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Announcements

• Wednesday, October 20th
• There will be class (live)

• Extreme Programming (XP) --  Matt Cornell & Agustin
Schapira, Knowledge Discovery Laboratory

• PEEAS Projects
• Project 1 & due dates posted …
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10 Notation [Formal Methods]

• We’ll come back to UML in the RUP (design methods)

• Reading
• [jmW90] Wing, J. M.,  “A Specifier's Introduction to Formal
Methods,” IEEE Computer , September 1990,  pp.8--24.  

• [avL00] van Lamsweerde, Axel, “Formal Specification: a
Roadmap,” Future of Sofware Engineering Limerick
Ireland 2000

• [LZ75] Liskov, B.H. and Zilles, S.N., “Specification
Techniques for Data Abstractions,”  IEEE Transactions on
Software Engineering , March 1975,  pp.7--19.  

• [GHW85] Guttag, J.V., Horning, J.J. and Wing, J.M.,  “The
Larch family of Specification Languages,” IEEE Software ,
September 1985,  pp.24--36.
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Concurrent & distributed systems

• FSA

• Petri nets

• Trace specifications
• a trace is a sequence of procedure or function calls and
return values from those calls
• proposed by David Parnas, 1977

• formalized by McLean, 1984

• further developed by Dan Hoffman, Rick Snodgrass, etc
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Finite State Machines (FSM's)

• FSM's describe behavior of a system:
• The sequence of stages/steps/conditions that the
system goes through

• FSM shows how a system acts/reacts to inputs

• Does this by showing progress through different states

• Hypothesis:
• The universe in which the system being described must
operate can be accurately modeled as always being in
exactly one of a finite number of states (situations)

• There are only a finite number of possible system inputs
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Finite State Machines (FSM)

• finite set of states S ={s1, ... , sn}
• finite set of inputs I = {i1, ..., in}
• transition function δ: SxI ⇒ S

• can be a partial function
• represent as a graph

• nodes ⇒ states
• edges ⇒ inputs
• graph ⇒ transition function

• enhancements to FSM
• Use of hierarchy
• Output annotations on edges
• Distinguished Initial and Terminal states
• Separate data definitions, local and global variables
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Why Use FSM's?

•Primary appeal is visualization
•Intuitively:  "watch" a stream of inputs "drive" the
behavior of the system as a sequence of
movements from state to state

•What is FSM good/not good for? (Example: safety
concern)
•Advantages:

• Model unsafe state
• Model state transitions
• Can unsafe state be reached?

•Drawbacks
• No sense of functionality
• No sense of how functionality achieved
• Difficult and generally impossible to reason about timing

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

state = books on shelf

new state = libe - book

2n transitions could be >> 106 states

FSM are limited

• Library example
• getbook: index X library ⇒ book

• 1,000,000+ books in a good library
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Some FSM-based notations
•  Process Graphs

• nondeterministic
• may have infinitely many nodes
• from any node, infinitely many edges

may depart
• used as interpretation structures for

formal specifications in process algebra
and dynamic logic

•  JSD Process Structure Diagrams.
• used in Jackson Structured Programming

(JSP)
• represent the structure of files and of

regular programs
• used in JSD

• represent the behavior of a system in a
modular way

• a visual way to represent a regular
expression by means of a tree diagram
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FSM

• Finite State Diagrams
• contain only finitely many states and transitions

• Extended Finite State Diagrams.
• number of states can be increased by introducing variables that may

be tested and updated by the finite state machine
• global state = explicit state (STD nodes) + extended state (variables)
• local variables or external variables

• local variable is declared together with the specification of the STD + scope
rules for these variables (usually the entire state machine specification)

• external variable is declared outside the specification of the STD but can
be accessed by means of special operations that act as an interface
between the specification and the variables

• in dataflow models, data stores are external variables with respect to the
control processes in the DFD

• global state change requires communication between the state machine
and the external data stores

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Extended FSM
• state transition may change the values of variables
• a guard may be specified for each transition that says when

the transition can occur.
• weak interpretation,

• the transition cannot occur if the guard is false
• guard is in this case a necessary condition of the transition

• strong interpretation,
• the transition can occur if and only if the guard is true
• guard is a necessary and sufficient condition of the transition

• usually initially specify guards with the weak semantics
• when all conditions for a transition are specified, interpret the

conjunction of all weak guards as a strong guard
• a guard could be the conjunction of all preconditions specified for a

transition
• include tests in a state machine that are used to determine

the next state
• such tests can be used to resolve non-determinism
• a test determines which of a set of possible transitions will
occur, thus a test consists of a guard for each of the possible
transitions.
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Mealy & Moore Machines

•Mealy machine
•output actions are associated with transitions

•Moore Machines
•outputs are associated with states
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p1 t1 p2

Petri Nets

•Petri nets are “marked” graphs
•two node types: places & transitions
•tokens mark the nodes
•transitions are enabled (“fire”) if all connected
places contain tokens

•Options: simultaneous or asynchronous
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Petri Nets: Informal Definition

• Designed specifically for modeling systems with
interacting concurrent components.

• Consists of a set of places and a set of transitions
• Edges  connect places  and transitions.
• Only transition → place and place → transition links are
allowed.

• Each place can have a finite number of tokens.

• A transition is enabled  if each of its input places has at
least one token.
• An enabled transition can fire: one token is taken from
each input  place and one token is put into each output
place.
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enabled

enabled

Petri Net example
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Petri Net example
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Petri Nets: Formal Definition
• A Petri Net is a four-tuple, C=(P,T,I,O)
• P = {p1, p2, ..., pn}, n ≥ 0 is a finite set of

places.
• T = {t1, t2, ..., tm}, m ≥ 0 is a finite set of

transitions.
•  I: T → P is the input  function.
• O: T → P is the output  function.

• pi is an input place of a transition tj  if pi ∈ I(tj)
• pi is an output place of a transition tj if pi ∈

O(tj)
• Petri Net markings

• A marking m  is a mapping P → N where N  =
0, 1, 2, ....

• The marking m  can be represented as a n-
vector m  = (m1, m2, ...mn), n = |P |,  mi ∈ N,
1 ≤ i ≤ n

• A marked Petri net M = (C, m ) is a Petri net
C  and a marking m .

p1

t 1

p4

p2

t 3

t 2

marking (0,0,2,1)

p3
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Petri Net for Heating Controller

start_heating

desired_temperature_reached

desired_temperature_not_reached

end_time_reached
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More on Petri nets

• if there exists a marking which is reachable from the initial
marking where no transitions are enabled, such a transition is
called a "deadlock"

• a PN with no possible deadlock is said to be live, called the
"liveness property”

• in simplest PN, tokens are uninterpreted
• in general, a selection policy can not be specified
• have no "policy" for resolving conflicts, potential "starvation”

• many extensions:
• Hierarchical Petri Nets
• Colored tokens
• “Or" transitions
• Queues at places
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Petri Nets vs. FSA

• For any finite state machine, a Petri net can be built that models the
finite state machine

• Petri nets are as powerful as finite state machines
• Petri nets advantages:

• net composition (in different forms) can be found easier than
the cross-product of finite state machines

• parallelism and nondeterminism are represented in a more
understandable way

• FSA advantage:
• simpler graph structure for some applications (e.g. parsers)
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Trace specifications

 NAME
 label

 SYNTAX
 name: __type ... __type ⇒ return_value_type

 SEMANTICS
assertions of the form:
 L(T)  -- asserts that T is a legal trace
 V(T) = value -- is the value returned if T

       ends in a function call

• operator precedence
≡  <  “  =  ≥  >
 ¬
&  ∼  |
⇒  ⇔
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Trace specifications
T1 ≡ T2 ⇒

(∀T) ((L(T1⋅T) ⇒ L(T2⋅T)) &

        (T is not empty ⇒ (

        (T1⋅T has a value ⇔ T2⋅T has a value) &

       (T1⋅T has a value ⇒V(T1⋅T)= V(T2⋅T))))

note (∀S,T) (L(S⋅T)  ⇒  L(S))
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Example
NAME

stack

SYNTAX
push:        integer;
pop:                     ;
top:             ⇒   integer;

SEMANTICS

/*1*/ (∀T,i) (L(T)   ⇒ L(T⋅push(i))

/*2*/ (∀T)   (L(T⋅top) ⇔ L(T⋅pop)

/*3*/ (∀T,i) (T ≡T⋅push(i)⋅pop)

/*4*/ (∀T)   (L(T⋅top)   ⇒ T ≡ T⋅top)

/*5*/ ( ∀T,i) (L(T)  ⇒V(T⋅push(i)⋅top)=i)
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Interpretation
/*1*/ (∀T,i) (L(T)   ⇒ L(T⋅push(i))

/*1*/ unbounded stack
/*2*/ (∀T)   (L(T⋅top) ⇔ L(T⋅pop)

/*2*/ top cause no error iff pop causes no
error

/*3*/ (∀T,i) (T ≡T⋅push(i)⋅pop)

/*3*/ push followed by pop does not affect
the future behavior

/*4*/ (∀T)   (L(T⋅top)   ⇒ T ≡ T⋅top)

/*4*/ top does not affect the behavior
/*5*/ (∀T,i) (L(T)  ⇒V(T⋅push(i)⋅top)=i)

/*5*/  how to compute the value of top
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Example - using /*3*/ and /*5*/

note: push(i)⋅push(j)⋅push(k)⋅pop⋅pop⋅top ⇒ top= i 

By /*3*/ (∀T,i) (T ≡T⋅push(i)⋅pop)

By /*5*/ (∀T,i) (L(T)  ⇒V(T⋅push(i)⋅top)=i)
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Heuristics

•define normal forms

•structure semantics

•use predicates

•develop specs incrementally

•use macros
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Comparison

• trace specifications
• based on call sequence

• no  “hidden functions”

• natural application to inter-
process communication

• universal & existential
quantifiers

• algebraic specifications
• based on “type of interest,”
therefore maybe in terms of
objects not visible to user

• requires “hidden functions”

• cannot handle concurrency

• no existential quantification
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Property-oriented techniques

•Abstract-data-type specification languages
•Axiomatic: Hoare, OBJ, Anna, Larch, and
algebraic, e.g., Clear, ActOne, Aspeque

•Concurrent and distributed systems
specification languages: temporal logic,
Lamport, LOTOS

•Semi-formal
•ER diagrams
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Logic Specifications

•Expressed using formulas under a first order
logic theory (usually with quantification), e.g.,
•∃ j [1 ≤ j ≤ s.top| t.data[j]=s.data[j]]

•Typically expressed as pre- and post-conditions,
e.g.,
•Let P be a sequential program

•with inputs (i0,i1, ... ,in) and outputs (o0,o1, ... ,om)

•Pre (i0,i1, ... ,in) P Post(o0,o1, ... ,om,i0,i1, ... ,in) is a
property
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“Hoare” example

type stack =

 record top: integer

    data:array [1 ... 100] of integer

 end

t:= push(s, i)
true{t:= push(s, i)} ∃ j [1≤ j≤s.top| t.data[j]=s.data[j]

                  ∧ t.data[t.top] = i

                                              ∧ t.top =s.top +1]
precondition

post condition
“program”
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“Hoare” example

Logic specification:
true {t:= push(s, i)} ∃ j [1 ≤ j ≤ s.top|
t.data[j]=s.data[j]

                    ∧ t.data[t.top] = I ∧ t.top =s.top +1]

Operational specification
{true}  push (S0, I) {∀ J, 1 < J ≤ S0.top

 S0.data [J] = S.data [J] ∧
      S.top =  S0.top + 1 ∧

           S.Data [S.top] = I }
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Algebraic Specification

Stack (S)  ∧  Integer (I) …

 (1)  Top (Push (S, I)) = I

 (2)  Top (Create) = Integer Error

 (3)  Pop (Push (S, I)) = S

 (4)  Pop (Create) = Stack Error
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Larch

• The Larch Family of Specification Languages
• John Guttag, James Horning, Jeannette Wing IEEE
Software, 1985

• Larch Shared Language
• Common language for formally representing models

• Larch Interface Language
• Interface between the shared language and the target
programming language

•  Larch/Pascal

•  Larch/CLU

• Specific implementation language
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PROGRAM UNIT
(MODULE, TYPE, FUNCTION,PROCEDURE)

INTERFACE
SPECIFICATION

ROOT
TRAIT

TRAITTRAIT TRAIT

TRAIT

.  .  .

.  .  . .  .  . .  .  .

Programming
Language

(Pascal, Clu, ...)

Larch
Interface Language

(Larch/Pascal, Larch/Clu, ... )

Larch
Shared Language

Larch
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Terminology

     SPECIFICATION          PROGRAMMING
             TERM    LANGUAGE TERM

Operator            Function

Sort Type

Term Expression

Trait  Module (ADT), Function,
                      Procedure type
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Goals of Larch

• Composability
• Common specifications from existing specifications

• Library or handbook

• Readability

• Localize programming language dependence
• General model is very complex so use different
language specific models

• Automated Support
• Construction tool

• Syntactic checking

• Semantic checking

• Support incompleteness
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Trait

Introduces
                                   signature of the operation
  (sort checking)

Constrains
 constrains the operations &
 relations among the operators

theory - set of theorems that can be proved about the
operator done by substitution, using rules of first order
predicate calculus with equality
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Examples

Container: trait

 introduces
 new: → C

 insert: C, E → E

 constrains C so that

 C generated by [ new, insert ]
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Examples

IsEmpty: trait
 assumes Container
 introduces
 isEmpty: C → Bool
 constrains isEmpty, new, insert
  so that for all [ c :C, e :E ]
 isEmpty(new) = true
 isEmpty(insert(c,e)) = false
 implies converts [ isEmpty ]
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Constructing traits

Container

isEmpty

Next

Cardinal

Size

Total
Order

Mulitset

Priority Queue
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Interface Languages

• “bridge” between shared language and implementation
language

• “Two-tiered” specification approach: principal innovation
of Larch w/r/t algebraic specification languages
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Interface Languages

• Larch/L incorporates “flavor” of L
•  semantics, keywords

•  makes it easier for those who know L to write  provable
specs

•  just need to adapt existing shared traits from Library (in
theory...)

• Larch/L languages designed to support data abstraction,
even if language L doesn’t directly support it (Pascal, C,
C++)
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Larch/Pascal specification
type Bag exports bagInit, bagAdd, bagRemove, bagChoose

based on sort Mset from MultiSet with [integer for E]
procedure bagInit(var b:Bag)

modifies at most [ b ]
ensures bpost = { }

procedure bagAdd(var b:Bag; e; integer)
requires numElements(insert(b,e )) ≤ 100
modifies at most [ b ]
ensures bpost = insert(b,e )

procedure bagRemove(var b:Bag; e; integer)
modifies at most [ b ]
ensures bpost = delete(b,e )

procedure bagChoose(var b:Bag; e; integer): boolean
modifies at most [ b ]
ensures if ~ isEmpty (b )

               then bagChoose & count (b, epost)>0
               else ~ bagChoose & modifies nothing
End Bag
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Pascal implementation of BagAdd
prodedure bagAdd(var B:Bag;e:integer);

var i, lastEmpty: 1...MaxBagSize
begin

i:= 1;
while ((i < MaxBagSize) and (b.elems[i]<>e)) do

begin
if b.counts[i] = 0 then LastEmpty:=i;
i:= i+1;

end;
if b.elems[i] = e

then b.counts[i]:= b.counts[i]+1;
else begin
if b.counts[i]=0 then LastEmpty:=i;
b.elems[LastEmpty]:=e;
b.counts[LastEmpty]:=1;

end;
end[bagAdd];
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Conclusions

• Interesting attempt to address:
• readability/writability of formal specs
• large, multi-lingual environment issues

• Relationship between shared and interface languages
complex and unclear

• Relationship between interface and implementation
languages not as strong as one would like

• “Software tool support needed” (syntax-directed editors,
browsers, theorem-provers, etc.)
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Current Status

• Strong theoretical foundation

• Some practical use, especially in Europe

• Current Languages trying to be more practical
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How to write it down?

• natural language

• structured natural language

• pictorial notation

• Charts, Diagrams, Box-and-Arrow Charts

• Graphs
• Flowgraphs

• Parse Trees

• Call graphs

• Dataflow graphs

• formal language(s)
• state-oriented

• function-oriented

• object-oriented
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How effective are these methods?

• Wing's study of the Library Problem
• a small library database
• transactions

checkout/return book
add/remove book
get a list of books

• author
• subject
• borrower

get date/borrower for book

• users
• staff
• borrowers

• restrictions
• availability
• no book available & checked out
• # books borrowed ≤max
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Analysis

• Specification approaches
• informal
• AI
• logic
• executable/non-executable

• Comparisons
• formality
• life-cycle phase
• operational vs. behavioral
• modularity
• readability
• completeness

• Not considered
• concurrency
• reliability
• fault-tolerance
• security

• initialization
• what's the initial state of the

library?

• missing operations
• need more transactions?

• error handling
• what to do with errors?
• checkout,  return, add, remove,

"type errors"

• missing constraints
• more than one copy in library,

checked out

• state
• what to record, change?

• “non-functional” specification
• human factors, liveness, time
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Conclusions
• methods do not differ radically
• style

• most use pre- and post-conditions for specifying behavior
• algebraic & set-theoretic most common for specifying data
(operational)

• model-oriented (operational) most common approach
• formal specs can

• identify diff in informal specs
• handle simple, small problems
• specify sequential functional behavior

• Challenges
• scaling
• non-functional behavior
• combining techniques
• tools
• integrating specification into the lifecycle


