CMPSCI520/620 - Notation (Formal)

COMPUTER Announcements

*\Wednesday, October 20th
*There will be class (live)

* PEEAS Projects
*Project 1 & due dates posted ...

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP

*Extreme Programming (XP) -- Matt Cornell & Agustin
Schapira, Knowledge Discovery Laboratory

*FSA
* Petri nets
« Trace specifications

return values from those calls

¢ proposed by David Parnas, 1977
« formalized by McLean, 1984
« further developed by Dan Hoffman, Rick Snodgrass, etc
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CONPUTER Concurrent & distributed systems

ea trace is a sequence of procedure or function calls and

COMPUTER 10 Notation [Formal Methods]

*\We'll come back to UML in the RUP (design methods)

*Reading

¢ [jmW90] Wing, J. M., “A Specifier's Introduction to Formal
Methods,” IEEE Computer , September 1990, pp.8--24.

¢[avL00] van Lamsweerde, Axel, “Formal Specification: a
Roadmap,” Future of Sofware Engineering Limerick
Ireland 2000

¢[LZ75] Liskov, B.H. and Zilles, S.N., “Specification
Techniques for Data Abstractions,” IEEE Transactions on
Software Engineering , March 1975, pp.7--19.

¢« [GHWS85] Guttag, J.V., Horning, J.J. and Wing, J.M., “The
Larch family of Specification Languages,” IEEE Software ,
September 1985, pp.24--36.
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COMPUTER Finite State Machines (FSM's)

*FSM's describe behavior of a system:

*The sequence of stages/steps/conditions that the
system goes through

*FSM shows how a system acts/reacts to inputs
*Does this by showing progress through different states
¢ Hypothesis:

¢ The universe in which the system being described must
operate can be accurately modeled as always being in
exactly one of a finite number of states (situations)

*There are only a finite number of possible system inputs
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compure Finite State Machines (FSM)
SCIENCE

«finite set of states S ={s,, ..., s.}
«finite set of inputs | = {i;, ..., i.}
e transition function 8: Sxl = S

ecan be a partial function
erepresent as a graph

enodes = states

eedges = inputs

egraph = transition function
*enhancements to FSM

*Use of hierarchy

¢ Output annotations on edges

¢ Distinguished Initial and Terminal states

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. 5B

*Separate data definitions, local and global variables

CONPUTER FSM are limited

e Library example
e getbook: index X library = book
o1 ,000,000+ books in a good library

state = books on shelf

O/'O new state = libe - book
N\

v
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2n transitions could be >> 108 states

COMPUTER Why Use FSM's?

*Primary appeal is visualization

eIntuitively: "watch" a stream of inputs "drive" the
behavior of the system as a sequence of
movements from state to state

*What is FSM good/not good for? (Example: safety

concern)

eAdvantages:
¢ Model unsafe state
* Model state transitions
« Can unsafe state be reached?

eDrawbacks
*No sense of functionality
*No sense of how functionality achieved
« Difficult and generally impossible to reason about timing

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPAI

CONPUTER Some FSM-based notations

* Process Graphs
* nondeterministic start_heating
* may have infinitely many nodes

« from any node, infinitely many edges
may depart

« used as interpretation structures for
formal specifications in process algebra
and dynamic logic

end_time start_heating

timeout
« JSD Process Structure Diagrams.
» used in Jackson Structured Programming TENPERATURE
(JSP) courmL

« represent the structure of files and of
regular programs

e used in JSD
« represent the behavior of a system in a
modular way
« a visual way to represent a regular
expression by means of a tree diagram

TEMPERATURE;-

o O ]
start_heating HEATING

o ] (5050 ] [ ]

i
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T FSM

« Finite State Diagrams
« contain only finitely many states and transitions
« Extended Finite State Diagrams.
« number of states can be increased by introducing variables that may
be tested and updated by the finite state machine
« global state = explicit state (STD nodes) + extended state (variables)
« local variables or external variables

« local variable is declared together with the specification of the STD + scope
rules for these variables (usually the entire state machine specification)

« external variable is declared outside the specification of the STD but can
be accessed by means of special operations that act as an interface
between the specification and the variables

« in dataflow models, data stores are external variables with respect to the
control processes in the DFD

« global state change requires communication between the state machine
and the external data stores

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP.A::'R:

CONPUTER Mealy & Moore Machines

*Mealy machine
eoutput actions are associated with transitions
*Moore Machines

eoutputs are associated with states

COMPARING

compare with
Gosired tomporature

5ecsiCONTROLLNG, = 10 e rechec] s eaing

Tt o1 peser

Sheal s T W’v”a":ﬁ‘.m'ﬁ.'mm emperature
D monior_deadine ot geading reached
HEATING NOT_HEATING
CONPARNG . . .
wrn on heater tum off heater
desioc_tomperatrs_nol_taachad ‘desiac_lemparalu'e_feachad 0 NOT e ] time. vucheol l end time reached
T n_on_pester T o et — TURNING_OFF FINISHED

T campar i s lorpore

turm off heater
fnish controling

heating finished start heating

CORTROLLNG
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finish contraling
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it Extended FSM

« state transition may change the values of variables
¢ a guard may be specified for each transition that says when
the transition can occur.
«weak interpretation,
« the transition cannot occur if the guard is false
« guard is in this case a necessary condition of the transition
« strong interpretation,
« the transition can occur if and only if the guard is true
« guard is a necessary and sufficient condition of the transition
e usually initially specify guards with the weak semantics
« when all conditions for a transition are specified, interpret the
conjunction of all weak guards as a strong guard
« a guard could be the conjunction of all preconditions specified for a
transition
e include tests in a state machine that are used to determine
the next state
e such tests can be used to resolve non-determinism
« a test determines which of a set of possible transitions will
{)ccur.,t.thus a test consists of a guard for each of the possible
ransitions.

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ DEP;:@E

PIMENES Petri Nets

ePetri nets are “marked” graphs
«two node types: places & transitions
«tokens mark the nodes

etransitions are enabled (“fire”) if all connected
places contain tokens

p1 { p2

*Options: simultaneous or asynchronous

UNIVERSITY-OF MASSACHUSETTS AMHERST: -+ DEF,
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CONTENE! Petri Nets: Informal Definition Ftinct Petri Net example

* Designed specifically for modeling systems with v ‘

interacting concurrent components.
- endbled |

« Consists of a set of places and a set of transitions
*«Edges connect places and transitions.
¢ Only transition — place and place — transition links are
allowed.
* Each place can have a finite number of tokens.
¢ A transition is enabled if each of its input places has at
least one token.

*An enabled transition can fire: one token is taken from
each input place and one token is put into each output
place.

p3

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DE
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FiHNeE Petri Net example FOMPUTER Petri Nets: Formal Definition
P! ‘ « A Petri Net is a four-tuple, C=(P,T,l,0) p1‘
* P ={p4, Py ---s Po}, N 2 0 is a finite set of

places
eT={t, 1, .., t.}, m=0is afinite set of

! transitions. L
enabled e |: T — Pis the input function.
*«O: T — P is the output function.

* p; is an input place of a transition ; if p; € I(t;)
* p; is an output place of a transition t; if p; €
O(t)

i
« Petri Net markings
* A marking m is a mapping P — N where N =

0,1,2 ...
* The marking m can be represented as a n-
vectorm =(m,, my, ..m),n=|P|, meEN, t2
1<is<n
* A marked Petri net M = (C, m ) is a Petri net
C and a marking m . p3 p2

t3
marking (0,0,2,1)

UNIVERSITY-OF MASSACHUSETTS AMHERST: DE
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COMPUTER Petri Net for Heating Controller COMPUTER More on Petri nets
« if there exists a marking which is reachable from the initial
desired_temperature_reached marking where no transitions are enabled, such a transition is
called a "deadlock"
*a PN with no possible deadlock is said to be live, called the
start_heating "liveness property”
«in simplest PN, tokens are uninterpreted
4__—| «in general, a selection policy can not be specified
< «have no "policy" for resolving conflicts, potential "starvation”

* many extensions:
¢ Hierarchical Petri Nets
« Colored tokens
«“Or" transitions
*Queues at places

end_time_reached

desired_temperature_not_reached

UNIVERSITY. OF MASSACHUSETTS/AMHERST: 3 DERAR:
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COMPUTER : COMPUTER ifi i
science Petri Nets vs. FSA He Trace specifications
NAME
¢ For any finite state machine, a Petri net can be built that models the label
finite state machine SYNTAX

¢ Petri nets are as powerful as finite state machines name: __type ... _ type = return_value_type
¢ Petri nets advantages: SEMANTICS

¢ net composition (in different forms) can be found easier than assertions of the form:

the cross-product of finite state machines L(T) - asserts that T is a legal trace

V(T) = value -- is the value returned if T

« parallelism and nondeterminism are represented in a more ends in a function call

understandable way

¢ FSA advantage: . t d
¢ simpler graph structure for some applications (e.g. parsers) operator prece en‘t";e

UNIVERSITY-OF MASSACHUSETTS AMHERST -+ DECAR UNIVERSITY OF MASSACHUSETTS AMHERST - DEFAR
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e Trace specifications

T=T2=
(VT) (L(T1-T) = L(T2-T)) &
(T is not empty = (

(T,'T has a value < T, T has a value) &
(T,T has a value =V(T,-T)= V(T,T))))

note (VS,T) (L(ST) = L(S))

COMPUTER Interpretation

1 (VT,i) (L(T) = L(T-push(i))
/*1*" unbounded stack
2% (VT) (L(T-top) < L(T-pop)
[*2*]  top cause no error iff pop causes no
error
3% (VT,i) (T =T-push(i)-pop)
/*3*/ push followed by pop does not affect
the future behavior
4% (VT) (L(T-top) =T =T-top)
/*4*[ top does not affect the behavior
1*5% (VT,i) (L(T) =V(T-push(i)-top)=i)
/*5*/ how to compute the value of top

UNIVERSITY-OF MASSACHUSETTS AMHERST: DEPila
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it Example

NAME
stack
SYNTAX
push: integer;

pop: ;
top: = integer;

SEMANTICS
1*1*/ (VT,i) (L(T) = L(T-push(i))
r2*/ (VT) (L(T-top) = L(T-pop)
1*3%/ (VT,i) (T =T-push(i)-pop)
[*4%/ (VT) (L(Ttop) = T=T-top)
5%/ ( V'T.i) (L(T) =V(T-push(i)top)=i)

UNIVERSITY:OF MASSAGHUSETTS AMHERST -+ DERARY

CONPUTER Example - using /*3* and 5%/

note:

By /*3*/ (VT,i) (T =T-push(i)-pop)

By [*5*/ (VT,i) (L(T) =V(T-push(i)-top)=i)

UNIVERSITY OF MASSACHUSETTS AMHERST: DEFART
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COMPUTER Heuristics

edefine normal forms
estructure semantics

euse predicates

edevelop specs incrementally
euUse macros

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. Dé

COMPUTER

eConcurrent and distributed systems

Lamport, LOTOS
*Semi-formal
*ER diagrams

UNIVERSITY-OF MASSACHUSETTS AMHERST -+ DECAR
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<cience Property-oriented techniques

¢ Abstract-data-type specification languages

*Axiomatic: Hoare, OBJ, Anna, Larch, and
algebraic, e.g., Clear, ActOne, Aspeque

specification languages: temporal logic,

COMPUTER :
seieice Comparison
e trace specifications « algebraic specifications
*based on call sequence *based on “type of interest,”

therefore maybe in terms of
objects not visible to user

e requires “hidden functions”
« cannot handle concurrency

eno “hidden functions”

« natural application to inter-
process communication

e universal & existential
quantifiers *no existential quantification

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ DE‘R‘I

COMPUTER | ogic Specifications

*Expressed using formulas under a first order
logic theory (usually with quantification), €.9.,
*Jj[1 <] < s.top| t.data[j]=s.data[j]]
*Typically expressed as pre- and post-conditions,
e.g.,
eLet P be a sequential program
ewith inputs (ig,i, ... ,i,) and outputs (04,04, ... ,0,,)

*Pre (ig,iy, ... ,i,) P Post(04,04, ... ,0p,igsiq, - i) iS @
property




CMPSCI520/620 - Notation (Formal)

COMPITER “Hoare” example

type stack =

record top: integer

data:array [1 ... 100] of integer

end
t:= push(s, i)
true{t:= push(s, i)} 3 j [1= jss.top| t.data[j]=s.datalj]

A t.dataft.top] =i
A t.top =s.top +1]
precondition

“program”
post condition

COMPITER “Hoare” example

Logic specification:
true {t:= push(s, i)} 3 j[1 =j < s.top|
t.data[j]=s.data[j]
A t.dataft.top] = | A t.top =s.top +1]
Operational specification
{true} push (Sy, I){V J, 1 <J < S,.top
S,.data [J] = S.data [J] A
S.top = Sytop+ 14
S.Data [S.top] = | }

CONPUTER Algebraic Specification

Stack (S) A Integer (I) ...
(1) Top (Push (S, 1) =1
(2) Top (Create) = Integer Error
(3) Pop (Push (S, 1)) =S
(4) Pop (Create) = Stack Error

—_~ o~ o~ o~

UNIVERSITY-OF MASSACHUSETTS AMHERST-+ DECART
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U8 Larch

* The Larch Family of Specification Languages
« John Guttag, James Horning, Jeannette Wing IEEE
Software, 1985
e Larch Shared Language
*«Common language for formally representing models
e Larch Interface Language
«Interface between the shared language and the target
programming language
e Larch/Pascal
e Larch/CLU
« Specific implementation language

UNIVERSITY OF MASSACHUSETTS AMHERST: DEFART
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COMPUTER
Sscienee Larch

Programming
Language
(Pascal, Clu, ...)

Larch
Interface Language
(Larch/Pascal, Larch/Clu, ... )

Larch

/\ Shared Language
L
) .

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. +-DERARTMENT OF

computek Goals of Larch
)SCIENCE

* Composability
*«Common specifications from existing specifications
eLibrary or handbook

¢ Readability

¢ Localize programming language dependence

*General model is very complex so use different
language specific models

* Automated Support
« Construction tool
e Syntactic checking
*Semantic checking
e Support incompleteness

UNIVERSITY-OF MASSACHUSETTS AMHERST: £ D ESARIMENFOR BN
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computee Terminology
) SCIENCE

SPECIFICATION PROGRAMMING
TERM LANGUAGE TERM
Operator Function
Sort Type
Term Expression
Trait Module (ADT), Function,
Procedure type

UNIVERSITY-OF MASSACHUSETTS- AMHERST. - DERARTMENT: OFG

computer Trait
®SCIENCE

Introduces
signature of the operation
/ (sort checking)
Constrains
\ constrains the operations &

/ relations among the operators

theory - set of theorems that can be proved about the
operator done by substitution, using rules of first order
predicate calculus with equality

UNIVERSITY-OF MASSACHUSETTS; AMHERST: +: DERARMENT; IR CONPLY
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computer Examples
SCIENCE

Container: trait
introduces
new: — C
insert: C,E - E
constrains C so that
C generated by [ new, insert ]

CONPUTER Constructing traits

Priority Queue

Mulitset

UNIVERSITY. OF MASSACHUSETTS AMHERST -+ DER)
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computer Examples
SCIENCE

IsEmpty: trait
assumes Container
introduces
isEmpty: C — Bool
constrains isEmpty, new, insert
so thatforall[c:C, e E]
isEmpty(new) = true
isEmpty(insert(c,e)) = false
implies converts [ isEmpty ]

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ DERARE

COMPUTER Interface Languages

« “bridge” between shared language and implementation
language

« “Two-tiered” specification approach: principal innovation
of Larch w/r/t algebraic specification languages

UNIVERSITY OF MASSACHUSETTS AMHERST - DEFAR]
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COMPUTER Interface Languages

e Larch/L incorporates “flavor” of L
¢ semantics, keywords
¢ makes it easier for those who know L to write provable
specs
« just need to adapt existing shared traits from Library (in
theory...)
Larch/L languages designed to support data abstraction,
even if language L doesn’t directly support it (Pascal, C,
C++)

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP@:

CONPUTER Pascal implementation of BagAdd

prodedure bagAdd(var B:Bag;e:integer);
var i, lastEmpty: 1l...MaxBagSize
begin
i:= 1;

while ((i < MaxBagSize) and (b.elems[i]<>e)) do

begin
if b.counts[i] = O then LastEmpty:=i;
Q= i+1;
end;
if b.elems[i] = e
then b.counts[i]:= b.counts[i]+1;

else begin
if b.counts[i]=0 then LastEmpty:=i;
b.elems[LastEmpty] :=e;
b.counts[LastEmpty] :=1;
end;
end[bagAdd];

UNIVERSITY- OF MASSACHUSETTS AMHERST. -+ DE A
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COMPUTER | arch/Pascal specification

type Bag exports baglnit, bagAdd, bagRemove, bagChoose
based on sort Mset from MultiSet with [integer for E]
procedure baglnit(var b:Bag)
modifies at most [ b ]
ensures bpost = { }
procedure bagAdd(var b:Bag; e; integer)
requires numElements(insert(b,e )) < 100
modifies at most [ b ]
ensures bpost = insert(b,e )
procedure bagRemove(var b:Bag; e; integer)
modifies at most [ b ]
ensures bpost = delete(b,e )
procedure bagChoose(var b:Bag; e; integer): boolean
modifies at most [ b ]
ensures if ~ isEmpty (b )
then bagChoose & count (b, epost)>0
else ~ bagChoose & modifies nothing
End Bag

UNIVERSITY:OF MASSACHUSETTS AMHERST: - DERA

COMPUTER Conclusions

¢ Interesting attempt to address:
ereadability/writability of formal specs
elarge, multi-lingual environment issues
« Relationship between shared and interface languages
complex and unclear
 Relationship between interface and implementation
languages not as strong as one would like
« “Software tool support needed” (syntax-directed editors,
browsers, theorem-provers, etc.)

UNIVERSITY OF MASSACHUSETTS AMHERST - DEFA
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COMPUTER Current Status

« Strong theoretical foundation
* Some practical use, especially in Europe
« Current Languages trying to be more practical

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEF‘>

CONPUTER How effective are these methods?

* Wing's study of the Library Problem
«a small library database
« transactions
checkout/return book
add/remove book
get a list of books
« author
« subject
* borrower
get date/borrower for book

s users
« staff
* borrowers
e restrictions
« availability
* no book available & checked out
« # books borrowed <max

UNIVERSITY-OF MASSACHUSETTS AMHERST: -+ DER
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COMPUTER

<cienee How to write it down?

e natural language

e structured natural language

« pictorial notation

¢ Charts, Diagrams, Box-and-Arrow Charts

* Graphs
* Flowgraphs
* Parse Trees
« Call graphs
« Dataflow graphs
« formal language(s)
« state-oriented
« function-oriented
« object-oriented

UNIVERSITY-OF MASSACHUSETTS: AMHERST. D&

computir Analysis
SCIENCE

« Specification approaches
« informal
<Al
« logic
« executable/non-executable
« Comparisons
« formality
« life-cycle phase
« operational vs. behavioral
* modularity
« readability
« completeness
« Not considered
 concurrency
« reliability
« fault-tolerance
* security

UNIVERSITY OF MASSACHUSETTS AMHERST:

« initialization
« what's the initial state of the
library?
¢ missing operations
* need more transactions?
« error handling
« what to do with errors?

« checkout, return, add, remove,
"type errors"

¢ missing constraints

* more than one copy in library,
checked out

« state
« what to record, change?

« “non-functional” specification
« human factors, liveness, time

12
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COMPUIER Conclusions

« methods do not differ radically
« style
*most use pre- and post-conditions for specifying behavior

« algebraic & set-theoretic most common for specifying data
(operational)

*model-oriented (operational) most common approach
« formal specs can

« identify diff in informal specs

«handle simple, small problems

« specify sequential functional behavior
¢ Challenges

e scaling

« non-functional behavior

« combining techniques

« tools

« integrating specification into the lifecycle

UNIVERSITY. OF - MASSACHUSETTS/AMHERST:
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