CMPSCI520/620 07 Requirements & UML Intro

CONPUTER 07 Requirements

* Readings

« [cK99] Cris Kobryn, Co-Chair, “Introduction to UML: Structural and Use Case
Modeling,” UML Revision Task Force Object Modeling with OMG UML Tutorial
Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data,
Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational
Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm

« [0SBB99] Gunnar Overgaard, Bran Selic, Conrad Bock and Morgan Bjérkande,
“Behavioral Modeling,” UML Revision Task Force, Object Modeling with OMG UML
Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea
Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational
Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm

* [laM01] Maciaszek, L.A. (2001): Requirements Analysis and System Design.
Developing Information Systems with UML, Addison Wesley Copyright © 2000 by
Addison Wesley

« [cB04] Bock, Conrad, Advanced Analysis and Design with UML
http://www.kabira.com/bock/

« [rM02] Miller, Randy, “Practical UML: A hands-on introduction for developers,”
Copyright © 2002 TogetherSoft, Inc. [now at Borland site]
http://bdn.borland.com/article/0,1410,31863,00.html

UNIVERSITY:OF MASSACHUSETTSIAMHERST: +-

““ﬂ-ﬂ'ﬁﬁ'ﬁ SW Requirements Specification

*How do we communicate the Requirements to others?

¢t is common practice to capture them in an SRS
« But an SRS doesn't need to be a single paper document

*Purpose
Contractual

. pry—
*Baseline

« for evaluating subsequent products
« for change control
* Audience
* Users, Purchasers
« Systems Analysts, Requirements Analysts
» Developers, Programmers
* Testers

requirements.
analysis

requirements.

« Project Managers

COMPUTER What about RFP/RFB/RFIs?

*RFP = ‘SRS’ written by the procurer (or by an
independent RE contractor)
*Selected developer may create a more detailed ‘SRS’
« developer’s understanding of the customers needs
« basis for evaluation of contractual performance
 Not typically response to RFP
«|EEE Standard recommends SRS jointly developed by
procurer and developer
*When to issue RFP/RFB?
eEarly (conceptual stage)
Late (detailed specification stage)

UNIVERSITY-OF MASSACHUSETTS AMHERST :

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+

COMPUTER Appropriate Specification

« Consider two different projects:
¢ Tiny project, 1 programmer, 2 months work
* Programmer talks to customer, then writes up a 5-page
memo
eLarge project, 50 programmers, 2 years work
* Team of analysts model the requirements, then document
them in a 500-page SRS
Project A Project B

Purpose of spec? | Crystalizes programmer’s Build-to document; must
understanding; feedback to | contain enough detail for all
customer the programmers

Management Spec is irrelevant; have Will use the spec to estimate

view? already allocated resource needs and plan the
resources development

Readers? Primary: Spec author; Primary: programmers,
Secondary: Customer testers, managers;

Secondary: customers

UNIVERSITY OF MASSACHUSETTS AMHERST:

CMPSCI520/620 07 Requirements & UML Intro

« Validity (or “correctness”)

« expresses only the real needs of
the stakeholders (customers,
users,...)

* Completeness

« specifies all the things the system
must do and all the things it must
not do!

« Conceptual Completeness
« e.g. responses to all classes of input
« Structural Completeness
* e.g. no “to be determined” functions
 Consistency
« not self-contradictory
« satisfiable
« all terms used consistently
« inconsistency can be hard to
detect especially in timing aspects
and business logic
* Necessary
« doesn’t contain anything that isn't
“required”

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. 5B

CONPUTER Hints & Guidelines

* Ambiquity
« Verifiablility
« Understandablility (Clarity)

* Modifiability

« every statement can be read in
exactly one way

« defines confusing terms
+ e.g. in a glossary

« includes a process exists to test
satisfaction of each requirement

« every requirement is specified
behaviorally

« e.g. by non-computer specialists

« technical notations should only be
used as backup (e.g. in an
appendix)

« easy to change and modify

* good structure and cross-
referencing

« must be kept up to date!

see |[EEE-STD-830-1993

COMPUTER

* Noise

« text that carries no relevant
information to any feature of the
problem.

« Silence
« a feature that is not covered by
any text.
« Over-specification
« text that describes a feature of the
solution, rather than the problem.
« Contradiction

« text that defines a single feature in
a number of incompatible ways.
* Ambiguity
« text that can be interpreted in at
least two different ways.
« Forward reference
« text that refers to a terms or
features yet to be defined.
« Wishful thinking
« text that defines a feature that
cannot possibly be validated.

UNIVERSITY: OF MASSACHUSETTS AMHERST: -+ 1)

<cience 1ypical mistakes

from Steve Easterbrook © 2000-2002; he adapted from Kovitz, 1999

Jigsaw puzzles
« distributing key information across
a document and then cross-
referencing
Duckspeak requirements
 requirements that are only there to
conform to standards
Unnecessary invention of terminology
« e.g. ‘user input presentation
function’
« e.g. ‘airplane reservation data
validation function’
Inconsistent terminology
« inventing and then changing
terminology
Putting the onus on the development
staff

« i.e. making the reader work hard to
decipher the intent

Writing for the hostile reader

« fewer of these than friendly
readers

©Rick Adrion 2004 (except where noted)

reduce

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ Dﬁ

condense

COMPUTER There is no Perfect SRS

expand

formalize sistent |

resolve

standable

© Steve Easterbrook 2000-2002

COMPUTER

1.Introduction
* Purpose
* Scope
« Definitions, acronyms, abbreviations
 Reference documents
* Overview
2.Overall Description
* Product perspective
* Product functions
* User characteristics
« Constraints
« Assumptions and Dependencies
3.Specific Requirements
Appendices
Index

UNIVERSITY OF MASSACHUSETTS AMHERST:

seieice IEEE std offers different templates

« External stimulus or external situation
« e.g., for an aircraft landing system, each
different type of landing situation: wind gusts, no
fuel, short runway, etc
« System feature
« e.g., for a telephone system: call forwarding, call
blocking, conference call, etc
« System response
« e.g., for a payroll system: generate pay-cheques,
report costs, print tax info;
« External object
« e.g. for a library information system, organize by
book type
« User type
«eg.fora prog'fec! support system: manager,
technical staff, administrator, etc.
* Mode
« e.g. for word processor: page layout mode,
outline mode, text editing mode, etc
« Object
* e.g., in a patient monitorng system, objects
include patients, sensors, nurses, rooms,
physicians, medicines, etc.

CMPSCI520/620 07 Requirements & UML Intro

COMPUTER Naciaszek vs. IEEE

Requirements Document
Table of Contents.

1. Project Preliminaries \ Introduction
1.1 Purpose and Scope of the Product :
1.2 Business Context , °* Purpose

=

1.3 Stakeholders * Scope
1.4 Ideas for Solutior L— « Definitions, acronyms, abbreviations

1.5 Document Overview
2. System Services * Reference documents
* Overview

2.1 The Scope of the System
22 Function Requirements L

. 2.Overall Description
« Product perspective

23 Data Requirements
3. System Constraints

* Product functions
* User characteristics

3.0 Interface Requircments
3.2 Performance Requirements /
> - Constraints
« Assumptions and Dependencies
3.Specific Requirements
L Appendices

33 Sceurity Requirements
34 Operational Requi
3.5 Political and Legal Requirements

. Project Matters
4.1 Open lIssues
42 Preliminary Schedule
43 Preliminary Budget
Appendices
Glossary
Business Documents and Forms
References

Index

UNIVERSITY. OF - MASSACHUSETTS/AMHERST:

SRS using a UML “package”
“"M-';E'JE'E‘ construc P g

*SRS

emay include a single document, multiple documents, use
case specifications and even the graphical use case
model which describes relationships amongst the use
cases.

« Stakeholders
esystem analyst
e use-case specifier
edesigners
eimplementers
e project manager
etesters
“Combining Software Requirements Specifications with Use-Case Modeling,”

Leslee Probasco and Dean Leffingwell
www.spc.ca/downloads/srs_usecase.doc

UNIVERSITY-OF MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

COMPUTER

seienee SRS using a UML “package” construct

SRS

l E j& ol

Staksholder ;b

Raquasts Use Case
Model

Supplamertary
Specification

}

 Des
Probasco and Leffingwell
Rational Software

UNIVERSITY-OF MASSACHUSETTS- AMHERS:

i Mods! Test Model

End-User Docurmentstion
haterial= and
Training Materisl=s

Requiremert "Types"

Uszer Meeds

Feztures

Softweare
Requirernents

Design /Test/ Doc
Requirements

FIMTHES UML & SRS

Note: T

trachs to

Product Feature

linkis
opticnal asit can be derived
from the link between the
Softuare Requiements and
the Use Case Sections. This
linkis often usedto elate
the Software Requirements
to the Uss Cases befor the
Use Case Sedtionsare witten

Features Drive Use
Case Models

Use Cases Interpret
Requirements

UNIVERSITY- OF MASSACHUSETTS AMHERS

trac

The Software Requirements make up the
fomnal Software Requirements Spcification
of which the use case model isan

Software R
as

Note: The Supplementary
Requirements could be regarded

that are not traced into the use
case model

the Software Requirements

traces

in this case e are tacing items to the
glossary terms asveell asfrom them (as

described when defining glossary tem as
one of the supporting traceability types)

CMPSCI520/620 07 Requirements & UML Intro

FHbie: Example

¢ openCMSstruts
« http://opencmsstruts.sourceforge.net/vision.html

*\We’'ll come back to UML & RUP

UNIVERSITY. OF - MASSACHUSETTSIAMHERST.

““ﬂ-ﬂ'ﬁﬁ'ﬁ Requirements Negotiation & Validation
*Negotiation
*Based on draft of document
*Validation
*Based on (almost) complete document
e|ssues
*Scope
*Dependencies
*Risks
*Priorities

UNIVERSITY-OF MASSACHUSETTS AMHERST- D)

©Rick Adrion 2004 (except where noted)

CONPUTER SRS format and style

* Modifiability
ewell-structured, indexed, cross-referenced, etc.

eredundancy should be avoided or must be clearly
marked as such

*An SRS is not modifiable if it is not traceable...
e Traceability
*Need a way of referring to each requirement
*Backwards - the specification must be “traced”
« each requirement traces back to a source or authority
«e.g. a requirement in the system spec; a stakeholder; etc
eForward - the specification must be “traceable”

« each requirement will eventually trace forwards to parts of
the design that satisfy it

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+

CONPUTER Issues

2

Supporter

CRUD* Campaign
‘and Supporter Detals.

“business”

L SCOpe Spporer use case model
° DependenCIGS System scope model s e s DefiwB G Systom Design & Adison Wesiey, 2000
*Risks o Rt i et e e W 50

* Technical Requirament R R2 B3 R4

« Performance [X X T T

« Database integrity R Conflct T T T

* Development process R3 x x

« Political T O Coedlep X

‘ Legal Requirements dependency matrix

« \olatility

UNIVERSITY OF MASSACHUSETTS AMHERST:

CMPSCI520/620 07 Requirements & UML Intro

COMPUTER
)SCIENCE

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP.A:

Seque to a quick UML overview

CONPUTER How shall we do this?

« Pick the CMS “tool”
« Common or different for each group?

« Develop questionnaires
« Stakeholders to be interviewed
« Department staff & associate chair
oIT

* Registrar
« CCBIT
« Faculty
* Yourselves
« Sample “portal” questions/interview outline
« Plan and carry out interviews
« 30 minutes/stakeholder-group
« In class or another scheduled time -- last weeks of October?
« Videotape!
 For selected “tool,” define Vision Document
« Assign one member of the group for this?
« For selected “tool,” define Use-Cases
« Assign rest of the group for this?
« Complete the SRS

UNIVERSITY-OF MASSACHUSETTS AMHERST: DEP&

©Rick Adrion 2004 (except where noted)

« Project 1 prelim: each group email me the selected tool and get approval

COMPUTER But first, let’s discuss Project 1

* Goal - Develop a Software Requirements Specification for a Course
Management System “tool” to be designed, developed and
incorporated in the Sakai framework using the RUP template or the
IEEE Std. or the OpenCms-Struts “template”

« Vision Document
* SRS
« Introduction Section 1: Purpose, Scope, Definitions, Acronyms and Abbreviations,
and provide References
« Overall Description Section 2: a list of names and brief descriptions of all use cases
and actors, along with applicable diagrams and relationships
« In Section 3, for each use case diagram in Section 2 define a use-case report, making

sure that each feature or requirement is clearly labeled and traceable to the Vision
document.

« Appendices, including: a) Table of contents, b) Index, and c) use-case storyboards or
user-interface prototypes, if needed.

* Process
« Identify Stakeholders -- October 7
* Develop questionnaires -- October 7

« Plan and carry out interviews -- by October 28
« Define Vision Document

« Define Use-Cases -- November 4

* Complete the SRS

UNIVERSITY-OF MASSACHUSETTS:AMHERST. - DER)

“"E‘};'i&',},‘,'é Note - UML overheads are adapted from

* “Introduction to UML: Structural and Use Case Modeling,” Cris Kobryn, Co-
Chair UML Revision Task Force Object Modeling with OMG UML Tutorial
Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea
Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten,
Rational Software, Telelogic, Unisys

“Behavioral Modeling,” Gunnar Overgaard, Bran Selic, Conrad Bock and
Morgan Bjérkande, UML Revision Task Force, Object Modeling with OMG
UML Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS,
IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse
Objecten, Rational Software, Telelogic, Unisys

MACIASZEK, L.A. (2001): Requirements Analysis and System Design.
Developing Information Systems with UML, Addison Wesley Copyright ©
2000 by Addison Wesley

“Analysis and Design with UML,” Rational Copyright © 1997 by Rational
Software Corporation

“Practical UML: A hands-on introduction for developers,” Copyright © 2002
TogetherSoft, Inc.

UNIVERSITY-OF MASSACHUSETTS AMHERST: - DERA

CMPSCI520/620 07 Requirements & UML Intro

CONPUTER 0-O problem solving

e underlying tenet begins with the construction of a model
*a model is an abstraction of the underlying problem

«the domain is the actual world from which the problem
comes

*models consist of objects that interact by sending each
other messages

eobjects have things they know (attributes) and things
they can do (behaviors or operations)

evalues of an object's attributes determine its state
e classes are the "blueprints" for objects

ea class wraps attributes (data) and behaviors (methods
or functions) into a single distinct entity

« objects are instances of classes.

Copyright © 2002 TogetherSoft, Inc

UNIVERSITY:OF MASSACHUSETTSIAMHERST: +-

CONPUTER 0-O System Development

System design E

oG

———————— 27

e A 4 Te=-ay @b

- ER

e system design subsystem 3

9n g object model decomposition

Object design

oo

A S

A 4 &E

class object design 58

diagram model

Implementation

- o

28

25

%

source | _ ___ ___ Test
code
deliverable
system

adapted from Bruegge/Dutoit O-O SW Engr

UNIVERSITY-OF MASSACHUSETTS AMHERST: '

©Rick Adrion 2004 (except where noted)

problem
statement

Requirements
elicitation

CONPUTER 0-O System Development

& =~y
nonfunctional functional use case
requirements model diagram
== =
~ -

sjuawalinbay

~ -

Requirements
analysis

J

v - N \
class analysis dynamic =
diagram object model model <
T - =
| -]
- <
- > s
System design 5
__________ &
=-""" ¥ T T==a 3

. system design subsystem
| cesignigoals object model decomposition

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+

adapted from Bruegge/Dutoit O-O SW Engr

CONPUTER Rational Unified Process

LT actiecua

Architect (YD

Architectural Describe
Design Concurrency Distribution | [Architecture ~ Reviewer

Describe Review the ~ Architecture

Use-Case Subsystem
Analysis Design

Designer

Class.
Design

L
-2 5

Design Design
Reviewer

Use-Case
Design

Database
Designer

Database
Design

UNIVERSITY OF MASSACHUSETTS AMHERST:

CMPSCI520/620 07 Requirements & UML Intro

COMPUTER Rational Unified Process

analysis
object model

Class
diagram

—4 system design
design goals object model

nonfunctional functional Use case
requirements model diagram

CONPUTER UML Goals

ean easy-to-learn but
semantically rich visual
modeling language

«unify the Booch, OMT, and
Objectory modeling languages

eideas from other modeling
languages + industry best
practices

eenable model interchange and
define repository interfaces

eprovide a common vocabulary to e
talk about object-oriented
software design.

UNIVERSITY-OF MASSACHUSETTS AMHERST: +-DEPART

©Rick Adrion 2004 (except where noted)

CONPUTER UML Overview

specifying)
The UML is a visualizing the artifacts
graphical constructing of software
language for documenting systems

UNIVERSITY-OF MASSACHUSETTS AMHERST - DEPAT

COMPUTER Unifying Concepts in UML

« classifier-instance dichotomy

ee.g., an object is an instance of a class OR
a class is the classifier of an object

« specification-realization dichotomy
ee.g., an interface is a specification of a class OR a class
is a realization of an interface
¢ building blocks:
emodel elements (classes, interfaces, components, use
cases, etc.)
erelationships (associations, generalization,
dependencies, etc.)
ediagrams (class diagrams, use case diagrams,
interaction diagrams, etc.)

UNIVERSITY OF MASSACHUSETTS AMHERST - DEFARTNE

CMPSCI520/620 07 Requirements & UML Intro

““ﬂ-ﬂ'ﬁﬁ'ﬁ Well-formedness rules

* Well-formed: indicates that a model or model fragment
adheres to all semantic and syntactic rules that apply to it.

» UML specifies rules for: naming, scoping, visibility,
integrity & execution (limited)

* However, during iterative, incremental development it is
expected that models will be incomplete and inconsistent.

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DE

CONPUTER Use-Case diagrams

eemphasis is on whata system does rather than
how
»Use case diagrams are closely connected to
scenarios
ea scenario is an example of what happens when
someone interacts with the system, e.g.,
"A patient calls the clinic to make an appointment for
a yearly checkup. The receptionist finds the nearest
empty time slot in the appointment book and
schedules the appointment for that time slot."
*a use case is a summary of scenarios for a single
task or goal
ean actor is who or what initiates the events
involved in that task

UNIVERSITY-OF MASSACHUSETTS AMHERST: DE

©Rick Adrion 2004 (except where noted)

COMPUTER What is use case modeling?

e use case model
«a view of a system that emphasizes the behavior as it appears
to outside users. A use case model partitions system
functionality into transactions (‘use cases’) that are meaningful
to users (‘actors’)
* example: Make Appointment
« use case for the medical clinic
« actor is a Patient

 connection between actor and use case is a communication
association (or communication for short)

Communlcatlon
actor —>» % make appomtment
Patient Luse case

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ Dﬁ

Mm‘wuc[Use Case Modeling: Core Elements

Construct |Description Syntax

use case A sequence of actions, including
variants, that a system (or other
entity) can perform, interacting with

actors of the system.

actor A coherent set of roles that users

of use cases play when interacting
with these use cases.

ActorName

system Represents the boundary between D

boundary |the physical system and the actors
who interact with the physical
system.

UNIVERSITY OF MASSACHUSETTS AMHERST: DE

CMPSCI520/620 07 Requirements & UML Intro

MM!H[E:IE Use Case Modeling: Core Relationships

COMINER The ESU University

Construct Description Syntax

association The participation of an actor in a use
case. i.e., instance of an actor and
instances of a use case communicate
with each other.

generalization |A taxonomic relationship between a
more general use case and a more —_—
specific use case.

extend A relationship from an extension use
case to a base use case, specifying

how the behavior for the extension <<extend>>

use case can be inserted into the e
behavior defined for the base use
case.

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. D

COMPUTER Use Cases

* A use case is a pattern of behavior the system exhibits

eEach use case is a sequence of related transactions
performed by an actor and the system in a dialogue

¢ Actors are examined to determine their needs
*Registrar
*Professor
e Student
Billing System

o D D

Copyright © 1997 by Rational Software Corporation

UNIVERSITY-OF MASSACHUSETTS AMHERST- D)

©Rick Adrion 2004 (except where noted)

« wants to computerize their registration system
« Registrar sets up the curriculum for a semester
*One course may have multiple course offerings

« students select 4 primary courses and 2 alternate courses

e once a student registers for a semester, the billing system is
notified so the student may be billed for the semester

« students may use the system to add/drop courses for a
period of time after registration

« professors use the system to receive their course offering
rosters

« users of the registration system are assigned passwords
which are used at logon validation

2 XXX

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ D

CONPUTER Use Case Diagram

Billing System

¢ Use case diagrams are created to visualize the
relationships between actors and use cases

o X

Request Course Roster
Student Professor
% ﬁaintain Schedule
—C

Maintain Curriculum
Registrar

ONIVERSITY OF MASSACHUSETTS AMHERST 22

CMPSCI520/620 07 Requirements & UML Intro

COMPUTER Documenting Use Cases

« A flow of events document is created for each use
cases

*Written from an actor point of view

¢ Details what the system must provide to the actor when
the use cases is executed

¢ Typical contents
*How the use case starts and ends
*Normal flow of events
« Alternate flow of events
*Exceptional flow of events

Copyright © 1997 by Rational Software Corporation

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. DEP

CONPUTER Documenting use cases

* Brief Description

« Actors involved

* Preconditions necessary for the use case to start

* Detailed Description of flow of events that includes:

*Main Flow of events, that can be broken down to show:

« Subflows of events (subflows can be further divided into smaller
subflows to improve document readability)

« Alternative Flows to define exceptional situations

« Postconditions that define the state of the system after the
use case ends

UNIVERSITY-OF MASSACHUSETTS AMHERST -+ DEF)

©Rick Adrion 2004 (except where noted)

c"ﬂ-‘;{'ﬂﬁ% Maintain Curriculum Flow of Events

« This use case begins when the Registrar logs onto the
Registration System and enters his/her password. The
system verifies that the password is valid (E-1) and prompts
the Registrar to select the current semester or a future
semester (E-2). The Registrar enters the desired semester.
The system prompts the Registrar to select the desired
activity: ADD, DELETE, REVIEW, or QUIT.

«|If the activity selected is ADD, the S-1: Add a Course
subflow is performed.

«|If the activity selected is DELETE, the S-2: Delete a
Course subflow is performed.

«If the activity selected is REVIEW, the S-3: Review
Curriculum subflow is performed.

«|f the activity selected is QUIT, the use case ends.

° ... O

Maintain Curriculum
opyright © 1997 by Rational Software Corporation Registrar

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ Dﬁ

COMPUTER H ¥ :
<eieice Narrative use case specification
Use Case Add a course to the curriculum
Brief Description This use case allows a Registrar to enter a new course.
Actors Registrar
Preconditions Registrar has a valid password (E-1), has selected a

semester default or E-2), and has selected the Add (S-
1) function at the system prompt

Main Flow The system enters the Add a Course subflow

Alternative Flows The Registrar activates the Delete, Review, or
Quit functions

Postconditions If the use case was successful, the Registrar has
accessed the Add a Course function

UNIVERSITY OF MASSACHUSETTS AMHERST: DE

10

CMPSCI520/620 07 Requirements & UML Intro

COMPUTER Uses and Extends Relationships

¢ As the use cases are documented, other use case
relationships may be discovered

A uses relationship shows behavior that is common to
one or more use cases

«An extends relationship shows optional behavior

O <<uses>>
Register for courses

<<uses>>

-,

Logon validation

-,

Maintain curriculum
Copyright © 1997 by Rational Software Corporation

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. 4 DE|

CONPUTER University Enrollment

« The university offers
» Undergraduate and postgraduate degrees
« To full-time and part-time students
» The university structure
« Divisions containing departments
« Single division administers each degree
« Degree may include courses from other divisions
 University enrolment system
« Individually tailored programs of study
* Prerequisite courses
» Compulsory courses
* Restrictions
« Timetable clashes
* Maximum class sizes, etc.

© MACIASZEK, L.A. (2001): Requirements Analysis and System Design. Developing Information Systems with
UML, Addison Wesley Copyright © 2000 by Addison Wesley

COMPUTER University Enrolment (cont)

¢ The system is required to
¢ Assist in pre-enrolment activities
¢ Handle the enrolment procedures
¢ Pre-enrolment activities
¢ Mail-outs of
» Last semester's examination grades to students
* Enrolment instructions
¢ During enrolment
¢ Accept students' proposed programs of study
¢ Validate for prerequisites, timetable clashes, class sizes,
special approvals, etc.
¢ Resolutions to some of the problems may require
consultation with academic advisers or academics in charge
of course offerings

© MACIASZEK, L.A. (2001): Requirements Analysis and System Design. Developing Information Systems with
UML, Addison Wesley Copyright © 2000 by Addison Wesley

UNIVERSITY-OF MASSACHUSETTS AMHERST: DEP,'E_

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS AMHERST - DER/

CONPUTER Example 4.12

*Pre-enrolment activities
*Mail-outs of

sLast semester's examination grades to
students
*Enrolment instructions

Provide Examination Results

Student Office
Student

*During enrolment
*Accept students'
proposed programs of
study O
*Validate

<<include>>

Enter Program of Study Validate Program of Study

Data Entry
Person

Registrar Office
© MACIASZEK, L.A. (2001): Requirements Analysis and System Design. Developing Information Systems with
UML, Addison Wesley Copyright © 2000 by Addison Wesley

UNIVERSITY OF MASSACHUSETTS AMHERST: DEIJ:'

11

CMPSCI520/620 07 Requirements & UML Intro

CONPUTER When to model use cases

*Model user requirements with use cases.
* Model test scenarios with use cases.
« If you are using a use-case driven method
e start with use cases and derive your structural and
behavioral models from it.
« If you are not using a use-case driven method

emake sure that your use cases are consistent with your
structural and behavioral models.

UNIVERSITY. OF - MASSACHUSETTSIAMHERST. D

CONPUTER Use Case Modeling Tips

* Make sure that each use case describes a significant chunk of
system usage that is understandable by both domain experts and
programmers

* When defining use cases in text, use nouns and verbs accurately
and consistently to help derive objects and messages for interaction
diagrams (see Lecture 2)

 Factor out common usages that are required by multiple use cases

« If the usage is required use <<include>>
« If the base use case is complete and the usage may be optional,
consider use <<extend>>

« A use case diagram should

« contain only use cases at the same level of abstraction
« include only actors who are required
« Large numbers of use cases should be organized into packages

CONPUTER Use Case Realizations

* The use case diagram presents an outside view of the
system

¢ Interaction diagrams describe how use cases are
realized as interactions among societies of objects

* Two types of interaction diagrams
*Sequence diagrams
«Collaboration diagrams

Copyright © 1997 by Rational Software Corporation

UNIVERSITY-OF MASSACHUSETTS AMHERST- D)

©Rick Adrion 2004 (except where noted)

UNIVERSITY-OF MASSACHUSETTS: AMHERST. -+ D

CONPUTER sequence diagram

e an interaction diagram that details how operations are carried
out
*what messages are sent and when
e are organized according to time
« time progresses as you go down the page

« objects involved in the operation are listed from left to right
according to when they take part in the message sequence.

Symbol Meaning
3 simple message which may be synchronous or
asynchronous
- simple message return (optional)
—_— a synchronous message
—_— an asynchronous message
_

ONIVERSITY OF MASSACHUSETTS AMHERST 22

CMPSCI520/620 07 Requirements & UML Intro

CONPUTER Sequence Diagram

arranged in a time sequence

¢ A sequence diagram displays object interactions

1:fillin info

2: submit

3| add course(mary, math 01)

4: are you open?

6: add (mary.

UNIVERSITY. OF - MASSACHUSETTS/AMHERST:

. Student registration registration math 101 math 101
e form manager section 1

5: are you open?
—

7: add (mary,

CONPUIER Collaboration Diagrams

e also interaction diagrams

messages are sent

: course form |
1: set course info CourseForn]
2: process |

X

\J/ 3: add course

_: Registrar
aCourse theManager :
Course CurriculumManager
e -

4: new course

UNIVERSITY-OF MASSACHUSETTS AMHERST:

©Rick Adrion 2004 (except where noted)

«focus on object roles instead of the times that

COMPUTER

seience Example 4.17 — Maciaszek

X

Data ﬁnlry
Petson

L

Program aStudent aCourse [aCoursenftering
EntryWVindow Student Course CourgeOffering
\ | :
Enter Program of Study

addistd crs sem) | |

\

areYouWalid{out s_check’ }
[s_check="no"]destroy ‘

\

|

|
areYoquen(uLll c_check)

[cicheck:”nn"]destmy:

|
addCourse(crsOIDY | ‘
\
addStudentq.;tdOID) ‘

UNIVERSITY-OF MASSACHUSETTS:AMHERST:

use case

areYouDpen{out c_check)

E—

|
|
|
addStudent(stdoin) |

13

