CMPSCI520/620 - Introduction to Design

FHhiE Today

¢ Finish Formal specifications
¢ 11 Introduction to Design

UNIVERSITY-OF MASSACHUSETTS/AMHERST: D ERPARTMENHOFR: C@

COMPUTER
Sscienee Larch

Programming
Language
(Pascal, Clu, ...)

Larch

Interface Language
(Larch/Pascal, Larch/Clu, ...)

Larch

/\ Shared Language
LS
[rrar | [rear |

COMPUTER 1-\...:
Sscienee Traits

¥ Container: trait
introduces
new: — C

insert: C,E - E
constrains C so that

‘4\ nerated by [new, insert]

IsEmpty: trait v
assumes Container
introduces

isEmpty: C — Bool
constrains isEmpty, new, insert
sothatforall[c:C, e E]

isEmpty(new) = true

isEmpty(insert(c,e)) = false
implies converts [isEmpty]

UNIVERSITY. OF: MASSACHUSETTS AMHERST: -+ D EPARTMENT-OF: Cg

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS - AMHERST: - DERARTIMENT-OF: C@

COMPUIER Larch/Pascal specification

type Bag exports baglnit, bagAdd, bagRemove, bagChoose
based on sort Mset from MultiSet with [integer for E]

procedure baglnit(var b:Bag)

modifies at most [b]
ensures bpost = { }
procedure bagAdd(var b:Bag; e; integer) l
requires numElements(insert(b,e)) < 100
modifies at most [b]
ensures bpost = insert(b,e)
procedure bagRemove(var b:Bag; e; integer)
modifies at most [b]
ensures bpost = delete(b,e)
procedure bagChoose(var b:Bag; e; integer): boolean
modifies at most [b]
ensures if ~ isEmpty (b)
then bagChoose & count (b, epost)>0
else ~ bagChoose & maodifies nothing
End Bag

UNIVERSITY-OF MASSACHUSETTS AMHERST:+ DEPARTMENT OF; Ctﬂ

CMPSCI520/620 - Introduction to Design

COMPUIER Pascal implementation of BagAdd

prodedure bagAdd(var B:Bag;e:integer);
var i, lastEmpty: l...MaxBagSize
begin
i:=1;

while ((i < MaxBagSize) and (b.elems[i]<>e)) do

begin
if b.counts[i] = 0 then LastEmpty:=i;
ii= i+l
end;
if b.elems[i] = e

then b.counts[i]:= b.counts[i]+1;
else begin
if b.counts[i]=0 then LastEmpty:=i;
b.elems [LastEmpty] :=e;
b.counts[LastEmpty]:=1;
end;
end[bagAdd];

UNIVERSITY-OF: MASSACHUSETTS/AMHERST: ¥ DEPAR

“”E‘E;'i%'.}.‘;'é Current Status of Formal Specifications

« Strong theoretical foundation
* Some practical use, especially in Europe
« Current Languages trying to be more practical

UNIVERSITY - OF: MASSACHUSETTS AMHERST: -+ DEPAR:

©Rick Adrion 2004 (except where noted)

COMPUTER Conclusions

« Interesting attempt to address:
ereadability/writability of formal specs
elarge, multi-lingual environment issues
« Relationship between shared and interface languages
complex and unclear
« Relationship between interface and implementation
languages not as strong as one would like

« “Software tool support needed” (syntax-directed editors,
browsers, theorem-provers, etc.)

UNIVERSITY-OF MASSACHUSETTS - AMHERST - DERAR:

COMPUTER How effective are these methods?

¢ Wing's study of the Library Problem
«a small library database

« transactions
checkout/return book
add/remove book
get a list of books

« author
« subject
« borrower
get date/borrower for book

s users
« staff
* borrowers
e restrictions
« availability
* no book available & checked out
« # books borrowed <max

UNIVERSITY-OF. MASSACHUSETTS AMHERST: - DEPAHRT

CMPSCI520/620 - Introduction to Design

COMPUTER
)SCIENCE

Analysis

« Specification approaches « initialization
« informal « what's the initial state of the
<Al) library?
* logic ¢ missing operations

« executable/non-executable
« Comparisons

« formality

« life-cycle phase

« operational vs. behavioral

* need more transactions?
« error handling
« what to do with errors?

« checkout, return, add, remove,
"type errors"

* modularity

« readability * missing constraints

* completeness * more than one copy in library,
« Not considered checked out

« concurrency « state

« reliability « what to record, change?

« fault-tolerance

« « “non-functional” specification
* security

« human factors, liveness, time

UNIVERSITY-OF: MASSACHUSETTS/AMHERST: ¥ DEP.A-:V'R

COMPUTER
)SCIENCE

11 Introduction to Design

¢ Reading

¢ [GJMO03] Fundamentals of Software Engineering by Carlo
Ghezzi, Mehdi Jazayeri, and Dino Mandrioli, Second Edition,
Prentice Hall; Chapter 4

¢ [dIP72] Parnas David L., “On the criteria to be used in
decomposing systems into modules,” CACM, Dec., 1972

¢ [dIP76] Parnas David L., “On the design and development of
program families,” IEEE Trans.SE., vol. SE-2, pp.1-9, Mar.
1976

¢ [dIP79] Parnas, D.L. Designing software for ease of extension
and contraction. In IEEE Trans. SE, Mar. 1979

« Science of Design: Software-Intensive Systems A National
Science Foundation Workshop Airlie Center, November 2-4,
2003
http://www.cs.virginia.edu/~sullivan/sdsis/workshop%202003.
htm

UNIVERSITY: OF MASSACHUSETTS AMHERST: - DEPAR:

©Rick Adrion 2004 (except where noted)

COMPUTER Conclusions

« methods do not differ radically
« style
*most use pre- and post-conditions for specifying behavior

« algebraic & set-theoretic most common for specifying data
(operational)

*model-oriented (operational) most common approach
« formal specs can

« identify diff in informal specs

«handle simple, small problems

« specify sequential functional behavior
e Challenges

e scaling

« non-functional behavior

« combining techniques

« tools

« integrating specification into the lifecycle

UNIVERSITY-OF MASSACHUSETTS - AMHERST DEP&E‘\

CONPUTER What is design?

¢ Design
can refer to an activity or the result of the activity

eacts as a bridge between requirements and the
implementation of the software

¢ At a high level:

*Requirements = “client’s view”
*What system is to do = external view

*Design = “developer’s view”
*How the requirements are to be realized = internal view

equirementi Design l plementatio'

correspondence correspondence

ONIVERSITY-OF MASS ACHUSETTS AMAERST - DEPARTNE

CMPSCI520/620 - Introduction to Design

CONPUTER What is design?

* Design gives a structure to the artifact

«Decomposes system into parts, assigns responsibilities,
ensures that parts fit together to achieve a global goal

¢ e.g., a requirements specification document must be
designed

¢ The structure must be easy to understand and evolve
* Design is iterative & continuous
*High-Level Design
« Components & Connections
eLow-Level Design
* Representation & Algorithms
*Very-Low-Level Design
*Naming, Constructs, etc.

UNIVERSITY-OF MASSACHUSETTS AMHERST: « DEPAR:

CONPUTER Managing complexity

«“Divide and Conquer” & “Separation of Concerns”
*Need to decompose large systems in order to build them
*But, composition may be as or more important

« “Divide and conquer. Separate your concerns. Yes. But
sometimes the conquered tribes need to be reunited under
the conquering ruler, and the separated concerns must be
combined to serve a single purpose ...” Jackson, 1995

* Decomposition techniques are different for software

than those used in physical systems
*Fewer constraints are imposed by the material

*Does the “Shanley Principle” (one part can perform
multiple functions) hold?

UNIVERSITY: OF MASSACHUSETTS AMHERST: - DEPAR:

©Rick Adrion 2004 (except where noted)

COMPUTER Design Decisions

emany (unbounded?) number of designs that satisfy
(some?) of the requirements

ethousands of decisions may go into a single page of
code

*how to choose among these alternatives?
e criteria: identify, reject, select, evaluate

estrategy: manage complexity, accommodate change,
consider product families

UNIVERSITY-OF MASSACHUSETTS - AMHERST DEP@F_‘\

COMPUTE Decomposition

 Benefits
* Decrease size of tasks
« Support independent testing and analysis
« Separate work assignments
« Ease understanding
* How do we select a decomposition?
«\We determine the desired criteria & select a decomposition
(design) that will achieve those criteria
«But it's hard to
« Determine the desired criteria with precision, resolve tradeoffs

« Determine if a design satisfies given criteria or find a better one
that (better) satisfies (more) criteria

« It may easy to build something designed pretty much like the
last one
« benefits: understandability, properties of the pieces, etc.

ONIVERSITY-OF MASS ACHUSETTS AMAERST - DEPARTNE

CMPSCI520/620 - Introduction to Design

CONPUTER Decomposition Issues

« Structure
« current design approaches focus on structure
* What are the components and how are they put together?
* Behavior is important, but largely indirectly
« however, organizations and individuals often buy into a
particular approach or methodology

« “Beware a methodologist who is more interested in his

methodology than in your problem.” —M. Jackson
e Conceptual integrity
« a critical design criterion?

« “It is better to have a system omit certain anomalous features and
improvements, but to reflect one set of design ideas, than to have
one that contains many good but independent and uncoordinated
ideas.” —Brooks, MMM

*makes it far easier to decide what is easy and reasonable to
do as opposed to what is hard and less reasonable to do

« not always what management wants to hear

UNIVERSITY-OF: MASSACHUSETTS/AMHERST: ¥ DEF?;%;

COMPUTER Accommodating change

“...accept the fact of change as a way of life, rather than
an untoward and annoying exception.” —Brooks, 1974

“Software that does not change becomes useless over
time.” —Belady and Lehman

¢ Internet time makes the need to accommodate change
even more apparent

¢ |t is generally believed that to accommodate change
one must anticipate possible changes

By anticipating (and perhaps prioritizing) changes, one
defines additional criteria for guiding the design activity

*However, it is not possible to anticipate all changes

c“ﬂ;‘;ﬂé‘é Counterpoint

« Extreme Programming argues otherwise.

¢ in essence it asserts that we are unable to effectively
predict change

einstead one should at every point use the simplest
possible design for a software system

eonce changes are needed, one should restructure the
design to meet the needs

equestions conventional wisdom but it is still quite early
and the outcome is unclear

UNIVERSITY - OF: MASSACHUSETTS AMHERST:+ DEP_';{'%

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS - AMHERST DEP@

COMPUTER Why design for change?

« Change of underlying abstract machine
*new release of operating system
*new optimizing compiler
*new version of DBMS
« Change of peripheral devices
« Change of "social" environment
*new tax regime
« € versus former national currencies in EU
« Change due to development process (transform prototype
into product)
« Change in algorithms, data representation
« inefficient sorting algorithm = a more efficient one
e binary tree = threaded tree

* ~17% of maintenance costs attributed to data representation
changes (Lientz and Swanson, 1980)

UNIVERSITY-OF MASSACHUSETTS AMHERST:+ DE%

CMPSCI520/620 - Introduction to Design

COMPUTER Product families

«Different versions of the same system
ee.g. a family of mobile phones

emembers of the family may differ in network
standards, end-user interaction languages, ...

ee.g. a facility reservation system

«for hotels: reserve rooms, restaurant, conference
space, ..., equipment (video beamers, overhead
projectors, ...)

«for a university

*many functionalities are similar, some are different (e.g., facilities
may be free of charge or not)

UNIVERSITY: OF MASSACHUSETTS ANHERST L DB

CONPUTER Properties of design

*Cohesion
*Coupling
*Complexity
eCorrectness
*Correspondence

UNIVERSITY. OF: MASSACHUSETTS AMHERST: 1

©Rick Adrion 2004 (except where noted)

CONPUTER Product families

« Design goal for family

¢Design the whole family as one system, not each
individual member of the family separately

* Sequential completion: the wrong way

¢ Design first member of product family & modify existing
software to get next member products

*How to do better
¢ Anticipate definition of all family members

«|dentify what is common to all family members, delay
decisions that differentiate among different members

UNIVERSITY:OF: MASSACHUSETTS AMHERST - DER)

CONPUTER Cohesion & Coupling

* Cohesion: The reason that elements are found together
in a module

*Ex: coincidental, temporal, functional, ...
¢ The details aren’t critical, but the intent is useful

«During maintenance, one of the major structural
degradations is in cohesion

« Coupling: Strength of interconnection between modules

eHierarchies are touted as a wonderful coupling structure,
limiting interconnections

«But don’t forget about composition, which requires some
kind of coupling

elt’s easy to...
«...reduce coupling by calling a system a single module
«...increase cohesion by calling a system a single module

UNIVERSITY-OF MASSACHUSETTS AMRERST: ¢ DEPA

CMPSCI520/620 - Introduction to Design

COMPUTER : COMPUTER :
science Coupling science Coupling
»Coupling also degrades over time *No satisfactory measure of coupling
*“l just need one function from that module...” *Either across modules or across a system
«Unnecessary coupling hurts Cruickshank and Gaffney Coupling metric
*Propagates effects of changes more widely i M, = sum of the number
. . . T of]input and output
eHarder to understand interfaces (interactions) Z i items shared between
.) _ i=i components i & j
Harder to understand the design Coupling = - 7, = average number of
. . . input and output items
Complicates managerial tasks hore. " P p——
° I . AL components with
Complicates or precludes reuse z i omboment
Z, = _J=1 n = number of
. components in the
software product

UNIVERSITY-OF MASSACHUSETTS - AMHERST DE%E‘\E

UNIVERSITY-OF: MASSACHUSETTS/AMHERST: ¥ DEP

COMPITER Complexity COMIER Correctness
esimpler designs are better, all else being «Very difficult (we’ll come back to this briefly later
equal in the course)
+no useful measures of design/program *Even if you “prove” modules are correct, how do
complexity exist you prove N _
+Although there are dozens of such measures 'g}f’srpe?gstg'gg gfetshignnggd“'es within and outside the
*LOC Seems to be _the most rell_able predictor «System software that must interpret/compile and
when single domains are considered, e.g. run the composed modules
*data processing «Hardware on which the complied modules run, etc.
*numerical processing _ «Leveson and others have shown clearly that a
*symbolic processing e.g., compilers system can fail even when each of the pieces
econcurrent/distributed systems e.g., operating work properly
systems

UNIVERSITY-OF MASSACHUSETTS AMRERST: ¢ DEF

UNIVERSITY: OF MASSACHUSETTS AMHERST: + D EF/

©Rick Adrion 2004 (except where noted)

CMPSCI520/620 - Introduction to Design

COMPUTER Correspondence

¢ “Problem-program mapping”

e The way in which the design is associated with the
requirements

e The idea is that the simpler the mapping, the
easier it will be to accommodate change in the
design when the requirements change

e See M. Jackson: problem frames

correspondence \\ correspondence

mpIementatioI

UNIVERSITY: OF MASSACHUSETTS AMHERST-L D ERART)

CONPUTER Properties

*\What are the desirable properties of a modular
structure?

* Almost all the literature focuses on logical structures in
design, but physical structure plays a big role in practice
*Sharing
e Separating work assignments
«Degradation over time
*Why so little attention paid to this?

UNIVERSITY: OF MASSACHUSETTS AMHERST - F D EPARTMER

©Rick Adrion 2004 (except where noted)

COMPUTER Functional decomposition

Divide-and-conquer based on functions
input;
compute;
output
*Then proceed to decompose compute
*This is stepwise refinement (Wirth, 1971)

eThere is an enormous body of work in this area,
including many formal calculi to support the
approach

«Closely related to proving programs correct
*More effective in the face of stable requirements

UNIVERSITY-OF MASSACHUSETTS - AMHERST DEP&

CONPUTER Module

* To what degree do you consider your systems
«as having modules?
« as consisting of a set of files?

« This is a question of physical vs. logical structure of programs
«In some languages/environments, they are one and the same
* Ex: Smalltalk-80

* How to define the structure of a modular system?
* A module is a well-defined component of a software system
* A module is part of a system that provides a set of services

to other modules

* where services are computational elements that other modules
may use

UNIVERSITY. OF MASSACHUSETTS; AMHERST: -+ DEPAT

CMPSCI520/620 - Introduction to Design

CONPUTER Modules and relations

eLet S be a set of modules
S={M, M, ..., M}
« A binary relation* R on S is a subset of
RCSxS
*If M; and M; are in S, <M;, M> € R can be written as
MR M
* Transitive closure R* of R M, R* M;iff
MR M; or IM, in S s.t. M;R M, and M, R* M,
* Ris a hierarchy iff there are no two elements M;, M; s.t.
MR M; N MR M,
* Relations can be represented as graphs; a hierarchy is a
DAG (directed acyclic graph)

*we assume our relations to be irreflexive

UNIVERSITY-OF MASSACHUSETTS/AMHERST: 5 D ER;

COMPUTER The uses relation

euses should be a hierarchy
eHierarchy makes software easier to understand

*Proceed from leaf nodes (who do not use others)
upwards

¢ They make software easier to build
*They make software easier to test
A non-hierarchical uses relation makes it difficult
to produce useful subsets of a system -- Parnas
«It also makes testing difficult
*(What about upcalls?)
*So, it is important to design the uses relation
e Can uses be mechanically computed?

UNIVERSITY - OF MASSACHUSETTS AMHERST: -+ DER/

©Rick Adrion 2004 (except where noted)

COMPUTER The uses relation

¢ A uses B; examples
« A requires the correct operation of B
¢ A can access the services exported by B through its interface
« A depends on B to provide its services
«example: A calls a routine exported by B
*Ais a client of B; B is a server

« the correctness of A depends on the presence of a correct
version of B

e requires specification and implementation of A and the
specification of B

¢ Criteria for uses (A, B)
« A is essentially simpler because it uses B
B is not substantially more complex because it does not use A
¢ There is a useful subset containing B but not A
¢ There is no useful subset containing A but not B

UNIVERSITY-OF MASSACHUSETTS - AMHERST DEP@F_‘\

cﬂﬂﬁ%‘i‘ uses VS. invokes

e These relations often but do not always coincide

¢|Invocation without use: name service with cached
hints

ipAddr := cache (hostName) ;

if wrong (ipAddr,hostName) then
ipAddr := lookup (hostName)

endif

*Use without invocation: examples?

UNIVERSITY-OF MASSACHUSETTS AMRERST: ¢ DEFAR

CMPSCI520/620 - Introduction to Design

COMPUTER

by a number of lower level modules
*A is_component of B

*B comprises A

then we say that Mg; implements M,
« Careful recording of (hierarchical) uses and

program families

seiNet The is_component_of Relation

*Used to describe a higher level module as constituted

*B consists of several modules, of which one is A

oIf Mg ={M,IM,ES A M, is_component of M}

is component of relations supports design of

COMPUTER Hierarchy

levels of abstraction
machine for the next level
elevel can be defined precisely

*M has level 0 if no M, exists s.t. M; R M,

s.t. M; R M, ... then M, has level k+1

UNIVERSITY: OF MASSACHUSETTS AMHERST: - DERARY]

©Rick Adrion 2004 (except where noted)

*Organizes the modular structure through

*Each level defines an abstract (virtual)

¢let k be the maximum level of all nodes Mj

““ﬂ;ﬂ'ﬁﬁ'ﬁ A graphical view of is_component_of

M, Ms\yg lels My
M M
2 M 4
3 Mo Mg My
/\<
M, M Mg Mg Mg Mg
(is_component_of) (comprises)

They are a hierarchy

UNIVERSITY-OF MASSACHUSETTS - AMHERST DEPAF‘\E

COMPUTER Information hiding

« Information hiding is perhaps the most important
intellectual tool developed to support software design
[Parnas 1972]

*Makes the anticipation of change a centerpiece in
decomposition into modules

« Provides the fundamental motivation for abstract data
type (ADT) languages

*And thus a key idea in the OO world, too
¢ The conceptual basis is key

UNIVERSITY-OF MASSACHUSETTS AMRERST: ¢ DEPAR

CMPSCI520/620 - Introduction to Design

COMPUTER Basics of information hiding

*Modularize based on anticipated change
 Separate interfaces from implementations
eImplementations capture decisions likely to change
eInterfaces capture decisions unlikely to change
«Clients know only interface, not implementation
eImplementations know only interface, not clients
*Modules are also work assignments

UNIVERSITY: OF MASSACHUSETTS ANHERST L DB

CONPUTER Algorithm changes

« almost always part and parcel of ADT-based
decompositions

* monolithic to incremental algorithms
eimprovements in algorithms
e information hiding isn’t only using ADTs

« Other changes?

UNIVERSITY. OF: MASSACHUSETTS AMHERST: 1

©Rick Adrion 2004 (except where noted)

COMPUTER Anticipated changes

*most common anticipated change is “change of
representation”

*a key notion behind abstract data types

ee.g., Cartesian vs. polar coordinates; stacks as linked
lists vs. arrays; packed vs. unpacked strings

*do we change representations less frequently today?
emore knowledge about data structure design
ememory is much less expensive

¢ so, think twice about anticipating that representations
will change

eimportant, since we can’t simultaneously anticipate all
changes

UNIVERSITY:OF: MASSACHUSETTS AMHERST - DER)

CONPUTER Notkin’s IH “Central Premises”

1. can effectively anticipate changes

¢ essentially no research and we have no disciplined
ways to anticipate changes
¢ but, unanticipated changes require changes to
interfaces or (more commonly) simultaneous changes
to multiple modules
2. changing an implementation is the best change, since
it's isolated

¢ changing a local implementation may not be easy

UNIVERSITY-OF MASSACHUSETTS AMRERST: ¢ DEPA

11

CMPSCI520/620 - Introduction to Design

COMPUTER Notkin’s IH “Central Premises”

3. semantics of a module must remain unchanged when
implementations are replaced

¢ what captures the semantics of the module? signature of
the interface? performance? what else?

4. one implementation can satisfy multiple clients
¢ clients of the same interface that need different
implementations is counter to the principle of information
hiding
5. information hiding can be recursively applied
¢ Is this true? If not, what are the consequences?

UNIVERSITY-OF MASSACHUSETTS/AMHERST: 5 D ER;

COMPITER Interface design

« Interface should not reveal what we expect may change
later
¢t should not reveal unnecessary details
eInterface acts as a firewall preventing access to hidden
parts
« Prototyping
*Once an interface is defined, implementation can be
done
«first quickly but inefficiently
« then progressively turned into the final version
«Initial version acts as a prototype that evolves into the
final product

UNIVERSITY - OF MASSACHUSETTS AMHERST: -+ DER/

©Rick Adrion 2004 (except where noted)

COMPUTER Information Hiding and OO

* Are these the same? Not really

¢ OO0 classes are chosen based on the domain of the
problem (in most OO analysis approaches)

*Not necessarily based on change
«But they are obviously related (separating interface from
implementation, e.g.)
*What is the relationship between sub- and super-
classes?

UNIVERSITY-OF MASSACHUSETTS - AMHERST DEP@F_‘\

COMPUTER Interface vs. implementation

* To understand the nature of uses, we need to know
what a used module exports through its interface

*The client imports the resources that are exported by its
servers

*Modules implement the exported resources
eImplementation is hidden to clients
« Clear distinction between interface and implementation
is a key design principle
* Supports separation of concerns
« clients care about resources exported from servers
e servers care about implementation

e Interface acts as a contract between a module and its
clients

UNIVERSITY-OF MASSACHUSETTS AMRERST: ¢ DEFAR

12

CMPSCI520/620 - Introduction to Design

CONITE Layering [Pamas 79]

*Focus on information hiding modules isn’t
enough

*One may also consider abstract machines
eIn support of program families

«Systems that have “so much in common that it
pays to study their common aspects before
looking at the aspects that differentiate them”

«Still focusing on anticipated change

UNIVERSITY-OF: MASSACHUSETTS/AMHERST: ¥ DEP

CONPUTER Categories of modules

 Functional modules
etraditional form of modularization
eprovide a procedural abstraction
eencapsulate an algorithm

e Libraries
ea group of related procedural abstractions

e.g., mathematical libraries
«implemented by routines of programming languages

« Common pools of data
edata shared by different modules

« e.g., configuration constants
«the COMMON FORTRAN construct

UNIVERSITY: OF MASSACHUSETTS AMHERST: D ERA

©Rick Adrion 2004 (except where noted)

FHtie: Language support

*\We have lots of language support for information hiding

modules
«C++ classes, Ada packages, etc.
*\We have essentially no language support for layering

*Operating systems provide support, primarily for reasons

of protection, not abstraction
*Big performance cost to pay for “just” abstraction

UNIVERSITY-OF MASSACHUSETTS - AMHERST DE%.

COMPUTER Abstract Modules

¢ Abstract objects
*Objects manipulated via interface functions
eData structure hidden to clients

¢Abstract data types

eMany instances of abstract objects may be
generated

UNIVERSITY-OF MASSACHUSETTS AMRERST: ¢ DEFAR

13

CMPSCI520/620 - Introduction to Design

CONPUTER Abstract objects

*Examples

e calculator of expressions expressed in Polish postfix
form: a*(b+c) () abc+*

«a stack where the values of operands are shifted until an
operator (assume only binary operators) is encountered
in the expression

Interface of the abstract object STACK
exports
procedure PUSH (VAL: in integer);
procedure POP_2 (VAL1, VAL2: out

*How does the design anticipate change in type of
expressions to be evaluated?

*e.g., it does not adapt to unary operators

UNIVERSITY: OF MASSACHUSETTS;AMHERST +

CONPUTER Abstract data types (ADTSs)

* Aother example: simulation of a gas station

module FIFO_CARS

uses CARS

exports
type QUEUE : ?;
procedure ENQUEUE (Q: in out QUEUE ; C: in CARS);
procedure DEQUEUE (Q: in out QUEUE ; C: out CARS);
function IS_EMPTY (Q: in QUEUE) : BOOLEAN;
function LENGTH (Q: in QUEUE) : NATURAL;
procedure MERGE (Q1, Q2 : in QUEUE ; Q : out QUEUE);
This is an abstract data-type module representing
queues of cars, handled in a strict FIFO way;
queues are not assignable or checkable for equality,
since “=" and “=" are not exported.

end FIFO;('.‘;ARS

UNIVERSITY - OF MASSACHUSETTS AMHERST: '

©Rick Adrion 2004 (except where noted)

CONPUTER Abstract data types (ADTs)

e Example: stack ADT indicates that details of the
module STACK_HANDLER data structure are hidden

exports / to clients
type STACK=7;

This is an abstract data -type module; the data structure
is a secret hidden in the implementation part.

procedure PUSH (S: in out STACK ; VAL: in integer);
procedure POP (S:in out STACK ; VAL: out integer);
function EMPTY (S: in STACK) : BOOLEAN;

end STACK_HANDLER

*ADTs correspond to Java and C++ classes & may also
be implemented by Ada private types and Modula-2
opaque types

UNIVERSITY-OF MASSACHUSETTS AMHERST: 'D

CONPUTER Generic modules

« parametric with respect to a type
generic module GENERIC_STACK_2
exports
procedure PUSH (VAL : in T);
procedure POP_2 (VAL1, VAL2 : out T);

end GENERIC_STACK_2
« specify that a type and also an operation must be provided
parameters

generic module M (T) with OP(T)
uses ...

end M

¢ instantiation syntax:
module INTEGER_STACK_2 is GENERIC_STACK_2 (INTEGER)
module M_A_TYPE is M(A_TYPE) PROC(M_A_TYPE)More on genericit

UNIVERSITY-OF MASSACHUSETTS AMHERST:+

14

CMPSCI520/620 - Introduction to Design

COMPUTER Software Architecture

e architecture of a system describes its gross structure
e illuminates the top level design decisions
*how the system is composed of interacting parts
«the main pathways of interaction
«the key properties of the parts
e allows high-level analysis and critical appraisal

UNIVERSITY: OF MASSACHUSETTS;AMHERST +: DERAR:

COMPUTER

» Understanding:
« simplifies the understanding of
large systems using an abstraction
« constraints on system design
« rationale
« Construction
« a partial blueprint for development:
components and dependencies
 Evolution
« dimensions along which a system
is expected to evolve

« "load-bearing walls" ->
ramifications of changes, cost
estimation

« separate concerns about the
functionality of a component from
the ways in which that component
is connected to (interacts with)
other components

UNIVERSITY - OF: MASSACHUSETTS AMHERST:+ DEPA:ﬁ

seience Roles of Software Architecture

 Analysis
« consistency checking
« conformance
« to constraints
« to quality attributes
« dependence analysis
« domain-specific analyses for
architectural styles
* Reuse
« reuse of large components and
frameworks
* Management
« leads to a much clearer
understanding of requirements,
implementation strategies, and
potential risks

©Rick Adrion 2004 (except where noted)

COMPUTER Roles of Software Architecture

« a bridge between requirements and implementation
ean abstract description of a system,
eexposes certain properties, while hiding others.
« useful for:
¢Understanding
*Reuse
 Construction
*Evolution
¢ Analysis
«Management

UNIVERSITY-OF MASSACHUSETTS - AMHERST - DERAR:

CONPUTER Software Architectures

¢ Architectural taxonomy (“boxology”)
¢ Architectural patterns &dj

oms
. . Requirements
e Design patterns & i S
¢ Reuse
« Class libPasi
Design
e Components
¢ Frameworks
Detailed
Design

* Middleware

UNIVERSITY-OF MASSACHUSETTS AMRERST: ¢ DEPARTNED

15

CMPSCI520/620 - Introduction to Design

LT Frameworks & Class Libraries Lo TE Frameworks & Components

A framework is an integrated
set of abstract classes that

¢ A class is a unit of abstraction

vooATIONS
<—FUCTIONALITY . . : b t . d f
& implementation in an OO can be customized for
] programming language instances of a family of
applications

<_
ey [Ree]

¢ A component is an
encapsulation unit with one
or more interfaces that
provide clients with access to
its services

A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of

app|icati0nS Middleware Bus

Framework Architecture

Component Architecture
atterns, Frameworks, & Middleware: Their Synergistic Relationships” Adapted from Douglas C. Schmidt, “Patterns, i & Mi Their Synergistic
UNIVERSITY-OF MASSACHUSETTS-AMHERST - DER)

Adapted from Douglas C. Schmid

UNIVERSITY-OF: MASSACHUSETTS/AMHERST: ¥ DEF?;%;

COMPUTER : COMPUTER :
seieice Comparison seieice Taxonomy of Patterns & Idioms

Type Description Examples
Class Libraries Frameworks Components o Ere ‘S ;:)'Ided to a particular lar 4 ’ ' e
Micro-level Meso-level Macro-level Design patterns Capture the static & dynamic roles & Active Object, Bridge,

" relationships in solutions that occur Proxy, Wrapper
Stand-alone “Semi-complete” | Stand-alone re isl
peatedly Facade, & Visitor

language entities applications composition entities

Architectural Express a fundamental structural Half-Sync/Half-Async,

patterns organization for software systems that Layers, Proactor,
Domain-independent | Domain-specific Domain-specific or provide a set of predefined subsystems, Publist bscriber,

L. specify their relationships, & include the & Reactor
Domain-independent rules and guidelines for organizing the
relationships between them
Borrow caller’s Inversion of Borrow caller’s thread R P P oot — Tt
ptimization)¢ rules for g P or
thread control principle patterns design & implementation mistakes that case, pass
degrade performance information between
layers

UNIVERSITY-OF MASSACHUSETTS AMHERST:+ DE#

UNIVERSITY-OF MASSACHUSETTS AMHERST: -+ DE X

©Rick Adrion 2004 (except where noted)

