
CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

13 - Software Architecture

• Various sources including:

•David Garlan, “Software Architecture: a Roadmap,”
Proceedings of the conference on The future of Software
engineering, Limerick, Ireland, June 04 - 11, 2000

•M. Shaw and P. Clements,”A field guide to boxology:
Preliminary classification of architectural styles for software
systems,” Proceedings of COMPSAC 1997, August 1997

•M. Shaw and D. Garlan, Tutorial Slides on Software
Architecture http://www-2.cs.cmu.edu/afs/cs/project/tinker-
arch/www/html/Tutorial_Slides/Soft_Arch/quick_index.html

•Garlan, David & Shaw, “An Introduction To Software
Architecture,” Technical report, The Software Engineering
Institute, Carnegie Mellon University

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

First, back to Design Overview

•High-Level Design
•Components & Connections

•Low-Level Design
•Representation & Algorithms

•Very-Low-Level Design
•Naming, Constructs, etc.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Modular Decomposition

•How to define the structure of a modular system?

•A module is a well-defined component of a software system

•A module is part of a system that provides a set of services to
other modules

•What are desirable properties of a decomposition?

•Cohesion

•Coupling

•Complexity

•Correctness

•Correspondence

• Strategies for decomposition
• Information Hiding

• Layering

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Information hiding

• perhaps the most important intellectual tool developed to
support software design; makes anticipation of change a
centerpiece in decomposition into modules
• are OO & IH the same?
•OO classes are chosen based on the domain of the problem
(in most OO analysis approaches), not necessarily based on
change, but they are obviously related (e.g., separating
interface from implementation)

•Notkin’s IH “Central Premises”
1.can effectively anticipate changes
2.changing an implementation is the best change, since it’s
isolated

3.semantics of a module must remain unchanged when
implementations are replaced

4.one implementation can satisfy multiple clients
5.information hiding can be recursively applied

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Abstract Modules

•Abstract objects
•Objects manipulated via interface functions

•Data structure hidden to clients

•Abstract data types
•Many instances of abstract objects may be
generated

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Abstract objects

•Examples
•calculator of expressions expressed in Polish postfix
form: a*(b+c) ◊ abc+*

•a stack where the values of operands are shifted until an
operator (assume only binary operators) is encountered
in the expression
Interface of the abstract object STACK

exports
procedure PUSH (VAL: in integer);
procedure POP_2 (VAL1, VAL2: out

•How does the design anticipate change in type of
expressions to be evaluated?
• e.g., it does not adapt to unary operators

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

indicates that details of the
data structure are hidden
to clients

Abstract data types (ADTs)

•Example: stack ADT

•ADTs correspond to Java and C++ classes & may also
be implemented by Ada private types and Modula-2
opaque types

 module STACK_HANDLER
exports

type STACK = ?;
This is an abstract data -type module; the data structure
is a secret hidden in the implementation part.
procedure PUSH (S: in out STACK ; VAL: in integer);
procedure POP (S: in out STACK ; VAL: out integer);
function EMPTY (S: in STACK) : BOOLEAN;
.
.
.

end STACK_HANDLER

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

module FIFO_CARS
uses CARS
exports

type QUEUE : ?;
procedure ENQUEUE (Q: in out QUEUE ; C: in CARS);
procedure DEQUEUE (Q: in out QUEUE ; C: out CARS);
function IS_EMPTY (Q: in QUEUE) : BOOLEAN;
function LENGTH (Q: in QUEUE) : NATURAL;
procedure MERGE (Q1, Q2 : in QUEUE ; Q : out QUEUE);
This is an abstract data-type module representing
queues of cars, handled in a strict FIFO way;
queues are not assignable or checkable for equality,
since “:=” and “=” are not exported.
…

end FIFO_CARS

Abstract data types (ADTs)

•Aother example: simulation of a gas station

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Generic modules

• parametric with respect to a type
generic module GENERIC_STACK_2
. . .
exports
procedure PUSH (VAL : in T);
procedure POP_2 (VAL1, VAL2 : out T);
…
end GENERIC_STACK_2

• specify that a type and also an operation must be provided
parameters

generic module M (T) with OP(T)
uses ...

...
end M

• instantiation syntax:
module INTEGER_STACK_2 is GENERIC_STACK_2 (INTEGER)
module M_A_TYPE is M(A_TYPE) PROC(M_A_TYPE)More on genericit

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Software Architecture

•architecture of a system describes its gross structure

• illuminates the top level design decisions
•how the system is composed of interacting parts

• the main pathways of interaction

• the key properties of the parts

•allows high-level analysis and critical appraisal

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Roles of Software Architecture

•a bridge between requirements and implementation
•an abstract description of a system,

•exposes certain properties, while hiding others.

•useful for:
•Understanding

•Reuse

•Construction

•Evolution

•Analysis

•Management

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Roles of Software Architecture

• Understanding:
• simplifies the understanding of

large systems using an abstraction
• constraints on system design
• rationale

• Construction
• a partial blueprint for development:

components and dependencies

• Evolution
• dimensions along which a system

is expected to evolve
• "load-bearing walls" ->

ramifications of changes, cost
estimation
• separate concerns about the

functionality of a component from
the ways in which that component
is connected to (interacts with)
other components

• Analysis
• consistency checking
• conformance

• to constraints
• to quality attributes

• dependence analysis
• domain-specific analyses for

architectural styles

• Reuse
• reuse of large components and

frameworks

• Management
• leads to a much clearer

understanding of requirements,
implementation strategies, and
potential risks

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Software Architectures

• Architectural taxonomy (“boxology”)
• Architectural patterns & idioms
• Design patterns & idioms
• Reuse
• Class libraries
• Components
• Frameworks
• Middleware

RequirementsRequirements

Detailed
Design

Detailed
Design

High-level
Design

High-level
Design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Framework Architecture

Class Library Architecture

ADTs

Strings

Locks
IPC

Math

LOCAL
INVOCATIONS APPLICATION-

SPECIFIC
FUNCTIONALITY

GLUE
CODE

Files

GUI
EVENT
LOOP

Frameworks & Class Libraries

•A class is a unit of abstraction
& implementation in an OO
programming language

•A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

 Middleware Bus

Component Architecture

Naming

LockingLogging

Events

Framework Architecture

ADTs

Locks

Strings

Files

INVOKES

Reactor

GUI

DATABASE

NETWORKING

APPLICATION-
SPECIFIC
FUNCTIONALITY CALLBACKS

Frameworks & Components

•A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

•A component is an
encapsulation unit with one
or more interfaces that
provide clients with access to
its services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Comparison

Class Libraries Frameworks
Macro-levelMeso-levelMicro-level

Borrow caller’s threadInversion of
control

Borrow caller’s
thread

 Domain-specific or

 Domain-independent

Domain-specificDomain-independent

Stand-alone
composition entities

“Semi-complete”
applications

Stand-alone
language entities

Components

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

Architecture was largely ad hoc

• is this an architecture?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

Example

•what is the nature of the components,
and what is the significance of their
separation?
•do they run on separate processors?
•do they run at separate times?
•do the components consist of
processes, programs, or both?
•do the components represent ways in
which the project labor will be divided,
or do they convey a sense of runtime
separation?
•are they modules, objects, tasks,
functions, processes, distributed
programs, or something else?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

Example

•what is the significance of the links?
• do the links mean the components
communicate with each other, control
each other, send data to each other,
use each other, invoke each other,
synchronize with each other, or some
combination of these or other
relations?

•what is the significance of the layout?
•why is CP on a separate (higher) level?
• does it call the other three
components, and are the others not
allowed to call it?
•was there simply not room enough to
put all four components on the same
row in the diagram?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Historically

• Architecture was largely ad hoc affair
•Designers freely use informal patterns/idioms
• informal with imprecise semantics
• diagrams + prose, but no rules

•Designers use system-level abstraction
• overall organization (styles)
• components and interactions

•Designers compose systems from subsystems
• but, tend to think statically
• select structure by default, rather than by design

• Key events
•Parnas recognized the importance of system families and
architectural decomposition principles based on information
hiding
•Dijkstra proposed certain system structuring principles

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Abstraction techniques in CS

•Programming Languages
•machine language
•symbolic assemblers
•macro processors
•early high-level languages
• Fortran
• data types served primarily as cues for selecting
the proper machine instructions

•Algol and it successors
• data types serve to state the programmer’s
intentions about how data should be used.

• later high-level languages
• separation of a module’s specification
from its implementation
• introduction of abstract data types.

increasing
abstraction

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Abstraction techniques in CS

•ADT
• the software structure (which included a representation
packaged with its primitive operators)

•specifications (mathematically expressed as abstract
models or algebraic axioms)

• language issues (modules, scope, user-defined types)

• integrity of the result (invariants of data structures and
protection from other manipulation)

• rules for combining types (declarations)

• information hiding (protection of properties not explicitly
included in specifications)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

two trends

• recognition of a shared repertoire of methods,
techniques, patterns and idioms for structuring complex
software systems

• concern with exploiting commonalities in specific
domains to provide reusable frameworks for product
families

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

two trends
• recognition of a shared repertoire of methods, techniques, patterns

and idioms for structuring complex software systems
• “Camelot is based on the client-server model and uses remote

procedure calls both locally and remotely to provide communication
among applications and servers.”
• “Abstraction layering and system decomposition provide the

appearance of system uniformity to clients, yet allow Helix to
accommodate a diversity of autonomous devices. The architecture
encourages a client-server model for the structuring of
applications.”
• “We have chosen a distributed, object-oriented approach to

managing information.”
• “The easiest way to make the canonical sequential compiler into a

concurrent compiler is to pipeline the execution of the compiler
phases over a number of processors. . . . A more effective way [is to]
split the source code into many segments, which are concurrently
processed through the various phases of compilation [by multiple
compilerprocesses] before a final, merging pass recombines the
object code into a single program.”

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

two trends

• concern with exploiting commonalities in specific
domains to provide reusable frameworks for product
families; examples include:
• the standard decomposition of a compiler
• standardized communication protocols, e.g., Open
Systems Interconnection Reference Model (a layered
network architecture)
• tools, e.g., NIST/ECMA Reference Model (a generic
software engineering environment architecture based on
layered communication substrates)
• fourth-generation languages
• user interface toolkits and frameworks, e.g., X Window
System (a distributed windowed user interface
architecture based on event triggering and callbacks)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Why Important?

•mutual communication.
•software architecture represents a common high-level
abstraction of the system that most, if not all, of the
system’s stakeholders can use as a basis for creating
mutual understanding, forming consensus, and
communicating with each other.

• transferable abstraction of a system.
• software architecture embodies a relatively small,
intellectually graspable model for how the system is
structured and how its components work together; this
model is transferable across systems; in particular, it can
be applied to other systems exhibiting similar
requirements, and can promote large scale reuse.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Why Important?

• early design decisions
• software architecture represents the embodiment of the
earliest set of design decisions about a system, and these
early bindings carry weight far out of proportion to their
individual gravity with respect to the system’s remaining
development, its service in deployment, and its maintenance
life.

• architecture
• provides builders with constraints on implementation
• dictates organizational structure for development and
maintenance projects
• permits or precludes the achievement of a system’s targeted
quality attributes
•Helps in predicting certain qualities about a system
architecture can be the basis for training
• helps in reasoning about and managing change

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

elements, form, rationale, views

architecture=

• elements
• processing

• data

• connectors

• form
• rules which constrain

element placement

• style/design

• rationale
• selection of form

• links to reqmnts & design

• functional/non-functional
attributes

lexer parser
semantic
analyzer

code
generator

optimizer

chars tokens phrases
correlated
phrases

correlated
phrases

annotated
correlated
phrases

lexer parser
semantic
analyzer

code
generator

optimizer

has
tokens

has
phrases

has
correlated
phrases

has
annotated
correlated
phrases

code
generator

Process View

Data View

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

architectural styles/idioms

•architectural style =
•Components: locus of computation
• filters, databases, objects, clients, servers, ADTs

•Connectors: mediate interactions of components
• procedure call, pipes, event broadcast

•Properties: specify info for construction & analysis
•Signatures, pre/post conditions, RT specifications

•other
• topology

•underlying structural model?

•underlying computational model?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Expected Benefits

 David Garlan CMU

update document
6%

test & debug
28%

define/analyze change
18%

trace logic
23%

implement change
19%

review document
6%

RequirementsRequirements

ArchitectureArchitecture

DesignDesign

Code
Integration

Code
Integration

Test
Accept

Test
Accept

MaintenanceMaintenance

• Clarify intentions
•Make decisions and

implications explicit
• Permit system level

analysis

• Reduce maintenance
costs, directly and
indirectly

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

independent
components

communicating
processes

event systems

implicit
invocation

explicit
invocation

dataflow

batch
sequential

pipes & filters

virtual machine

rule-based
system

interpreter

data-centered

repository blackboard

call/return

main prog.
& subroutine

object-
oriented

layered

taxonomy

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

“Boxology”

• Control issues
• Topology

• geometric form of the control flow for the system:
linear (non-branching), acyclic, hierarchical, star,
arbitrary

• Synchronicity
• Interdependency of the component control states:

lockstep (sequential or parallel), synchronous,
asynchronous, opportunistic

• Binding time
• time the identity of a partner in a transfer-of-control

operation is established: write (i.e., source code) time,
compile time, invocation time, run time

• Data issues
• Topology

• geometric shape of the system’s data flow graph:
linear (non-branching), acyclic, hierarchical, star,
arbitrary

• Continuity
• the flow of data throughout the system: continuous,

sporadic, high-volume (in data-intensive systems),
low-volume (in compute-intensive systems)

• Data issues
• Mode

• data is made available throughout the system:
passed (object style from component to
component), shared: copyout-copy-in,
broadcast, multicast

• Binding time
• time identity of a partner in a data operation is

established: write (i.e., source code

• Control/data interaction issues
• Shape

• control flow and data flow topologies
isomorphic

• Directionality
• If shapes the same, does control flow in the

same direction as data or the opposite
direction.

• Type of reasoning
• nondeterministic state machine theory,

function composition
• software substructure and analysis

substructure should be compatible.

• Components and connectors
• primary building blocks of architectures
• abstractions used by designers in defining their architectures
• most of these elements are ultimately implemented in terms of processes (as defined by the operating

system) and procedure calls (as defined by the programming language).

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

validate sort update report

tape tapetapetape

data transformation

data flow

computation

sed grep awk

stdin stdout

data flow (ascii stream)

taxonomy:data flow

•batch sequential
• independent programs,
dataflow in large chunks, no
parallelism

•pipes & filters
• incremental, byte stream
data flow, pipelined
“parallelism”, local context,
no state persistence

dataflow

batch
sequential

pipes & filters

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Boxology: dataflow

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

*to some extent batch

Analysis: pipes & filters*

•problem decomposition
•advantages: hierarchical decomposition of system
function
•disadvantages: “batch mentality,” interactive apps?,
design

•maintenance & reuse
•advantages: extensibility, reuse, “black box” approach
•disadvantages: lowest common denominator for data
flow

•performance
•advantages: pipelined concurrency
•disadvantages: parsing/un-parsing, queues, deadlock
with limited buffers

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Rules of thumb for dataflow/pipes

• If your problem can be decomposed into sequential stages,
consider batch sequential or pipeline architectures
• If in addition each stage is incremental, so that later stages
can begin before earlier stages complete, then consider a
pipelined architecture

• If your problem involves transformations on continuous
streams of data (or on very long streams) consider a pipeline
architecture
•However, if your problem involves passing rich data
representation, then avoid pipeline architectures restricted to
ASCII

• If your system involves controlling action, is embedded in a
physical system, and is subject to unpredictable external
perturbation so that preset algorithms go awry, consider a
closed loop architecture

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

main

sub sub sub

sub sub sub sub sub sub

sub sub sub

obj

obj

obj

obj
obj

taxonomy: call/return
•main/sub
• hierarchical
decomposition, single
thread of control,
structure implicit,
correctness depends on
subordinates

• layered
• hides lower
layers/services higher
layer, upper=“virtual
machines”/lower =hw,
kernel, scoping

• object-oriented
• encapsulation,
inheritance,
polymorphism

call/return

main prog.
& subroutine

object-
oriented

layered

basic utility

useful system

user interface

core

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Analysis: call/return

• layers
• portability, modifiability, reuse
• advantages: each layer is abstract machine, each layer interacts

with ≤ 2 other layers, standard interfaces

• performance, design
• disadvantages: semantic feedback in UI, deep functionality,

abstractions difficult, bridging layers

• object-oriented
• portability, modifiability, reuse
• advantages: decreased coupling, frameworks -> reuse
• disadvantages: complex structure

• performance, design
• advantages: maps easily to “real world”, inheritance, encapsulation
• disadvantages: design harder, side effects, identity, inheitance

difficult

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

app
module

shared
d b

app
module

app
module

app
module

app
module

app
module

knowledge
source

blackboard

knowledge
source

knowledge
source

knowledge
source

knowledge
source

knowledge
source

data-centered

repository blackboard

Taxonomy: data-centered

• transactional db
• large central data store, control via
transactions

•blackboards
•central shared + app-specific data
representations, control via data state

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Rules of thumb: objects and repositories

• If a central issue is understanding the data of the
application, its management, and its representation,
consider a repository or ADT architecture; if the data is
long-lived focus on repositories

• If the representation of data is likely to change over the
lifetime of the program, ADTs or objects can confine the
changes to particular components

• If you are considering repositories and the input data is
“noisy” and the execution order can not be
predetermined, consider a blackboard

• If you are considering repositories and the execution
order is determined by a stream of incoming requests
and the data is highly structured, consider a DB system.

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Taxonomy:independent components

• communicating processes
• independent processes, point-
point message passing,
asynch/synch, RPC layered
on top

•event systems
• interface define allowable
in/out events, event-procedure
bindings: procedure
“registration”, communiation
by event “announcement”,
implicit action invocation on
event, non-deterministic
ordering

manager

proc

proc

proc

proc
proc

independent
components

communicating
processes

event systems

implicit
invocation

explicit
invocation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Boxology: independent components

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

analysis

•event systems

•portability, modifiability, reuse
•advantages: no “hardwired names”, new objects added
by registration

•disadvantages: nameserver/”yellowpages” needed

•performance, design
•advantages: computation & coordination are separate
objects/more independent, parallel invocations

•disadvantages: no control over order of invocation,
correctness, performance penalty from communication
overhead

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Rules of thumb

• If your task requires a high degree of flexibility-
configurability, loose coupling between tasks, and
reactive tasks, consider interacting processes
• If you have reason not to bind the recipients of signals to
their originators, consider an event architecture

• If the task are of a hierarchical nature, consider a
replicated worker or heartbeat style

• If the tasks are divided between producers and
consumers, consider a client-server style (naïve or
sophisticated)

• If it makes sense for all of the tasks to communicate with
each other in a fully connected graph, consider a token-
passing style

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

data
(program state) program

internal
state

interpretation
engine

inputs

outputs

state
data

program
instructionsupdatesdata

selected instr,

selected data

working
memory

fact
memory

rule/data
selection

interpretation
engine

inputs

outputs

triggering
data

rules/facts
updatesdata

selected rules

selected data

rule
memory

virtual machine

rule-based
system

interpreter

taxonomy: virtual machines

• interpreters
•simulate functionality which is
not native to the run-time
system; execution engine
“implemented” in software

• rule-based systems
•specialization of an interpreter

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Analysis: virtual machines

• interpreters

•portability, modifiability, reuse
•disadvantages: map into actual implementation?

•performance, design
•advantages: simulate non-native functionality, can
simulate “disaster” modes for safety analysis

•disadvantages: much slower than actual system,
additional layer of software to be verified

•Rules of thumb: virtual machines
• If you have designed a computation, but have no
machine on which you can execute it, consider a virtual
interpreter architecture.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Problem and Solution

• Problem:
•Software architecture is too complex to be captured
using a single diagram, and not all aspects of it are
interesting at different moments and to different
stakeholders. How to manage this complexity?

• Solution:
•Represent different aspects and different characteristics
of the architecture through multiple views.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Views

• What is a view?
•A view is a presentation of a model, which is a complete
description of a system from a particular perspective.

• Proposed views:
•Logical View - captures the object model

•Process View - captures the concurrency and
synchronization aspects

•Development View - captures static organization of the
software in its development environment

•Physical View - captures the way software is mapped on
hardware

•The “4+1” view: these plus scenarios

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

logical
view

physical
view

process
view

development
view

scenarios

end users
• functionality

system engineers
• system topology
• delivery
• installation
• telecommunication

system integrators
• performance
• scalability
• throughput

programmers
• software management

4+1 view of software architecture

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The Logical Architecture

• Represented by Logical View
•of interest to end-user

•supports functional requirements

•presents key abstractions mostly from the problem
domain

• Class diagrams show how classes are grouped
together, class’ interface (functionality) and associations
• “close” to the Development Architecture

• usually deduced from Scenario View (or Use-Case
view)

• many case tools support it (UML tools, E-R tools etc.)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

example: logical view

class

class
utility

parameterized
class

class
category

association
containment,
agregation
usage
inheritance
instantiation

formal args

style: object-oriented
notation: Booch

translation
services

connection
services

numbering
plan

example: Alcatel PBX

conversation

Terminal

Controller

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The Process Architecture

• Represented by Process View
•of interest to system designer, integrator

•concerned with performance, availability, S/W fault
tolerance, integrity

•presents concurrency and distribution of processes, how
abstractions from Logical View map to processes

• Components:Tasks

•Connectors: rendezvous, broadcasts,…

•Containers: process
• “close” to the Physical Architecture

• tool support: UNAS/SALE, DADS

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

example: process view

components

process

style: indep.comonents
notation: Booch (Ada tasking)

message

unspecified

connectors

example: Alcatel PBX

terminal process

connectors
controller process

controller task
(low rate)

controller task
(high rate)

controller task
(Main)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The Development Architecture

• Represented by Development View
•of interest to developer, manager

•concerns: organization, reuse, portability, line-of-product

•presents actual software module organization

• subsystems organized in a hierarchy of layers

• “close” to the Logical Architecture
•usually deduced from Logical Architecture

• tools: Apex, SoDA

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

components

module

style: layered
notation: Booch

layer

connectors

subsystem

dependency

example: Alcatel PBX

layer1

layer3

layer4

layer5

layer2

human-computer interface
external systems

.

.

.

.

bindings

example: development view

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The Physical Architecture

• Represented by Physical View
•of interest to system designer

•concerns: scalability, performance, availability, reliability

•presents how processes, objects etc. are mapped onto
processing nodes

• Components:processing nodes

• Connectors: LAN, WAN, bus,…

• Containers: Physical Subsystem
• “close” to the Process Architecture

•strongly influenced by Process Architecture

• tools: UNAS, DADS

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

components

processor

style: indep.comonents
notation: UNAS

hi-bw comm line

comm line

connectors

other device

comm line (non-perm)

uni-dir comm line

example: Alcatel PBX

KK

C

F F F F

C

KK KK KK KK KK

primary

backupprimary primary

backup

backup

example: physical view

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Physical view (with process allocation)
example: Alcatel PBX

C

F F

primary

backupprimar
y

K K K

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Scenarios

• Instances of Use-Cases, unify all views
•of interest to end-user, developer

•concerns: understandability

• Textual domain process descriptions, object scenario
diagrams and object interaction diagrams
•used as a driver to discover architectural elements,
validation of design

• tools: UML case tools

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

controller terminal numbering
plan

conversation

(1) off-hook

(2) dial tone

(3) digit

(4) digit

(5) open conversation

Scenarios

CMPSCI520/620 -- Software Architecture

Rick Adrion 2004 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

design
view

deployment
view

process
view

implementation
view

Use -Case
View

Use cases

Components

Classes, interfaces,
collaborations

Active classes Nodes

Organization
Package, subsystem

Dynamics
Interaction

State machine

The Rational 4+1 Views

