

• Organize solution around set of data managers
(objects):
• for initial lines

• shifted lines

• alphabetized lines

• Each manager:
• handles the representation of the data

• provides procedural interface for accessing the data

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Solution 2: Modularization

• Module 1: Line storage
• Manages lines and characters; procedural interface

• Storage format: not specified at this point

• Module 2: Input
• Reads data lines and stores using “Line Storage”

• Module 3: Circular Shift
• Provides access functions to characters in circular shifts

• Requires CSSETUP as initialization after Input is done

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

• Module 4: Alphabetize
• Provides index of circular shift

• ALPH called to initialize after Circular Shift

• Module 5: Output
• Prints formatted output of shifted lines

• Module 6: Master Control
• Handles sequencing of other modules

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

KWIC Modularization 2

Master control

Input medium Output medium

Input Output

Lines

se
tc

(i,
w

,j,
c)

ge
tc

(i,
w

,j)

n
W

or
ds

(i)

Circular Shifter

ge
tc

(i,
w

,j)

n
W

or
ds

(i
)

cs
se

tu
p

Alphabetizer

do
A

lp
h

Ith
(i)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Properties of Solution 2

• Module interfaces are abstract
• hide data representations

• could be array + indices, as before
• or lines could be stored explicitly

• hide internal algorithm used to process that data
• could be lazy or eager evaluation

• require users to follow a protocol for correct use
• initialization
• error handling

• Allows work to begin on modules before data
representations are designed.

• Could result in same executable code as first solution.
• according to Parnas, at least

CMPSCI520/620 -- Architecture, Frameworks, Middleware

Rick Adrion 2004 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Comparisons

• Change in Algorithm
• Solution 1: batch algorithm wired into

• Solution 2: permits several alternatives

• Change in Data Representation
• Solution 1: Data formats understood by many modules

• Solution 2: Data representation hidden

• Change in Function
• Solution 1: Easy if add a new phase of processing

• Solution 2: Modularization doesn’t give particular help

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Independent Development

• Modularization 1
• Must design all data structures before parallel work can
proceed

• Complex descriptions needed

• Modularization 2
• Must design interfaces before parallel work can begin

• Simple descriptions only

• Comprehensibility
• Modularization 2 is better

• Parnas subjective judgment

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

KWIC: Solution 3 (Toolies)

Shift Alphabetize OutputInput

Advantage:
Tool separation makes function
enhancements easier.

Line DB

Insert

Shifted Line DB Alph Line DB

Insert Insert

Interactive Version

Proc Call
Events

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Summary

• Every architect should have a standard set of
architectural styles in his/her repertoire
• it is important to understand the essential aspects of
each style: when and when not to use them

• examples: pipe and filters, objects, event-based systems,
blackboards, interpreters, layered systems

• Choice of style can make a big difference in the
properties of a system
• analysis of the differences can lead to principled choices
among alternatives

