CMPSCI520/620 - UML Overview & Notation (FM)

The Sidney Topol

Distinguished
Lecturer Series Presents.

"Convergence and Control
in an Internet World"

Co-Recipient of the U.S. National Medal of
Technology presented by President Clinton

e e e M, G 4 e o
b B S A

T

ECSCII, Room 119

Wednesday
October 6th, 2004

4:00 pm

COMPUTER
»SCIENCE

0-0O System Development

problem
statement

Requirements
elicitation
- ==
nonfunctional functional use case
requirements model diagram
=~ -
Requirements
analysis
v T --o statechart
=) "
" diagram
| dynamic
sequence
diagram

class analysis
diagram object model model
T —=

System design
~~~~~ -

08 Use Cases & UML Overview

COMPUTER
»SCIENCE

¢ OMG Tutorial Series
[cK00] Kobryn Cris, “Lecture 1: Introduction to UML: Structural and
Use Case Modeling Object Modeling with OMG,” UML Tutorial Series
[O0SBB00] Overgaard, Gunnar, Bran Selic, Conrad Bock and Morgan
Bjorkander, “Lecture 2: Behavioral Modeling with UML,” Object
Modeling with OMG UML Tutorial Series

[PSWDO00] Palmkvist, Karin, Bran Selic, Jos Warmer and Nathan
Dykman, “Lecture 3: Advanced Modeling with UML,” Object Modeling

with OMG UML Tutorial Series
Note: This version of the tutorial series is based on OMG UML Specification v. 1.4,

UML Revision Task Force recommended final draft, OMG doc# ad/01-02-13.

« Other
[BJR98] The Unified Modeling Language User Guide by Grady
Booch, Ivar Jacobson, James Rumbaugh Addison-Wesley Pub Co;

1st edition (1998)
[dB03] Bell, Donald, “UML basics: An introduction to the Unified
Modeling Language,” The Rational Edge, June 2003

="
. system design subsystem
| design goals object model decomposition
adapted from Bruegge/Dutoit O-O SW Engr

UNIVERSITY: OF MASSACHUSETTS AMHERST: -+ DERARTNE!

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS:- AMHERST. - DERARTMEN:

CONPUTER Use Case Diagram
.'Uctural |_'e case |_'e case |

Box Office

'
1
1
'
i
'

'

©) ;

<<include>> =
! <<include>>

make
charges

Ivar Jacobson, James Rurmbaugh Addison-Wosley Pub Co 1st editon (1998)

b
ubscl%tio

UNIVERSITY-OF MASSACHUSETTS AMHERST: -+ DEPARTNMER

Credit card service




CMPSCI520/620 - UML

Overview & Notation (FM)

COMPUTER

seinee O-O System Development

problem
statement

Requirements
elicitation

&~ =5

nonfunctional
requirements

functional use case
model diagram

= =

~o -

Requirements
analysis

Il R statechart
A 4 =—=_) :
" diagram
dynamic

model

class analysis
diagram object model
T

= sequence
| - - diagram

System design

system design

| design goals

object model

subsystem
decomposition

adapted from Bruegge/Dutoit O-O SW Engr

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP.A:

COMPUTER Class Modeling

« Captures system state — the function of the system's
information content at a point in time

« Class modeling and use case modeling are typically
conducted in parallel

¢ A class diagram shows the existence of classes and
their relationships in the logical view of a system; in
UML class diagrams elements include
¢ Classes and their structure and behavior

¢ Association, aggregation, generalization, dependency,
and inheritance relationships

¢ Multiplicity and navigation indicators
* Role names

UNIVERSITY-OF MASSACHUSETTS AMHERST: DEP&

©Rick Adrion 2004 (except where noted)

CONPUTER Classes

¢ A class is a collection of objects with common structure,
common behavior, common relationships and common
semantics

¢ Classes may be found by examining:
« written requirements
«objects in sequence and collaboration diagrams
¢ A class is drawn as a rectangle with three compartments
*name
« attributes
s operations
¢ Classes should be named using the vocabulary of the domain
*Naming standards should be created
*e.g., all classes are singular nouns starting with a capital letter

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ DEP;:Q:

COMPUTER Find Classes from requirements

* Design a program for a booking office of an arts center.
There are several theatres, people may reserve seats jat
any theatre for any future event, and people may
subscribe to a series|of events/ People need to be able
to discussl|seat availability, where seats are Igcated, and
how much they cost. When people make a Choice, the
program should print the pfice, record the selection, and
print out a tick

Customer

Subscription
Series

Reservation

Ticket

UNIVERSITY OF MASSACHUSETTS AMHERST: DEP;_%




CMPSCI520/620 - UML Overview & Notation (FM)

CONPUTER Attributes

* The structure of a class is represented by its attributes

« Attributes may be found by examining class definitions,

the problem requirements, and by applying domain
knowledge

¢ More requirements
eEach customer offering has a name and phone number
*Each show has a name

eEach performance has a date and time
« Ticket has availability

Customer Show Performance Ticket
name: String o date: Date available: Boolean
phone: String name: String time: TimeOfDay

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEF‘>

COMPUTER Relationships

« Relationships provide a pathway for communication
between objects

* Sequence and/or collaboration diagrams are examined
to determine what links between objects need to exist to
accomplish the behavior -- if two objects need to “talk”
there must be a link between them

* Three types of relationships are:
¢ Association
* Aggregation
*Dependency

Copyright ® 1997 by Rational Software Corporation
UNIVERSITY-OF MASSACHUSETTS AMHERST-+ DECART

©Rick Adrion 2004 (except where noted)

COMPUTER Operations

* The behavior of a class is represented by its operations

* Operations may be found by examining interaction
diagrams

UNIVERSITY-OF MASSACHUSETTS AMHERST - DER/

COMPUTER Relationships

¢ An association is a bi-directional connection between
classes

*An association is shown as a line connecting the related
classes Customer

name: String 1 . -
phone: String date: Date

add (name, phone

Reservation

* An aggregation is a stronger form of relationship where
the relationship is between a whole and its parts

¢ An aggregation is shown as a line connecting the related
classes with a diamond next to the class representing the

whole
CourseOffering Course
location H name
open() g;g}?gr%
dentinfo. L addStudent(Studentinfo |

UNIVERSITY OF MASSACHUSETTS AMHERST: DEI{: o




CMPSCI520/620 - UML Overview & Notation (FM)

COMPYTE Finding Relationships

¢ Relationships are discovered by examining interaction
diagrams
«If two objects must “talk” there must be a pathway for
communication

Customer

create ()

N\

Reservation

create ()

request ticket(day, count) } |
: H } get performance (day, tim?)

Performance

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEF‘>

COMPUTER Multiplicity and Navigation

« Multiplicity defines how many objects participate in a
relationships
«Multiplicity is the number of instances of one class
related to ONE instance of the other class
*For each association and aggregation, there are two
multiplicity decisions to make: one for each end of the
relationship
« Although associations and aggregations are bi-
directional by default, it is often desirable to restrict
navigation to one direction
« If navigation is restricted, an arrowhead is added to
indicate the direction of the navigation

Copyright © 1997 by Rational Software Corporation

CONPUTER Inheritance

e Inheritance is a relationships between a superclass and
its subclasses
* There are two ways to find inheritance:
¢ Generalization
e Specialization
« Common attributes, operations, and/or relationships are
shown at the highest applicable level in the hierarchy

Copyright © 1997 by Rational Software Corporation

UNIVERSITY-OF MASSACHUSETTS AMHERST: -+ DER G

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS: AMHERST. D&

COMPUTER . |structural I—-H static H class
seience Class Diagram
Customer associations
: Stri ) class
phone: Strng <] attributes dependency
| add (name, phone) j«—— static operations generalization
1 | owner 3
A purchased> rolenames interface
Reservation realization
date: Date Show

generalization name: String
1 show

Subscription Individual
Reservation o

Series
mt
series: Integer
constraint 0.1
- or

0.1 f=====-- Xor =======~ 1.+ | performances
N 1
3.6 Ticket Performance
| pr——
: Boolean o1 p seat: String | gate: Date
sell (c: Customer) - qualifiers time: TimeOfDay

exchange ()

UNIVERSITY OF MASSACRUSETTS AMHERST - DER!



CMPSCI520/620 - UML Overview & Notation (FM)

COMPUTER Class & associations -- notation

@]

«stereotypeName>

|+ attrName: Cname = expression
—f £ atuName: Chame
— - attrName: Cname [

+opName (p<C1,q:C2):C3 i peration with retum type:
“constructor n subsecent operations

opName (vCname=value) ost aton with defoult vaue

: sereotye application
“stereotypeName: xdering  multiplicity  rolename
taghame=value | taccectvalue fass | \

4 AN
{ordered) * oname 0.1 name
[ apamecrare]

<Aname I

!
| aggregation  qualifier
compasition |

decicn asociaion

I e e M o

association class
ACname __ (all oncclement)

©Tho Unified Modeling Language User Guide by Grady Booch, Ivar Jacobson, James Rumbal

UNIVERSITY. OF - MASSACHUSETTS/AMHERST:

CONPUTER State Machine View

L subscribe/assign()
initial state

timed out/unlock()

state
select/lock()

S— G

reject/unlock()

accept/buy()

Available

transition
exchange(other)/assign();reset(other)

!

event parameter effect

trigger event

UNIVERSITY-OF MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

COMPUTER

seince O-O System Development

problem
statement

System design

Requirel
elicitat
& - T-~ =h
nonfunctional functional use case
requirements model diagram
<. -
Requirements
analysis
v - R statechart
- - diagram
class analysis dynamic
diagram object model model
T - sequence
| - - diagram

system design

| design goals object model

decomposition

subsystem

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+

adapted from Bruegge/Dutoit O-O SW Engr

CONPUTER State Machine No

tation

el (p:C) [cond] / action; action2
slate StateA
transitior

StateC rthogonal state

N e

entry activi
exit activit,
temal transition

entry / action3
exit/ action4

el /action5
do / activityl

completion transition
fires on completion of activity

initial state substate fina

explicit transition

UNIVERSITY OF MASSACHUSETTS AMHERST:

(aborts nested activity)

e3

ronorthogonal state




CMPSCI520/620 - UML Overview & Notation (FM)

CONPUTER UML 2 Activity Diagrams CONPUTER Activity Diagram

« object-oriented equivalent of flow charts and data flow
diagrams (DFDs) from structured development

|

« typically used for lﬂ dynamic activity l—t.l activity |

ebusiness process modeling interaction ‘

emodeling the logic captured by a single use case or

usage scenario

emodeling the detailed logic of a business rule
 could potentially model

«the internal logic of a complex operation

«far better to simply rewrite the operation so that it is
simple enough that you don’t require an activity diagram

state machine H state machine

sequence

collaboration

‘completion
raraition

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERART

Guido by Gr var Jacobson, J
Rumbaugh Addison-Wesley Pub Cos 1steciton (1996)

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEPARE[

CONNTEE 0-0 System Development COMPUTER

seine Internal Structure Diagram
analy:
' N
[y e

BoxOffice
statechart
.
| dynamic

model sellTickets i
o= sequence O Lt seller: TicketSeller
[ diagram l

T Y e . Z L
desi ! system design subsystem Interface = port guide:PerformanceGuide
esign goals object model decomposition .
Design Views .
Object design > 9 .
v Db:PerformanceDB[*]
class object design
diagram model
. >
Implementation ]
structural design rnal structure
v adapted from Bruegge/Dutoit O-O SW Engr oo Unied Modaiing L f—
UNIVERSITY-OF MASSACHUSETTS AMHERST-+ DECART

UNIVERSITY OF MASSACHUSETTS AMHERST: DEPAH;

©Rick Adrion 2004 (except where noted)



CMPSCI520/620 - UML Overview & Notation (FM)

CONPUTER Collaboration Diagram

f\ kiosk: Kiosk[*] |—1| : BoxOffice |1—’|terminalz SalesTerminal[*] :i

[ dynamic |- interaction |—collaboration

@The Unif

UNIVERSITY. OF - MASSACHUSETTS/AMHERST: p

CONPUIER Deployment views

actor
CreditCardAgency Manager
A
~ N
~

N

descriptor instance

UNIVERSITY-OF MASSACHUSETTS AMHERST: t

©Rick Adrion 2004 (except where noted)

~
node ~
e (o]
CreditCardCharges. i
P T e
artact: it
TicketSellerjar [ — = TicketDB
TicketServer
T \ 1
depencency | \
\ \
Kiosk | i B
it G
Customerlnterface.c Ie
L \
L N R o '
N ,
,
Kiosknterface) | N\ . Clerkinterface™]
Customer Clerk I

CONPUTE Component Definition & Diagram

regred nterfoce provided nterface  applycharges £1 credicardagend!
applyCharges manage - 3 3 I
0O port
provided nterface on port
port component definition 'e) O () clerkaccess

CreditCardagency

dlelegation connectar

:cmdncardchargg;I component e L]
Tickets
Er=r
se
O O

component definition

status
provided interface purchas

Tecpired interface L
_ + compativle interfaces ',

charge B
recuired tertace

2]
Ticketseller

subscription
Sales

status

\
. o
m

anage

groupsales
o £]
Managerinterface

subscriptionsales, )

individual

@] (3 sales s
Kioskinterface «clerkinterface™ subscriptio Individual y
Sales Sales subscription | jndividual group
Sales g Sales
i o Clerkinterface 21
customeraceess clerkhccess s Clerkicess

©The Unified Modeling L
UNIVERSITY-OF MASSACHUSETTS:AMHERST: '

COMPUTER UML -> Notation

*\We'll come back to UML in the RUP (design methods)

*Reading

¢ [jmW90] Wing, J. M., “A Specifier's Introduction to Formal
Methods,” IEEE Computer , September 1990, pp.8--24.

¢[avL00] van Lamsweerde, Axel, “Formal Specification: a
Roadmap,” Future of Sofware Engineering Limerick
Ireland 2000

¢[LZ75] Liskov, B.H. and Zilles, S.N., “Specification
Techniques for Data Abstractions,” IEEE Transactions on
Software Engineering , March 1975, pp.7--19.

«[GHWS85] Guttag, J.V., Horning, J.J. and Wing, J.M., “The
Larch family of Specification Languages,” IEEE Software ,
September 1985, pp.24--36.

UNIVERSITY- OF MASSACHUSETTS AMHERST: 3



CMPSCI520/620 - UML Overview & Notation (FM)

COMPUTER Overview of Formal Methods

¢ Formal methods

*mathematically-based languages, techniques and tools
for specifying and verifying software and systems
especification < verification

ebasic strategy

Comparison
obgerved

Behavior

inferred

CONPUTER finite-state verification W

*model checking aaaaa
elogic spec + FSA comp model = symbolic ™
model checking
*FSA spec + FSA comp model = automata-
theoretic model checking
eproperty checking
eadvantages/disadvantages
ereason about a finite model of the system

«fast, yields counterexamples, manages partial
specifications, applies to concurrency

estate explosion!

UNIVERSITY:OF MASSACHUSETTS AMHERST: £ D ESARIMENTG

©Rick Adrion 2004 (except where noted)

CONPUTER Basic Verification Strategy

«analyze a system for desired properties, i.e., compare
behavior to intent
eintent
«can be expressed as properties of a model (model-based
specification)
«can be expressed as formulas in mathematical logic
(property-based specification)
ebehavior
e can be observed as software executes
e can be inferred from a model
«can be expressed as formulas in mathematical logic
e different representations support different sorts of
inferences

UNIVERSITY:OF MASSACHUSETTS AMHERST: - DERAR

““ﬂ;ﬂ'ﬁﬁ% (automated) mathematical reasoning

etheorem proving
eproof checking
eadvantages/disadvantages
edifficult, error prone
edecidability vs. expressiveness
epropositional calculus is decidable
epredicate calculus is semi-decidable

UNIVERSITY OF MASSACHUSETTS AMHERST - DEFAR




CMPSCI520/620 - UML Overview & Notation (FM)

COMPUTER Specifications

« define intent and provide a basis for formal reasoning
eshould be based on a sound mathematical theory
« criteria to evaluate specification methods (languages)
*mathematical foundation
e constructability (ease of use)
«comprehensibility
eminimality
egeneral applicability
« extensibility

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP

COMPUTER Properties

« a specification syn € Syn is unambiguous if and only if Sat
maps syn to exactly one specificand set.

« a specification syn € Syn is consistent (or satisifable) if
and only if Sat maps syn to a non-empty specificand set.

¢ Given <Syn, Sem, Sat >, an implementation prog € Sem is
correct with respect to a given specification spec € Syn if
and only if Sat (spec, prog)

« informally, a specifier who “overspecifies” is guilty of
“implementation bias”

« a specification has implementation bias if it specifies
unobservable properties of its specificands,

*e.g., a set specification that keeps track of the insertion order
favors an ordered-list implementation over a hash table
implementation

©Rick Adrion 2004 (except where noted)

COMPUTER What is a specification language?

« A formal specification language is a triple
<Syn, Sem, Sat >, where Syn and Sem are sets
Syn X Sem D Sat is a relation.
« Given a specification language, <Syn, Sem, Sat>
«if Sat (syn, sem) then syn is a specification of sem
and sem is a specificand of syn

«the specificand set of a specification syn € Syn is the
set of all specificands sem € Sem, such that

Sat (syn,sem)

from Wing

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ DERA

romputer Classification
SEIENCE

* Model-oriented (operational) specification
ebehavior described in terms of another data
abstraction or mathematical model with known
properties, e.g., tuples, relations, functions, sets,
and sequences
« Property-oriented (descriptive) specification
ebehavior is described in terms of properties,
usually stated as axioms, that the system must
specify
eor the objects and operations to define themselves
implicity
e Formal vs “semi-formal” vs informal

UNIVERSITY OF MASSACHUSETTS AMHERST - DEFAK




CMPSCI520/620 - UML Overview & Notation (FM)

COMPUTER Alternative classification

» Axiomatic specification
 Abstract models

*Set Theory

e Predicate Logic

¢ Programming Languages

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP

COENE! Semi-Formal Technques

e Communication: DFD
elack precise semantics

e abstract “machine” for interpreting the operational
semantics of a DFD specification is not fully defined

ecan’t simulate behavior
«Behavior: FSA

elimited memory

ecombinatorial explosion

UNIVERSITY-OF MASSACHUSETTS AMHERST -+ DESA

©Rick Adrion 2004 (except where noted)

CONPUTER Model-oriented examples

e Formal:
¢ Abstract-data-type specification languages: Parnas’
state machines, VDM, Z
«Concurrent and distributed systems specification
languages: Trace Specifications, Petri nets, CCS, CSP
e Semi-Formal
eDiagrams
*Behavior: FSA, Petri-Nets, StateCharts

« Communications: DFD, activity diagrams, sequence
diagrams

¢ Functions: Use-Case diagrams

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ DER

e abstract data type example

type stack is

create: = stack

pop: stack = stack

push: stack X integer = stack
top: stack = integer

Note: Because some of the specification methods are
easier to apply to functions, all operations are
functions

UNIVERSITY OF MASSACHUSETTS AMHERST - DER)

10



CMPSCI520/620 - UML Overview & Notation (FM)

ENE Input/Output Specification
type definition:
type S is record
top: integer
data: array [1 ... ] of integers
end record

e operational specification:
{true} push (Sy, 1) =S
{VJ,1<J<S,.top
S,.data [J] = S.data [J] A
S.top = Sj.top+14a
S.Data [S.top] =1}

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP

IR Z (‘2o

e proposed by Abrail, 1980
«developed by Hayes and Spivey
*based on typed set theory and first order logic
e provides a schema to describe a specifications state
and operations
« describe systems as collections of SCHEMAS
«inputs and outputs to functions

eInvariants: statements whose truth is preserved by the
functions

UNIVERSITY-OF MASSACHUSETTS AMHERST -+ DESA

©Rick Adrion 2004 (except where noted)

COMPUTER
SCIENCE

Ordered Sets

eordered set definition:

X ={Xg,Xq, -, Xp}

[X| = n +1

extract(X) = {Xg,Xq, .. Xp1}
e operational definitions:

create ={0}

push (Sy, ) =S A

S, = extract(S) a
ISI = 1Sl + 1 A

X = |

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ DE

COMPUTER
SCIENCE

Y4

*a schema groups variable declarations with a list of
predicates that constrain the possible values for a
variable

schema name

schema signature

schema predicate

UNIVERSITY OF MASSACHUSETTS AMHERST - DEFAR

11



CMPSCI520/620 - UML Overview & Notation (FM)

COMPUIER The “Birthday Book” Example

"NPossible state of system days
are to be
known = {John, Mike, Susan}
birthday = {John = 25-Mar, date
d Mike = 20-Dec, -
" Susan - 20-Dec} em: the
~BirthdayBook

elements

Lknown : P NAME
L birthday: NAME > DATE

UNIVERSITY OF MASSACHUSETTS AMHERST.+ DERARTNES

known = dom birthda

CONPUTER Another Schema

~FindBirthday
EBirthdayBook

name?: NAME

date!: DATE

m\ name? Eknown
~date! = birthday (name?)

UNIVERSITY-OF MASSACHUSETTS AMHERST- D)

©Rick Adrion 2004 (except where noted)

CONPUTER Another Schema

knrown' = known | {rame?}.
In fact we can prove this from the specification of AddBirthday. using the invariants

stal known'

= dom birthday'

= dom({sirthday U {neme? — date?})

= dorm birthday U dom {neme? — date?}
E = dorm birthday | {rame?}

= known U {name?}.

|invariant after]

[spec. of AddBirthday)
[faet about dom) :l

[faet about dom)
[invariant before]

UNIVERSITY:OF MASSACHUSETTS AMHERST. -1

U808 Z Summary

*Schemas can be grouped and composed

* More notation: aimed at facilitating terse, precise
communication

« Emphasis on what a system is supposed to do
¢ Indication of how it looks externally

« (Like Abstract Data Type specifications) basis for going
on to think about HOW to implement

UNIVERSITY OF MASSACHUSETTS AMHERST 1

12



CMPSCI520/620 - UML Overview & Notation (FM)

COMPUTER State machine model

« 2 types of operations
¢ V-Operations (value returning)
¢ Do not cause a change in state
¢ O-Operations
¢ Cause a change in state

operations

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEF‘>

« specs must show the effect of each operation on the V-

COMPTER Hidden Operations

the effect of PUSH on TOP
*\VV-operation: DEPTH

parameters: none
effect: none

UNIVERSITY-OF MASSACHUSETTS AMHERST-+ DECART

©Rick Adrion 2004 (except where noted)

e must deal with side effects and delayed effects, such as

possible values: integer; initial value O

¢ Parnas had informal language, later hidden operations
were used to support the provided O & V operations. In
both cases, need to show that 0< Depth (S) < MAX

it Example

* V-operation: TOP
possible values: integers; initially undefined
parameters: none
effect:
error call if ‘DEPTH =0
* O-operation: PUSH(a)
possible values: none
parameters: integer a
effect:
error call if ' DEPTH’ = MAX
else (TOP =a; ‘DEPTH’ = '‘DEPTH+1)

UNIVERSITY-OF MASSACHUSETTS AMHERST - DER/

CONPUTER Concurrent & distributed systems

*FSA
* Petri nets
« Trace specifications

ea trace is a sequence of procedure or function calls and
return values from those calls
« proposed by David Parnas, 1977
« formalized by McLean, 1984
« further developed by Dan Hoffman, Rick Snodgrass, etc

UNIVERSITY OF MASSACHUSETTS AMHERST: DEFART

13



CMPSCI520/620 - UML Overview & Notation (FM)

COMPUTER Finite State Machines (FSM's)

* FSM's describe behavior of a system:

*The sequence of stages/steps/conditions that the
system goes through

*FSM shows how a system acts/reacts to inputs
¢Does this by showing progress through different states
¢ Hypothesis:

¢ The universe in which the system being described must
operate can be accurately modeled as always being in
exactly one of a finite number of states (situations)

*There are only a finite number of possible system inputs

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP

COMPUTER Why Use FSM's?

e Primary appeal is visualization

« Intuitively: Can "watch" a stream of inputs "drive" the
behavior of the system as a sequence of movements
from state to state

«Kinds of questions FSM’s seem adept at helping
answer:

«“What is a good way to think about the problem to be
solved?”

«“What is the solution approach?”
*“How does this program work?”

UNIVERSITY-OF MASSACHUSETTS AMHERST -+ DESA

©Rick Adrion 2004 (except where noted)

compurer Finite State Machines (FSM)
SCIENCE

«finite set of states S ={s,, ..., s.}
«finite set of inputs I = {i,, ..., i.}
e transition function 8: Sxl = S
ecan be a partial function
erepresent as a graph
enodes = states
eedges = inputs
egraph = transition function

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ DER

COMPUTER Enhancements to FSM's

* Use of hierarchy

« Output annotations on edges

¢ Distinguished Initial and Terminal states

« Separate data definitions, local and global variables

UNIVERSITY OF MASSACHUSETTS AMHERST - DER)

14



CMPSCI520/620 - UML Overview & Notation (FM)

COMPUTER What is FSM good/not good for?

* Focus on specific issue: safety concern
*Model unsafe state

*Model state transitions

¢ Can unsafe state be reached?
¢ Drawbacks

*No sense of functionality
*No sense of how functionality achieved

« Difficult and generally impossible to reason about timing

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. D;

CONPUTER Some FSM-based notations

* Process Graphs
* nondeterministic

* may have infinitely many nodes

start_heating
« from any node, infinitely many edges
may depart nd tim .
« used as interpretation structures for enc_time start_heating
formal specifications in process algebra
and dynamic logic
¢ JSD Process Structure Diagrams.

timeout
«used in Jackson Structured Programming
(JSP) e

e
« a visual way to represent a regular

HEATING. ©
expression by means of a tree diagram

« represent the structure of files and of
regular programs

e used in JSD

« represent the behavior of a system in a
modular way

[ | [ ] |

oDy ongtima

umeout
UNIVERSITY-OF MASSACHUSETTS AMHERST: D_E

©Rick Adrion 2004 (except where noted)

CONPUTER FSM are limited

e Library example
e getbook: index X library = book
o1 ,000,000+ books in a good library

state = books on shelf

Q/'O new state = libe - book
N\

v

2n transitions could be >> 108 states

UNIVERSITY-OF MASSACHUSETTS-AMHERST. D)

U FSM

« Finite State Diagrams

« contain only finitely many states and transitions
« Extended Finite State Diagrams.

« number of states can be increased by introducing variables that may
be tested and updated by the finite state machine
« global state = explicit state (STD nodes) + extended state (variables)
« local variables or external variables
« local variable is declared together with the specification of the STD + scope
rules for these variables (usually the entire state machine specification)
« external variable is declared outside the specification of the STD but can

be accessed by means of special operations that act as an interface
between the specification and the variables

« in dataflow models, data stores are external variables with respect to the
control processes in the DFD

« global state change requires communication between the state machine
and the external data stores

UNIVERSITY OF MASSACHUSETTS AMHERST - DER)

15



CMPSCI520/620 - UML Overview & Notation (FM)

CONPUTER Extended FSM

« state transition may change the values of variables
¢ a guard may be specified for each transition that says when
the transition can occur.
«weak interpretation,
« the transition cannot occur if the guard is false
« guard is in this case a necessary condition of the transition
« strong interpretation,
« the transition can occur if and only if the guard is true
« guard is a necessary and sufficient condition of the transition
< usually initially specify guards with the weak semantics
« when all conditions for a transition are specified, interpret the
conjunction of all weak guards as a strong guard
« a guard could be the conjunction of all preconditions specified for a
transition
e include tests in a state machine that are used to determine
the next state
e such tests can be used to resolve nondeterminism
« a test determines which of a set of possible transitions will
{)cculj,t.thus a test consists of a guard for each of the possible
ransitions.

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. D

Mealy FSM for the juice plant
CONPUTER controller

IDLI
$eeS{CONTIOLLING) = 1€ [enaifime_reached] slar_heating

T: turn_off_heater
Siheating finlshed
D: monitor_deadiing

initial
state

decision
state

T: compare_with_desired_temparature
> monitor_dsadline

COMPARING
In YSM
«Create and set named
dasired_temparature_not_reached desired_temperalute_rezoned \ | clocks

«Each state has a clock that
counts the time that has
elapsed since the machine
last entered that state

T:turn_off_heate’

T turn_on_heater

CONTROLLING

CONPUTER Mealy & Moore Machines

*Mealy machine

eoutput actions are associated with transitions
*Moore Machines

eoutputs are associated with states

UNIVERSITY-OF MASSACHUSETTS AMHERST- D)

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ D

Moore FSM for the juice plant
EONPYTER o troller juiee p

initial
state

starl_heating

‘COMPARING

compare with
desired temperature

timeout

desired desired
temperature temperature
reached

" decision
state

not
reached

HEATING NOT_HEATING
turn on heater turn off heater

end time reached L end time reached
TURNING_OFF FINISHED
:::-’-’;r? fu'ohri?o“\irng heating finished start heating

finish controlling

ONIVERSITY OF MASSACHUSETTS AMHERST 22

16



CMPSCI520/620 - UML Overview & Notation (FM)

CONPUTER Statecharts “Xiinc: Statecharts

« higraph without intersection but with Cartesian products

CONTROL_TEMPERATURE_RAMP

Graph 1 Graph 2 [oraph s

timeout(entered(MONITORING), endtime)

o e start(tum_off_neater);
heating_finished

start_heating

done

externally

MONITOR_TEMPERATURE

COMPARING

timeout(entered(
[EATER_OFF), 10))

entry: start(compare_with_|
desired_temperature)

« node inclusion allows us to partition a state into substates
 Cartesian products allow us to specify parallelism HEATER ONJAD) _ed/

. - _ esir
« actions can be specified tempeghture_

« along transiti Meal
along transitions (Mealy) In Statemate, a statechart corresponds to a
« upon entry of states (Moore), and

« exit of states control activity in an activity chart, just as in
« local variables represent the extended state. YSM a Mealy machine corresponds to a
control process in a DFD.

reaches

Lk

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+

UNIVERSITY:OF MASSACHUSETTSIAMHERST: +-

COMPUTER Statechart with parallelism

CONTROL_TEMPERATURE_RAMP

timeout(entered(MONITORING),

start_heating

MONITORINq

MONITOR_TEMPERATURE

—
PG
o
nytaoras i
i ) {Romm

start(turn_off_heater);
heating_finished

MONITOR_PRESSURE

start(monitor_press)

CLOSED
entry: slart{close_valve)

et

RO e/
pressure_OK pressure_too_high |
stari(close_val start(open_valve) \\ iwﬂm

HEATER O |
|

HEATER OFF
— )

VALVE_OPEN

UNIVERSITY-OF MASSACHUSETTS AMHERST

©Rick Adrion 2004 (except where noted)



