
CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Today

•Finish Formal specifications

•11 Introduction to Design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

PROGRAM UNIT
(MODULE, TYPE, FUNCTION,PROCEDURE)

INTERFACE
SPECIFICATION

ROOT
TRAIT

TRAITTRAIT TRAIT

TRAIT

. . .

.

Programming
Language

(Pascal, Clu, ...)

Larch
Interface Language

(Larch/Pascal, Larch/Clu, ...)

Larch
Shared Language

Larch

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Traits

Container: trait

 introduces
 new: → C

 insert: C, E → E

 constrains C so that

 C generated by [new, insert]

IsEmpty: trait
 assumes Container
 introduces
 isEmpty: C → Bool
 constrains isEmpty, new, insert
 so that for all [c :C, e :E]
 isEmpty(new) = true
 isEmpty(insert(c,e)) = false
 implies converts [isEmpty]

TRAIT

TRAIT

. . .

Container

isEmpty

Next

Cardinal

Size

Total
Order

Mulitset

Priority Queue

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Larch/Pascal specification
type Bag exports bagInit, bagAdd, bagRemove, bagChoose

based on sort Mset from MultiSet with [integer for E]
procedure bagInit(var b:Bag)

modifies at most [b]
ensures bpost = { }

procedure bagAdd(var b:Bag; e; integer)
requires numElements(insert(b,e)) ≤ 100
modifies at most [b]
ensures bpost = insert(b,e)

procedure bagRemove(var b:Bag; e; integer)
modifies at most [b]
ensures bpost = delete(b,e)

procedure bagChoose(var b:Bag; e; integer): boolean
modifies at most [b]
ensures if ~ isEmpty (b)

 then bagChoose & count (b, epost)>0
 else ~ bagChoose & modifies nothing
End Bag

INTERFACE
SPECIFICATION

ROOT
TRAIT

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Pascal implementation of BagAdd
prodedure bagAdd(var B:Bag;e:integer);

var i, lastEmpty: 1...MaxBagSize
begin

i:= 1;
while ((i < MaxBagSize) and (b.elems[i]<>e)) do

begin
if b.counts[i] = 0 then LastEmpty:=i;
i:= i+1;

end;
if b.elems[i] = e

then b.counts[i]:= b.counts[i]+1;
else begin
if b.counts[i]=0 then LastEmpty:=i;
b.elems[LastEmpty]:=e;
b.counts[LastEmpty]:=1;

end;
end[bagAdd];

PROGRAM UNIT
(MODULE, TYPE, FUNCTION,PROCEDURE)

INTERFACE
SPECIFICATION

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Conclusions

• Interesting attempt to address:
• readability/writability of formal specs
• large, multi-lingual environment issues

•Relationship between shared and interface languages
complex and unclear
•Relationship between interface and implementation

languages not as strong as one would like
• “Software tool support needed” (syntax-directed editors,

browsers, theorem-provers, etc.)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Current Status of Formal Specifications

•Strong theoretical foundation

•Some practical use, especially in Europe

•Current Languages trying to be more practical

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

How effective are these methods?

•Wing's study of the Library Problem
• a small library database
• transactions

checkout/return book
add/remove book
get a list of books
• author
• subject
• borrower

get date/borrower for book

• users
• staff
• borrowers

• restrictions
• availability
• no book available & checked out
• # books borrowed ≤max

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Analysis

• Specification approaches
• informal
• AI
• logic
• executable/non-executable

• Comparisons
• formality
• life-cycle phase
• operational vs. behavioral
•modularity
• readability
• completeness

• Not considered
• concurrency
• reliability
• fault-tolerance
• security

• initialization
• what's the initial state of the

library?

• missing operations
• need more transactions?

• error handling
• what to do with errors?
• checkout, return, add, remove,

"type errors"

• missing constraints
•more than one copy in library,

checked out

• state
• what to record, change?

• “non-functional” specification
• human factors, liveness, time

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Conclusions
• methods do not differ radically
• style
•most use pre- and post-conditions for specifying behavior
• algebraic & set-theoretic most common for specifying data
(operational)
•model-oriented (operational) most common approach

• formal specs can
• identify diff in informal specs
• handle simple, small problems
• specify sequential functional behavior

•Challenges
• scaling
• non-functional behavior
• combining techniques
• tools
• integrating specification into the lifecycle

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

11 Introduction to Design

•Reading
• [GJM03] Fundamentals of Software Engineering by Carlo
Ghezzi, Mehdi Jazayeri, and Dino Mandrioli, Second Edition,
Prentice Hall; Chapter 4
• [dlP72] Parnas David L., “On the criteria to be used in
decomposing systems into modules,” CACM, Dec., 1972
• [dlP76] Parnas David L., “On the design and development of
program families,” IEEE Trans.SE., vol. SE-2, pp.1-9, Mar.
1976
• [dlP79] Parnas, D.L. Designing software for ease of extension
and contraction. In IEEE Trans. SE, Mar. 1979
•Science of Design: Software-Intensive Systems A National
Science Foundation Workshop Airlie Center, November 2-4,
2003
http://www.cs.virginia.edu/~sullivan/sdsis/workshop%202003.
htm

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

What is design?

•Design
•can refer to an activity or the result of the activity

•acts as a bridge between requirements and the
implementation of the software

•At a high level:
•Requirements = “client’s view”
•What system is to do ⇒ external view

•Design = “developer’s view”
•How the requirements are to be realized ⇒ internal view

Requirements Design Implementation
correspondence correspondence

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

What is design?

•Design gives a structure to the artifact
•Decomposes system into parts, assigns responsibilities,
ensures that parts fit together to achieve a global goal
• e.g., a requirements specification document must be
designed

•The structure must be easy to understand and evolve

•Design is iterative & continuous
•High-Level Design
•Components & Connections

•Low-Level Design
•Representation & Algorithms

•Very-Low-Level Design
•Naming, Constructs, etc.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Design Decisions

•many (unbounded?) number of designs that satisfy
(some?) of the requirements
• thousands of decisions may go into a single page of
code

•how to choose among these alternatives?
•criteria: identify, reject, select, evaluate

•strategy: manage complexity, accommodate change,
consider product families

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Managing complexity

• “Divide and Conquer” & “Separation of Concerns”
•Need to decompose large systems in order to build them

•But, composition may be as or more important
• “Divide and conquer. Separate your concerns. Yes. But
sometimes the conquered tribes need to be reunited under
the conquering ruler, and the separated concerns must be
combined to serve a single purpose …” Jackson, 1995

•Decomposition techniques are different for software
than those used in physical systems
•Fewer constraints are imposed by the material

•Does the “Shanley Principle” (one part can perform
multiple functions) hold?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Decomposition

• Benefits
•Decrease size of tasks
•Support independent testing and analysis
•Separate work assignments
•Ease understanding

•How do we select a decomposition?
•We determine the desired criteria & select a decomposition
(design) that will achieve those criteria
•But it’s hard to
• Determine the desired criteria with precision, resolve tradeoffs
• Determine if a design satisfies given criteria or find a better one

that (better) satisfies (more) criteria

• It may easy to build something designed pretty much like the
last one
• benefits: understandability, properties of the pieces, etc.

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Decomposition Issues

• Structure
• current design approaches focus on structure
•What are the components and how are they put together?
• Behavior is important, but largely indirectly

• however, organizations and individuals often buy into a
particular approach or methodology
• “Beware a methodologist who is more interested in his

methodology than in your problem.” —M. Jackson

•Conceptual integrity
• a critical design criterion?
• “It is better to have a system omit certain anomalous features and

improvements, but to reflect one set of design ideas, than to have
one that contains many good but independent and uncoordinated
ideas.” —Brooks, MMM

•makes it far easier to decide what is easy and reasonable to
do as opposed to what is hard and less reasonable to do
• not always what management wants to hear

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Accommodating change

“…accept the fact of change as a way of life, rather than
an untoward and annoying exception.” —Brooks, 1974

“Software that does not change becomes useless over
time.” —Belady and Lehman

• Internet time makes the need to accommodate change
even more apparent

• It is generally believed that to accommodate change
one must anticipate possible changes

•By anticipating (and perhaps prioritizing) changes, one
defines additional criteria for guiding the design activity

•However, it is not possible to anticipate all changes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Counterpoint

•Extreme Programming argues otherwise.
• in essence it asserts that we are unable to effectively
predict change
• instead one should at every point use the simplest
possible design for a software system
•once changes are needed, one should restructure the
design to meet the needs
•questions conventional wisdom but it is still quite early
and the outcome is unclear

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Why design for change?

•Change of underlying abstract machine
• new release of operating system
• new optimizing compiler
• new version of DBMS

•Change of peripheral devices
•Change of "social" environment
• new tax regime
• € versus former national currencies in EU

•Change due to development process (transform prototype
into product)
•Change in algorithms, data representation
• inefficient sorting algorithm ⇒ a more efficient one
• binary tree ⇒ threaded tree
• ~17% of maintenance costs attributed to data representation

changes (Lientz and Swanson, 1980)

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Product families

•Different versions of the same system
•e.g. a family of mobile phones
•members of the family may differ in network
standards, end-user interaction languages, …

•e.g. a facility reservation system
•for hotels: reserve rooms, restaurant, conference
space, …, equipment (video beamers, overhead
projectors, …)

•for a university
•many functionalities are similar, some are different (e.g., facilities
may be free of charge or not)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Product families

•Design goal for family
•Design the whole family as one system, not each
individual member of the family separately

•Sequential completion: the wrong way
•Design first member of product family & modify existing
software to get next member products

•How to do better
•Anticipate definition of all family members

• Identify what is common to all family members, delay
decisions that differentiate among different members

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Properties of design

•Cohesion
•Coupling
•Complexity
•Correctness
•Correspondence

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Cohesion & Coupling

•Cohesion: The reason that elements are found together
in a module
•Ex: coincidental, temporal, functional, …
•The details aren’t critical, but the intent is useful
•During maintenance, one of the major structural
degradations is in cohesion

•Coupling: Strength of interconnection between modules
•Hierarchies are touted as a wonderful coupling structure,
limiting interconnections
•But don’t forget about composition, which requires some
kind of coupling

• It’s easy to...
• ...reduce coupling by calling a system a single module
•…increase cohesion by calling a system a single module

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Coupling

•Coupling also degrades over time
•“I just need one function from that module…”

•Unnecessary coupling hurts
•Propagates effects of changes more widely

•Harder to understand interfaces (interactions)

•Harder to understand the design

•Complicates managerial tasks

•Complicates or precludes reuse

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Coupling

•No satisfactory measure of coupling

•Either across modules or across a system

•Cruickshank and Gaffney Coupling metric

Mj = sum of the number
of input and output
items shared between
components i & j

Zi = average number of
input and output items
shared over m
components with
component i

n = number of
components in the
software product

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Complexity

•simpler designs are better, all else being
equal
•no useful measures of design/program
complexity exist
•Although there are dozens of such measures
•LOC seems to be the most reliable predictor
when single domains are considered, e.g.
•data processing
•numerical processing
•symbolic processing e.g., compilers
•concurrent/distributed systems e.g., operating

systems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Correctness

•Very difficult (we’ll come back to this briefly later
in the course)
•Even if you “prove” modules are correct, how do
you prove
•Composition of the modules within and outside the
system to be designed
•System software that must interpret/compile and
run the composed modules
•Hardware on which the complied modules run, etc.

•Leveson and others have shown clearly that a
system can fail even when each of the pieces
work properly

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Correspondence

• “Problem-program mapping”
• The way in which the design is associated with the

requirements
• The idea is that the simpler the mapping, the

easier it will be to accommodate change in the
design when the requirements change
• See M. Jackson: problem frames

Requirements Design Implementation
correspondence correspondence

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Functional decomposition

•Divide-and-conquer based on functions
input;

compute;

output

•Then proceed to decompose compute

•This is stepwise refinement (Wirth, 1971)
•There is an enormous body of work in this area,
including many formal calculi to support the
approach

•Closely related to proving programs correct

•More effective in the face of stable requirements

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Properties

•What are the desirable properties of a modular
structure?

•Almost all the literature focuses on logical structures in
design, but physical structure plays a big role in practice
•Sharing

•Separating work assignments

•Degradation over time

•Why so little attention paid to this?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Module

• To what degree do you consider your systems

• as having modules?

• as consisting of a set of files?

• This is a question of physical vs. logical structure of programs
• In some languages/environments, they are one and the same

•Ex: Smalltalk-80

•How to define the structure of a modular system?
•A module is a well-defined component of a software system

•A module is part of a system that provides a set of services
to other modules
• where services are computational elements that other modules

may use

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Modules and relations

• Let S be a set of modules
 S = {M1, M2, . . ., Mn}

•A binary relation★ R on S is a subset of
 R ⊆ S x S

• If Mi and Mj are in S, <Mi, Mj> ∈ R can be written as
 MiR Mj

• Transitive closure R+ of R Mi R+ Mjiff
 MiR Mj or ∃ Mk in S s.t. MiR Mk and MkR+ Mj

•R is a hierarchy iff there are no two elements Mi, Mj s.t.
MiR Mj ∩ MjR Mi

•Relations can be represented as graphs; a hierarchy is a
DAG (directed acyclic graph)

★we assume our relations to be irreflexive

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The uses relation

• A uses B; examples
• A requires the correct operation of B
• A can access the services exported by B through its interface
• A depends on B to provide its services
• example: A calls a routine exported by B

• A is a client of B; B is a server
• the correctness of A depends on the presence of a correct
version of B
• requires specification and implementation of A and the
specification of B

•Criteria for uses(A,B)
• A is essentially simpler because it uses B
• B is not substantially more complex because it does not use A
• There is a useful subset containing B but not A
• There is no useful subset containing A but not B

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The uses relation

• uses should be a hierarchy
•Hierarchy makes software easier to understand
•Proceed from leaf nodes (who do not use others)
upwards
•They make software easier to build
•They make software easier to test

•A non-hierarchical uses relation makes it difficult
to produce useful subsets of a system -- Parnas
•It also makes testing difficult

•(What about upcalls?)
•So, it is important to design the uses relation

•Can uses be mechanically computed?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

uses vs. invokes

• These relations often but do not always coincide

•Invocation without use: name service with cached
hints

ipAddr := cache(hostName);

if wrong(ipAddr,hostName) then

 ipAddr := lookup(hostName)

endif

•Use without invocation: examples?

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The is_component_of Relation

•Used to describe a higher level module as constituted
by a number of lower level modules
•A is_component_of B
•B consists of several modules, of which one is A

•B comprises A
•If MS,i={Mk|Mk∈S ∧ Mk is_component_of Mi}

then we say that MS,i implements Mi

•Careful recording of (hierarchical) uses and
is_component_of relations supports design of
program families

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

A graphical view of is_component_of

M7

(is_component_of) (comprises)

They are a hierarchy

M8 M9 M5 M6

M2 M3 M4

M1 M7 M8 M9 M5 M6

M2 M3 M4

M1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Hierarchy

•Organizes the modular structure through
levels of abstraction

•Each level defines an abstract (virtual)
machine for the next level
•level can be defined precisely

•Mi has level 0 if no Mj exists s.t. Mi R Mj

• let k be the maximum level of all nodes Mj

 s.t. Mi R Mj … then Mi has level k+1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Information hiding

• Information hiding is perhaps the most important
intellectual tool developed to support software design
[Parnas 1972]
•Makes the anticipation of change a centerpiece in
decomposition into modules

•Provides the fundamental motivation for abstract data
type (ADT) languages
•And thus a key idea in the OO world, too

•The conceptual basis is key

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Basics of information hiding

•Modularize based on anticipated change

•Separate interfaces from implementations
•Implementations capture decisions likely to change

•Interfaces capture decisions unlikely to change

•Clients know only interface, not implementation

•Implementations know only interface, not clients

•Modules are also work assignments

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Anticipated changes

•most common anticipated change is “change of
representation”
•a key notion behind abstract data types
•e.g., Cartesian vs. polar coordinates; stacks as linked
lists vs. arrays; packed vs. unpacked strings

•do we change representations less frequently today?
•more knowledge about data structure design
•memory is much less expensive

• so, think twice about anticipating that representations
will change
• important, since we can’t simultaneously anticipate all
changes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Algorithm changes

•almost always part and parcel of ADT-based
decompositions

•monolithic to incremental algorithms

• improvements in algorithms

• information hiding isn’t only using ADTs

•Other changes?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Notkin’s IH “Central Premises”

1. can effectively anticipate changes
• essentially no research and we have no disciplined

ways to anticipate changes

• but, unanticipated changes require changes to
interfaces or (more commonly) simultaneous changes
to multiple modules

2. changing an implementation is the best change, since
it’s isolated
• changing a local implementation may not be easy

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Notkin’s IH “Central Premises”

3. semantics of a module must remain unchanged when
implementations are replaced
• what captures the semantics of the module? signature of

the interface? performance? what else?
4. one implementation can satisfy multiple clients
• clients of the same interface that need different

implementations is counter to the principle of information
hiding

5. information hiding can be recursively applied
• Is this true? If not, what are the consequences?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Information Hiding and OO

•Are these the same? Not really
•OO classes are chosen based on the domain of the
problem (in most OO analysis approaches)

•Not necessarily based on change

•But they are obviously related (separating interface from
implementation, e.g.)

•What is the relationship between sub- and super-
classes?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Interface design

• Interface should not reveal what we expect may change
later
• It should not reveal unnecessary details

• Interface acts as a firewall preventing access to hidden
parts

•Prototyping
•Once an interface is defined, implementation can be
done
• first quickly but inefficiently

• then progressively turned into the final version

• Initial version acts as a prototype that evolves into the
final product

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Interface vs. implementation

•To understand the nature of uses, we need to know
what a used module exports through its interface
•The client imports the resources that are exported by its
servers

•Modules implement the exported resources

• Implementation is hidden to clients

•Clear distinction between interface and implementation
is a key design principle
•Supports separation of concerns
• clients care about resources exported from servers

• servers care about implementation

• Interface acts as a contract between a module and its
clients

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Layering [Parnas 79]

•Focus on information hiding modules isn’t
enough

•One may also consider abstract machines
•In support of program families
•Systems that have “so much in common that it
pays to study their common aspects before
looking at the aspects that differentiate them”

•Still focusing on anticipated change

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Language support

•We have lots of language support for information hiding
modules
•C++ classes, Ada packages, etc.

•We have essentially no language support for layering
•Operating systems provide support, primarily for reasons
of protection, not abstraction

•Big performance cost to pay for “just” abstraction

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Categories of modules

•Functional modules
• traditional form of modularization

•provide a procedural abstraction

•encapsulate an algorithm

•Libraries
•a group of related procedural abstractions
• e.g., mathematical libraries
• implemented by routines of programming languages

•Common pools of data
•data shared by different modules
• e.g., configuration constants
• the COMMON FORTRAN construct

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Abstract Modules

•Abstract objects
•Objects manipulated via interface functions

•Data structure hidden to clients

•Abstract data types
•Many instances of abstract objects may be
generated

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Abstract objects

•Examples
•calculator of expressions expressed in Polish postfix
form: a*(b+c) ◊ abc+*

•a stack where the values of operands are shifted until an
operator (assume only binary operators) is encountered
in the expression
Interface of the abstract object STACK

exports
procedure PUSH (VAL: in integer);
procedure POP_2 (VAL1, VAL2: out

•How does the design anticipate change in type of
expressions to be evaluated?
• e.g., it does not adapt to unary operators

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

indicates that details of the
data structure are hidden
to clients

Abstract data types (ADTs)

•Example: stack ADT

•ADTs correspond to Java and C++ classes & may also
be implemented by Ada private types and Modula-2
opaque types

 module STACK_HANDLER
exports

type STACK = ?;
This is an abstract data -type module; the data structure
is a secret hidden in the implementation part.
procedure PUSH (S: in out STACK ; VAL: in integer);
procedure POP (S: in out STACK ; VAL: out integer);
function EMPTY (S: in STACK) : BOOLEAN;
.
.
.

end STACK_HANDLER

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

module FIFO_CARS
uses CARS
exports

type QUEUE : ?;
procedure ENQUEUE (Q: in out QUEUE ; C: in CARS);
procedure DEQUEUE (Q: in out QUEUE ; C: out CARS);
function IS_EMPTY (Q: in QUEUE) : BOOLEAN;
function LENGTH (Q: in QUEUE) : NATURAL;
procedure MERGE (Q1, Q2 : in QUEUE ; Q : out QUEUE);
This is an abstract data-type module representing
queues of cars, handled in a strict FIFO way;
queues are not assignable or checkable for equality,
since “:=” and “=” are not exported.
…

end FIFO_CARS

Abstract data types (ADTs)

•Aother example: simulation of a gas station

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Generic modules

• parametric with respect to a type
generic module GENERIC_STACK_2
. . .
exports
procedure PUSH (VAL : in T);
procedure POP_2 (VAL1, VAL2 : out T);
…
end GENERIC_STACK_2

• specify that a type and also an operation must be provided
parameters

generic module M (T) with OP(T)
uses ...

...
end M

• instantiation syntax:
module INTEGER_STACK_2 is GENERIC_STACK_2 (INTEGER)
module M_A_TYPE is M(A_TYPE) PROC(M_A_TYPE)More on genericit

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Software Architecture

•architecture of a system describes its gross structure

• illuminates the top level design decisions
•how the system is composed of interacting parts

• the main pathways of interaction

• the key properties of the parts

•allows high-level analysis and critical appraisal

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Roles of Software Architecture

•a bridge between requirements and implementation
•an abstract description of a system,

•exposes certain properties, while hiding others.

•useful for:
•Understanding

•Reuse

•Construction

•Evolution

•Analysis

•Management

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Roles of Software Architecture

• Understanding:
• simplifies the understanding of

large systems using an abstraction
• constraints on system design
• rationale

• Construction
• a partial blueprint for development:

components and dependencies

• Evolution
• dimensions along which a system

is expected to evolve
• "load-bearing walls" ->

ramifications of changes, cost
estimation
• separate concerns about the

functionality of a component from
the ways in which that component
is connected to (interacts with)
other components

• Analysis
• consistency checking
• conformance

• to constraints
• to quality attributes

• dependence analysis
• domain-specific analyses for

architectural styles

• Reuse
• reuse of large components and

frameworks

• Management
• leads to a much clearer

understanding of requirements,
implementation strategies, and
potential risks

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Software Architectures

• Architectural taxonomy (“boxology”)
• Architectural patterns & idioms
• Design patterns & idioms
• Reuse
• Class libraries
• Components
• Frameworks
• Middleware

RequirementsRequirements

Detailed
Design

Detailed
Design

High-level
Design

High-level
Design

CMPSCI520/620 - Introduction to Design

Rick Adrion 2004 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Framework Architecture

Class Library Architecture

ADTs

Strings

Locks
IPC

Math

LOCAL
INVOCATIONS APPLICATION-

SPECIFIC
FUNCTIONALITY

GLUE
CODE

Files

GUI
EVENT
LOOP

Frameworks & Class Libraries

•A class is a unit of abstraction
& implementation in an OO
programming language

•A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

 Middleware Bus

Component Architecture

Naming

LockingLogging

Events

Framework Architecture

ADTs

Locks

Strings

Files

INVOKES

Reactor

GUI

DATABASE

NETWORKING

APPLICATION-
SPECIFIC
FUNCTIONALITY CALLBACKS

Frameworks & Components

•A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

•A component is an
encapsulation unit with one
or more interfaces that
provide clients with access to
its services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Comparison

Class Libraries Frameworks
Macro-levelMeso-levelMicro-level

Borrow caller’s threadInversion of
control

Borrow caller’s
thread

 Domain-specific or

 Domain-independent

Domain-specificDomain-independent

Stand-alone
composition entities

“Semi-complete”
applications

Stand-alone
language entities

Components

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Active Object, Bridge,
Proxy, Wrapper
Façade, & Visitor

Capture the static & dynamic roles &
relationships in solutions that occur
repeatedly

Design patterns

Half-Sync/Half-Async,
Layers, Proactor,
Publisher-Subscriber,
& Reactor

Express a fundamental structural
organization for software systems that
provide a set of predefined subsystems,
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

Architectural
patterns

Optimize for common
case, pass
information between
layers

Document rules for avoiding common
design & implementation mistakes that
degrade performance

Optimization
principle patterns

Scoped lockingRestricted to a particular language, system,
or tool

Idioms

ExamplesDescriptionType

Taxonomy of Patterns & Idioms

