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08  Use Cases & UML Overview

•OMG Tutorial Series
[cK00] Kobryn Cris, “Lecture 1: Introduction to UML: Structural and

Use Case Modeling Object Modeling with OMG,” UML Tutorial Series
 http://www-edlab.cs.umass.edu/cs520/OMG-Tutorials/Tut1IntroToUML.ppt

[OSBB00] Övergaard, Gunnar, Bran Selic, Conrad Bock and Morgan
Björkander, “Lecture 2: Behavioral Modeling with UML,” Object
Modeling with OMG UML Tutorial Series

http://www-edlab.cs.umass.edu/cs520/OMG-Tutorials/Tut2BehaviorModeling.ppt

[PSWD00] Palmkvist, Karin, Bran Selic, Jos Warmer and Nathan
Dykman, “Lecture 3: Advanced Modeling with UML,” Object Modeling
with OMG UML Tutorial Series

http://www-edlab.cs.umass.edu/cs520/OMG-Tutorials/Tut3AdvModeling.ppt

Note: This version of the tutorial series is based on OMG UML Specification v. 1.4,
UML Revision Task Force recommended final draft, OMG doc# ad/01-02-13.

• Other
[BJR98] The Unified Modeling Language User Guide by Grady

Booch, Ivar Jacobson, James Rumbaugh Addison-Wesley Pub Co;
1st edition (1998)

[dB03] Bell, Donald, “UML basics: An introduction to the Unified
Modeling Language,” The Rational Edge, June 2003

http://www-106.ibm.com/developerworks/rational/library/769.html
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Classes

• A class is a collection of objects with common structure,
common behavior, common relationships and common
semantics

•Classes may be found by examining:
•written requirements

• objects in sequence and collaboration diagrams

• A class is drawn as a rectangle with three compartments
• name

• attributes

• operations

•Classes should be named using the vocabulary of the domain
•Naming standards should be created

• e.g., all classes are singular nouns starting with a capital letter
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Class Modeling

• Captures system state – the function of the system's
information content at a point in time

• Class modeling and use case modeling are typically
conducted in parallel

• A class diagram shows the existence of classes and
their relationships in the logical view of a system; in
UML class diagrams elements include
• Classes and their structure and behavior

• Association, aggregation, generalization, dependency,
and inheritance relationships

• Multiplicity and navigation indicators

• Role names
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•Design a program for a booking office of an arts center.
There are several theatres, people may reserve seats at
any theatre for any future event, and people may
subscribe to a series of events. People need to be able
to discuss seat availability, where seats are located, and
how much they cost. When people make a choice, the
program should print the price, record the selection, and
print out a ticket

Find Classes from requirements

Fuzzy

Customer 

Reservation 

Subscription
Series 

Ticket 
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Attributes

•The structure of a class is represented by its attributes

•Attributes may be found by examining class definitions,
the problem requirements, and by applying domain
knowledge

•More requirements
•Each customer offering has a name and phone number

•Each show has a name

•Each performance has a date and time

•Ticket has availability

Customer 
name: String
phone: String

Show 

name: String

Performance 

date: Date
time: TimeOfDay

Ticket 

available: Boolean
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Operations

•The behavior of a class is represented by its operations

•Operations may be found by examining interaction
diagrams
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Relationships

•Relationships provide a pathway for communication
between objects

•Sequence and/or collaboration diagrams are examined
to determine what links between objects need to exist to
accomplish the behavior -- if two objects need to “talk”
there must be a link between them

•Three types of relationships are:
•Association

•Aggregation

•Dependency
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Relationships

•An association is a bi-directional connection between
classes
•An association is shown as a line connecting the related
classes

•An aggregation is a stronger form of relationship where
the relationship is between a whole and its parts
•An aggregation is shown as a line connecting the related
classes with a diamond next to the class representing the
whole

Customer 
name: String
phone: String

add (name, phone)

Reservation 

date: Date
1 *

CourseOffering

location
open()
addStudent(StudentInfo

Course

name
numberCredits
open()
addStudent(StudentInfo
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Finding Relationships

•Relationships are discovered by examining interaction
diagrams
• If two objects must “talk” there must be a pathway for
communication

Customer 

Reservation 

Performance 
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Multiplicity and Navigation

•Multiplicity defines how many objects participate in a
relationships
•Multiplicity is the number of instances of one class
related to ONE instance of the other class

•For each association and aggregation, there are two
multiplicity decisions to make:  one for each end of the
relationship

•Although associations and aggregations are bi-
directional by default, it is often desirable to restrict
navigation to one direction

• If navigation is restricted, an arrowhead is added to
indicate the direction of the navigation
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Inheritance

• Inheritance is a relationships between a superclass and
its subclasses

•There are two ways to find inheritance:
•Generalization

•Specialization

•Common attributes, operations, and/or relationships are
shown at the highest applicable level in the hierarchy
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Class Diagram
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exchange ( )
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Subscription
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Individual
Reservation 
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time: TimeOfDay

seat: String
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Class & associations -- notation

©The Unified Modeling Language User Guide by Grady Booch, Ivar Jacobson, James Rumbaugh Addison-Wesley Pub Co; 1st edition (1998)
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State Machine View
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State Machine Notation
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Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UML 2 Activity Diagrams

•object-oriented equivalent of flow charts and data flow
diagrams (DFDs) from structured development

• typically used for
•business process modeling

•modeling the logic captured by a single use case or
usage scenario

•modeling the detailed logic of a business rule

• could potentially model
• the internal logic of a complex operation

• far better to simply rewrite the operation so that it is
simple enough that you don’t require an activity diagram
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Activity Diagram

©The Unified Modeling Language User Guide by Grady Booch, Ivar Jacobson, James
Rumbaugh Addison-Wesley Pub Co; 1st edition (1998)
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Internal Structure Diagram

Interface = port

BoxOffice

sellTickets

seller: TicketSeller

guide:PerformanceGuide

Db:PerformanceDB[*]

1

*

structural design internal structure

©The Unified Modeling Language User Guide by Grady Booch, Ivar Jacobson, James Rumbaugh Addison-Wesley Pub Co; 1st edition (1998)
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Collaboration Diagram

kiosk: Kiosk[*]
1* : BoxOffice terminal: SalesTerminal[*]

1 *

TheatreSales

dynamic interaction collaboration 
©The Unified Modeling Language User Guide by Grady Booch, Ivar Jacobson, James Rumbaugh Addison-Wesley Pub Co; 1st edition (1998)
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Component Definition & Diagram

©The Unified Modeling Language User Guide by Grady Booch, Ivar Jacobson, James Rumbaugh Addison-Wesley Pub Co; 1st edition (1998)
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Deployment views

descriptor                                               instance
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UML -> Notation

•We’ll come back to UML in the RUP (design methods)

•Reading
• [jmW90] Wing, J. M.,  “A Specifier's Introduction to Formal
Methods,” IEEE Computer , September 1990,  pp.8--24.  

• [avL00] van Lamsweerde, Axel, “Formal Specification: a
Roadmap,” Future of Sofware Engineering Limerick
Ireland 2000

• [LZ75] Liskov, B.H. and Zilles, S.N., “Specification
Techniques for Data Abstractions,”  IEEE Transactions on
Software Engineering , March 1975,  pp.7--19.  

• [GHW85] Guttag, J.V., Horning, J.J. and Wing, J.M.,  “The
Larch family of Specification Languages,” IEEE Software ,
September 1985,  pp.24--36.
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Overview of Formal Methods

•Formal methods
•mathematically-based languages, techniques and tools
for specifying and verifying software and systems
•specification ⇔ verification

•basic strategy

observed

Behavior

inferred

Comparison

model/
product

Intent
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Basic Verification Strategy

•analyze a system for desired properties, i.e., compare
behavior to intent
• intent
• can be expressed as properties of a model (model-based
specification)

• can be expressed as formulas in mathematical logic
(property-based specification)

•behavior
• can be observed as software executes

• can be inferred from a model

• can be expressed as formulas in mathematical logic

•different representations support different sorts of
inferences
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finite-state verification

•model checking
•logic spec + FSA comp model ⇒ symbolic
model checking
•FSA spec + FSA comp model ⇒ automata-
theoretic model checking

•property checking
•advantages/disadvantages
•reason about a finite model of the system
•fast, yields counterexamples, manages partial
specifications, applies to concurrency
•state explosion!

observed

Behavior

inferred

Comparison

model/
product

Intent
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(automated) mathematical reasoning

•theorem proving

•proof checking

•advantages/disadvantages
•difficult, error prone

•decidability vs. expressiveness
•propositional calculus is decidable

•predicate calculus is semi-decidable
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Specifications

•define intent and provide a basis for formal reasoning
•should be based on a sound mathematical theory

• criteria to evaluate specification methods (languages)
•mathematical foundation

•constructability (ease of use)

•comprehensibility

•minimality

•general applicability

•extensibility
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What is a specification language?

•A formal specification language is a triple
<Syn, Sem, Sat >, where Syn  and Sem  are sets

Syn X Sem ⊃ Sat  is a relation.

•Given a specification language, <Syn, Sem, Sat>
• if Sat (syn, sem)  then syn  is a specification of sem
and sem  is a specificand of syn
• the specificand set of a specification syn ∈ Syn  is the
set of all specificands sem ∈ Sem, such that

                  Sat (syn,sem)

from Wing
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Properties

• a specification syn  ∈ Syn is unambiguous if and only if Sat
maps syn to exactly one specificand set.
• a specification syn  ∈ Syn is consistent (or satisifable) if

and only if Sat  maps syn to a non-empty specificand set.
•Given <Syn, Sem, Sat >, an implementation prog ∈ Sem is

correct with respect to a given specification spec ∈ Syn if
and only if Sat (spec, prog)

• informally, a specifier who “overspecifies” is guilty of
“implementation bias”

• a specification has implementation bias if it specifies
unobservable properties of its specificands,

• e.g., a set specification that keeps track of the insertion order
favors an ordered-list implementation over a hash table
implementation
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Classification

•Model-oriented (operational) specification
•behavior described in terms of another data
abstraction or mathematical model with known
properties,  e.g., tuples, relations, functions, sets,
and sequences

•Property-oriented (descriptive) specification
•behavior is described in terms of properties,
usually stated as axioms, that the system must
specify

•or the objects and operations to define themselves
implicity

•Formal vs “semi-formal” vs informal



CMPSCI520/620 - UML Overview & Notation (FM)

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Alternative classification

•Axiomatic specification

•Abstract models

•Set Theory

•Predicate Logic

•Programming Languages
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Model-oriented examples

•Formal:

•Abstract-data-type specification languages: Parnas’
state machines, VDM, Z

•Concurrent and distributed systems specification
languages: Trace Specifications, Petri nets, CCS, CSP

•Semi-Formal

•Diagrams

•Behavior: FSA, Petri-Nets, StateCharts

•Communications: DFD, activity diagrams, sequence
diagrams

• Functions: Use-Case diagrams
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Semi-Formal Technques

•Communication: DFD
• lack precise semantics

•abstract “machine” for interpreting the operational
semantics of a DFD specification is not fully defined

•can’t simulate behavior

•Behavior: FSA
• limited memory

•combinatorial explosion
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abstract data type example

 

 type stack is 
 create: ⇒ stack

 pop: stack ⇒ stack

 push: stack X integer ⇒ stack

 top: stack ⇒ integer

Note: Because some of the specification methods are
easier to apply to functions, all operations are
functions
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Input/Output Specification
• type definition:

 type S  is record

 top: integer

 data: array [1 ... ] of integers

 end record

•operational specification:
 {true}  push (S0, I) ⇒ S

 {∀ J, 1 < J ≤ S0.top

 S0.data [J] = S.data [J] ∧

 S.top =  S0.top + 1 ∧

  S.Data [S.top] = I }
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 Ordered Sets

•ordered set definition:

 X = {x0,x1, ... ,xn}

 |X| = n +1

 extract(X) = {x0,x1, ... ,xn-1}

•operational definitions:

 create = { 0 }

 push (S0, I) = S Λ

 S0 = extract(S) ∧ 

     |S| = |S0| + 1 ∧

 x|S| = I
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Z (“zed”)

•proposed by Abrail, 1980

•developed by Hayes and Spivey

•based on typed set theory and first order logic

•provides a schema to describe a specifications state
and operations

•describe systems as collections of SCHEMAS
• inputs and outputs to functions

• Invariants:  statements whose truth is preserved by the
functions

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Z

•a schema groups variable declarations with a list of
predicates that constrain the possible values for a
variable

schema name

schema signature

schema predicate
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BirthdayBook
known :  P NAME
birthday:  NAME    DATE

known  =  dom birthday

set

function
invariant

The “Birthday Book” Example

•Maintain a repository of information about birthdays
•Consists of (name, birthday) pairs
•Want to add pairs for people whose birthdays are to be
remembered
•Want to know whose birthday falls on a given date
•Don’t care about how this is implemented

•Schema describes the state space of the system:  the
space of all states that the system can be in

elements

Possible state of system

known = {John, Mike, Susan}
birthday = {John   25-Mar,
                  Mike   20-Dec,
                  Susan   20-Dec}
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Another Schema

AddBirthday
ΔBirthdayBook
name?:  NAME
date?:  DATE

name? ∉known
birthday’ = birthday ∪ {name?  date?}

state change

next

invariants

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Another Schema

FindBirthday
ΞBirthdayBook
name?:  NAME
date!:  DATE

name? ∈known
date! = birthday (name?)

no state change

apply  fn

invariants
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Z Summary

•Schemas can be grouped and composed

•More notation:  aimed at facilitating terse, precise
communication

•Emphasis on what a system is supposed to do

• Indication of how it looks externally

• (Like Abstract Data Type specifications) basis for going
on to think about HOW to implement
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 State machine model

•2 types of operations
•  V-Operations (value returning)
•  Do not cause a change in state

•  O-Operations
•  Cause a change in state

 

•  specs must show the effect of each operation on the V-
operations
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Example

• V-operation: TOP

 possible values: integers; initially undefined

 parameters: none

 effect:

 error call if  ‘DEPTH’ = 0
•O-operation: PUSH(a)

 possible values: none

 parameters: integer a

 effect:

 error call if ‘DEPTH’ = MAX

 else (TOP =a; ‘DEPTH’ = ‘DEPTH’+1)
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Hidden Operations

•must deal with side effects and delayed effects, such as
the effect of PUSH on TOP

•V-operation: DEPTH

possible values: integer; initial value 0
parameters: none
effect: none

•Parnas had informal language, later hidden operations
were used to support the provided O & V operations. In
both cases, need to show that 0≤ Depth (S) ≤ MAX
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Concurrent & distributed systems

•FSA

•Petri nets

•Trace specifications
•a trace is a sequence of procedure or function calls and
return values from those calls
• proposed by David Parnas, 1977

• formalized by McLean, 1984

• further developed by Dan Hoffman, Rick Snodgrass, etc
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Finite State Machines (FSM's)

•FSM's describe behavior of a system:
•The sequence of stages/steps/conditions that the
system goes through

•FSM shows how a system acts/reacts to inputs

•Does this by showing progress through different states

•Hypothesis:
•The universe in which the system being described must
operate can be accurately modeled as always being in
exactly one of a finite number of states (situations)

•There are only a finite number of possible system inputs
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Finite State Machines (FSM)

• finite set of states S ={s1, ... , sn}

• finite set of inputs I = {i1, ..., in}
• transition function δ: SxI ⇒ S

•can be a partial function

• represent as a graph
•nodes ⇒ states

•edges ⇒ inputs

•graph ⇒ transition function
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Why Use FSM's?

•Primary appeal is visualization

• Intuitively:  Can "watch" a stream of inputs "drive" the
behavior of the system as a sequence of movements
from state to state

•Kinds of questions FSM’s seem adept at helping
answer:
• “What is a good way to think about the problem  to be
solved?”

• “What is the solution approach?”

• “How does this program work?”
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Enhancements to FSM's

•Use of hierarchy

•Output annotations on edges

•Distinguished Initial and Terminal states

•Separate data definitions, local and global variables
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What is FSM good/not good for?

•Focus on specific issue:  safety concern
•Model unsafe state

•Model state transitions

•Can unsafe state be reached?

•Drawbacks
•No sense of functionality

•No sense of how functionality achieved

•Difficult and generally impossible to reason about timing
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state = books on shelf

new state = libe - book

2n transitions could be >> 106 states

FSM are limited

•Library example
•getbook: index X library ⇒ book

•1,000,000+ books in a good library
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Some FSM-based notations
•  Process Graphs
• nondeterministic
•may have infinitely many nodes
• from any node, infinitely many edges

may depart
• used as interpretation structures for

formal specifications in process algebra
and dynamic logic

•  JSD Process Structure Diagrams.
• used in Jackson Structured Programming

(JSP)
• represent the structure of files and of

regular programs
• used in JSD
• represent the behavior of a system in a

modular way
• a visual way to represent a regular

expression by means of a tree diagram
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FSM

• Finite State Diagrams
• contain only finitely many states and transitions

• Extended Finite State Diagrams.
• number of states can be increased by introducing variables that may

be tested and updated by the finite state machine
• global state = explicit state (STD nodes) + extended state (variables)
• local variables or external variables
• local variable is declared together with the specification of the STD + scope

rules for these variables (usually the entire state machine specification)
• external variable is declared outside the specification of the STD but can

be accessed by means of special operations that act as an interface
between the specification and the variables
• in dataflow models, data stores are external variables with respect to the

control processes in the DFD
• global state change requires communication between the state machine

and the external data stores
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Extended FSM
• state transition may change the values of variables
• a guard may be specified for each transition that says when

the transition can occur.
•weak interpretation,
• the transition cannot occur if the guard is false
• guard is in this case a necessary condition of the transition

• strong interpretation,
• the transition can occur if and only if the guard is true
• guard is a necessary and sufficient condition of the transition

• usually initially specify guards with the weak semantics
• when all conditions for a transition are specified, interpret the

conjunction of all weak guards as a strong guard
• a guard could be the conjunction of all preconditions specified for a

transition
• include tests in a state machine that are used to determine

the next state
• such tests can be used to resolve nondeterminism
• a test determines which of a set of possible transitions will
occur, thus a test consists of a guard for each of the possible
transitions.
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Mealy & Moore Machines

•Mealy machine
•output actions are associated with transitions

•Moore Machines
•outputs are associated with states
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Mealy FSM for the juice plant
controller

decision
state

initial
state

In YSM
•Create and set named
clocks
•Each state has a clock that
counts the time that has
elapsed since the machine
last entered that state

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Moore FSM for the juice plant
controller

decision
state

initial
state
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Statecharts
• higraph without intersection but with Cartesian products

• node inclusion allows us to partition a state into substates
• Cartesian products allow us to specify parallelism
• actions can be specified
• along transitions (Mealy)
• upon entry of states (Moore), and
• exit of states

• local variables represent the extended state.
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Statecharts

In Statemate, a statechart corresponds to a
control activity in an activity chart, just as in
YSM a Mealy machine corresponds to a
control process in a DFD.

done 
externally 
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Statechart with parallelism


