
CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

07 Requirements

• Readings
• [cK99] Cris Kobryn, Co-Chair, “Introduction to UML: Structural and Use Case

Modeling,” UML Revision Task Force Object Modeling with OMG UML Tutorial
Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data,
Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational
Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm
• [OSBB99] Gunnar Övergaard, Bran Selic, Conrad Bock and Morgan Björkande,

“Behavioral Modeling,” UML Revision Task Force, Object Modeling with OMG UML
Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea
Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational
Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm
• [laM01] Maciaszek, L.A. (2001): Requirements Analysis and System Design.

Developing Information Systems with UML, Addison Wesley Copyright © 2000 by
Addison Wesley
• [cB04] Bock, Conrad, Advanced Analysis and Design with UML

http://www.kabira.com/bock/
• [rM02] Miller, Randy, “Practical UML: A hands-on introduction for developers,”

Copyright © 2002 TogetherSoft, Inc. [now at Borland site]
http://bdn.borland.com/article/0,1410,31863,00.html

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

SW Requirements Specification

requirements
validation

requirements
elicitation

requirements
analysis

requirements
specification

•How do we communicate the Requirements to others?
• It is common practice to capture them in an SRS
• But an SRS doesn’t need to be a single paper document

•Purpose
•Contractual
•Baseline
• for evaluating subsequent products
• for change control

•Audience
• Users, Purchasers

• Systems Analysts, Requirements Analysts

• Developers, Programmers

• Testers

• Project Managers

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

What about RFP/RFB/RFIs?

•RFP = ‘SRS’ written by the procurer (or by an
independent RE contractor)
•Selected developer may create a more detailed ‘SRS’
• developer’s understanding of the customers needs

• basis for evaluation of contractual performance

•Not typically response to RFP

• IEEE Standard recommends SRS jointly developed by
procurer and developer

•When to issue RFP/RFB?
•Early (conceptual stage)

•Late (detailed specification stage)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Appropriate Specification

•Consider two different projects:
•Tiny project, 1 programmer, 2 months work
•Programmer talks to customer, then writes up a 5-page
memo

•Large project, 50 programmers, 2 years work
• Team of analysts model the requirements, then document
them in a 500-page SRS

Project A Project B
Purpose of spec? Crystalizes programmer’s

understanding; feedback to
customer

Build-to document; must
contain enough detail for all
the programmers

Management
view?

Spec is irrelevant; have
already allocated
resources

Will use the spec to estimate
resource needs and plan the
development

Readers? Primary: Spec author;
Secondary: Customer

Primary: programmers,
testers, managers;
Secondary: customers

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Hints & Guidelines
• Validity (or “correctness”)
• expresses only the real needs of

the stakeholders (customers,
users,…)

• Completeness
• specifies all the things the system

must do and all the things it must
not do!
• Conceptual Completeness

• e.g. responses to all classes of input

• Structural Completeness
• e.g. no “to be determined” functions

• Consistency
• not self-contradictory
• satisfiable
• all terms used consistently
• inconsistency can be hard to

detect especially in timing aspects
and business logic

• Necessary
• doesn’t contain anything that isn’t

“required”

• Ambiquity
• every statement can be read in

exactly one way
• defines confusing terms

• e.g. in a glossary

• Verifiablility
• includes a process exists to test

satisfaction of each requirement
• every requirement is specified

behaviorally
• Understandablility (Clarity)
• e.g. by non-computer specialists
• technical notations should only be

used as backup (e.g. in an
appendix)

• Modifiability
• easy to change and modify
• good structure and cross-

referencing
• must be kept up to date!

see IEEE-STD-830-1993
UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

ambiguousambiguous

not
understandable

not
understandable

inconsistentinconsistentredundantredundant

incompleteincomplete

formalize

expand

resolve

condense

expand

add
explanations

There is no Perfect SRS

reduce

© Steve Easterbrook 2000-2002

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Typical mistakes
• Noise
• text that carries no relevant

information to any feature of the
problem.

• Silence
• a feature that is not covered by

any text.
• Over-specification
• text that describes a feature of the

solution, rather than the problem.
• Contradiction
• text that defines a single feature in

a number of incompatible ways.
• Ambiguity
• text that can be interpreted in at

least two different ways.
• Forward reference
• text that refers to a terms or

features yet to be defined.
• Wishful thinking
• text that defines a feature that

cannot possibly be validated.

• Jigsaw puzzles
• distributing key information across

a document and then cross-
referencing

• Duckspeak requirements
• requirements that are only there to

conform to standards
• Unnecessary invention of terminology
• e.g. ‘user input presentation

function’
• e.g. ‘airplane reservation data

validation function’
• Inconsistent terminology
• inventing and then changing

terminology
• Putting the onus on the development

staff
• i.e. making the reader work hard to

decipher the intent
• Writing for the hostile reader
• fewer of these than friendly

readers

from Steve Easterbrook © 2000-2002; he adapted from Kovitz, 1999
UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

IEEE std offers different templates
• External stimulus or external situation

• e.g., for an aircraft landing system, each
different type of landing situation: wind gusts, no
fuel, short runway, etc

• System feature
• e.g., for a telephone system: call forwarding, call

blocking, conference call, etc
• System response

• e.g., for a payroll system: generate pay-cheques,
report costs, print tax info;

• External object
• e.g. for a library information system, organize by

book type
• User type

• e.g. for a project support system: manager,
technical staff, administrator, etc.

• Mode
• e.g. for word processor: page layout mode,

outline mode, text editing mode, etc
• Object

• e.g., in a patient monitorng system, objects
include patients, sensors, nurses, rooms,
physicians, medicines, etc.

1.Introduction
• Purpose
• Scope
• Definitions, acronyms, abbreviations
• Reference documents
• Overview

2.Overall Description
• Product perspective
• Product functions
• User characteristics
• Constraints
• Assumptions and Dependencies

3.Specific Requirements
 Appendices
 Index

1.Introduction
• Purpose
• Scope
• Definitions, acronyms, abbreviations
• Reference documents
• Overview

2.Overall Description
• Product perspective
• Product functions
• User characteristics
• Constraints
• Assumptions and Dependencies

3.Specific Requirements
 Appendices
 Index

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Maciaszek vs. IEEE

1.Introduction
• Purpose
• Scope
• Definitions, acronyms, abbreviations
• Reference documents
• Overview

2.Overall Description
• Product perspective
• Product functions
• User characteristics
• Constraints
• Assumptions and Dependencies

3.Specific Requirements
 Appendices
 Index

1.Introduction
• Purpose
• Scope
• Definitions, acronyms, abbreviations
• Reference documents
• Overview

2.Overall Description
• Product perspective
• Product functions
• User characteristics
• Constraints
• Assumptions and Dependencies

3.Specific Requirements
 Appendices
 Index

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

SRS using a UML “package” construct

Probasco and Leffingwell

Rational Software

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

 “Combining Software Requirements Specifications with Use-Case Modeling,”
Leslee Probasco and Dean Leffingwell

www.spc.ca/downloads/srs_usecase.doc

SRS using a UML “package”
construct

•SRS
•may include a single document, multiple documents, use
case specifications and even the graphical use case
model which describes relationships amongst the use
cases.

•Stakeholders
•system analyst
•use-case specifier
•designers
• implementers
•project manager
• testers

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

UML & SRS

• Features Drive Use
Case Models
Use Cases Interpret
Requirements

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Example

•openCMSstruts
•http://opencmsstruts.sourceforge.net/vision.html

•We’ll come back to UML & RUP

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

SRS format and style

•Modifiability
•well-structured, indexed, cross-referenced, etc.

• redundancy should be avoided or must be clearly
marked as such

•An SRS is not modifiable if it is not traceable...

•Traceability
•Need a way of referring to each requirement

•Backwards - the specification must be “traced”
• each requirement traces back to a source or authority

• e.g. a requirement in the system spec; a stakeholder; etc

•Forward - the specification must be “traceable”
• each requirement will eventually trace forwards to parts of
the design that satisfy it

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

requirements
validation

requirements
elicitation

requirements
analysis

requirements
specification

Requirements Negotiation & Validation

•Negotiation
•Based on draft of document

•Validation
•Based on (almost) complete document

•Issues
•Scope

•Dependencies

•Risks

•Priorities

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Issues

•Scope
•Dependencies
•Risks
• Technical
•Performance
•Database integrity
•Development process
•Political
• Legal
•Volatility

Ticket
Placement

Outcome

Conversation

Ticket
Order

Supporter
Details

Campaign
 Details

Order
Processing

Supporter
Database

Supporter

Telemarketing

Maciaszek Requirements Analysis and System Design © Addison Wesley, 2000

System scope model

Campaign
Database

Schedule Phone
Conversation

CRUD* Campaign
and Supporter DetailsTelemarketer

Enter Conversation
Outcome

Supporter

Maciaszek Requirements Analysis and System Design © Addison Wesley, 2000

“business”
use case model

Requirements dependency matrix

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Seque to a quick UML overview

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

But first, let’s discuss Project 1
• Goal - Develop a Software Requirements Specification for a Course

Management System “tool” to be designed, developed and
incorporated in the Sakai framework using the RUP template or the
IEEE Std. or the OpenCms-Struts “template”
• Vision Document
• SRS

• Introduction Section 1: Purpose, Scope, Definitions, Acronyms and Abbreviations,
and provide References

• Overall Description Section 2: a list of names and brief descriptions of all use cases
and actors, along with applicable diagrams and relationships

• In Section 3, for each use case diagram in Section 2 define a use-case report, making
sure that each feature or requirement is clearly labeled and traceable to the Vision
document.

• Appendices, including: a) Table of contents, b) Index, and c) use-case storyboards or
user-interface prototypes, if needed.

• Process
• Identify Stakeholders -- October 7
• Develop questionnaires -- October 7
• Plan and carry out interviews -- by October 28
• Define Vision Document
• Define Use-Cases -- November 4
• Complete the SRS

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

How shall we do this?
• Pick the CMS “tool”
• Common or different for each group?
• Project 1 prelim: each group email me the selected tool and get approval

• Develop questionnaires
• Stakeholders to be interviewed

• Department staff & associate chair
• OIT
• Registrar
• CCBIT
• Faculty
• Yourselves

• Sample “portal” questions/interview outline
• Plan and carry out interviews
• 30 minutes/stakeholder-group
• In class or another scheduled time -- last weeks of October?
• Videotape!

• For selected “tool,” define Vision Document
• Assign one member of the group for this?

• For selected “tool,” define Use-Cases
• Assign rest of the group for this?

• Complete the SRS

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Note - UML overheads are adapted from

• “Introduction to UML: Structural and Use Case Modeling,” Cris Kobryn, Co-
Chair UML Revision Task Force Object Modeling with OMG UML Tutorial
Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea
Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten,
Rational Software, Telelogic, Unisys
• “Behavioral Modeling,” Gunnar Övergaard, Bran Selic, Conrad Bock and

Morgan Björkande, UML Revision Task Force, Object Modeling with OMG
UML Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS,
IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse
Objecten, Rational Software, Telelogic, Unisys
• MACIASZEK, L.A. (2001): Requirements Analysis and System Design.

Developing Information Systems with UML, Addison Wesley Copyright ©
2000 by Addison Wesley
• “Analysis and Design with UML,” Rational Copyright © 1997 by Rational

Software Corporation
• “Practical UML: A hands-on introduction for developers,” Copyright © 2002

TogetherSoft, Inc.

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Copyright © 2002 TogetherSoft, Inc

O-O problem solving

•underlying tenet begins with the construction of a model
•a model is an abstraction of the underlying problem
• the domain is the actual world from which the problem
comes

•models consist of objects that interact by sending each
other messages
•objects have things they know (attributes) and things
they can do (behaviors or operations)
•values of an object's attributes determine its state

•classes are the "blueprints" for objects
•a class wraps attributes (data) and behaviors (methods
or functions) into a single distinct entity

•objects are instances of classes.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

H
ig

h
-L

evel D
esig

n
R

e
q

u
ire

m
e

n
ts

O-O System Development
problem

statement

Requirements
elicitation

Requirements
analysis

System design

system design
object model

design goals subsystem
decomposition

functional
model

nonfunctional
requirements

use case
diagram

analysis
object model

class
diagram

dynamic
model

statechart
diagram

sequence
diagram

adapted from Bruegge/Dutoit O-O SW Engr

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

C
o

d
e &

T
est

D
e

ta
ile

d
D

e
s

ig
n

H
ig

h
-L

evel
D

e
s

ig
n

O-O System Development

System design

system design
object modeldesign goals

subsystem
decomposition

Implementation

source
code

Test

deliverable
system

Object design

object design
model

class
diagram

adapted from Bruegge/Dutoit O-O SW Engr

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Rational Unified Process

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Rational Unified Process

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

Requirements
analysis

System design

system design
object model

design goals subsystem
decomposition

functional
model

nonfunctional
requirements

use case
diagram

analysis
object model

class
diagram

dynamic
model

statechart
diagram

sequence
diagram

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

specifying

visualizing

constructing

documenting

The UML is a

graphical

language for

the artifacts

of software

systems

UML Overview

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

UML Goals

•an easy-to-learn but
semantically rich visual
modeling language
•unify the Booch, OMT, and
Objectory modeling languages
• ideas from other modeling
languages + industry best
practices
•enable model interchange and
define repository interfaces
•provide a common vocabulary to
talk about object-oriented
software design.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Unifying Concepts in UML

• classifier-instance dichotomy
•e.g., an object is an instance of a class OR
a class is the classifier of an object

• specification-realization dichotomy
•e.g., an interface is a specification of a class OR a class
is a realization of an interface

•building blocks:
•model elements (classes, interfaces, components, use
cases, etc.)

• relationships (associations, generalization,
dependencies, etc.)

•diagrams (class diagrams, use case diagrams,
interaction diagrams, etc.)

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Well-formedness rules

•Well-formed: indicates that a model or model fragment
adheres to all semantic and syntactic rules that apply to it.

•UML specifies rules for: naming, scoping, visibility,
integrity & execution (limited)
•However, during iterative, incremental development it is

expected that models will be incomplete and inconsistent.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

What is use case modeling?

• use case model

• a view of a system that emphasizes the behavior as it appears
to outside users. A use case model partitions system
functionality into transactions (‘use cases’) that are meaningful
to users (‘actors’)

• example: Make Appointment
• use case for the medical clinic
• actor is a Patient

• connection between actor and use case is a communication
association (or communication for short)

Patient

make appointmentactor

communication

use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Use-Case diagrams

•emphasis is on what a system does rather than
how
•Use case diagrams are closely connected to
scenarios
•a scenario is an example of what happens when
someone interacts with the system, e.g.,
"A patient calls the clinic to make an appointment for
a yearly checkup. The receptionist finds the nearest
empty time slot in the appointment book and
schedules the appointment for that time slot."

•a use case is a summary of scenarios for a single
task or goal
•an actor is who or what initiates the events
involved in that task

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Use Case Modeling: Core Elements

Construct Description Syntax

use case A sequence of actions, including
variants, that a system (or other
entity) can perform, interacting with
actors of the system.

actor A coherent set of roles that users
of use cases play when interacting
with these use cases.

system
boundary

Represents the boundary between
the physical system and the actors
who interact with the physical
system.

UseCaseName

ActorName

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Construct Description Syntax

association The participation of an actor in a use
case. i.e., instance of an actor and
instances of a use case communicate
with each other.

generalization A taxonomic relationship between a
more general use case and a more
specific use case.

extend A relationship from an extension use
case to a base use case, specifying
how the behavior for the extension
use case can be inserted into the
behavior defined for the base use
case.

Use Case Modeling: Core Relationships

<<extend>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

The ESU University

•wants to computerize their registration system
•Registrar sets up the curriculum for a semester
•One course may have multiple course offerings

• students select 4 primary courses and 2 alternate courses
• once a student registers for a semester, the billing system is

notified so the student may be billed for the semester
• students may use the system to add/drop courses for a

period of time after registration
• professors use the system to receive their course offering

rosters
• users of the registration system are assigned passwords

which are used at logon validation

Registrar Professor Billing SystemStudent

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Copyright © 1997 by Rational Software Corporation

Maintain ScheduleMaintain Curriculum Request Course Roster

Use Cases

•A use case is a pattern of behavior the system exhibits
•Each use case is a sequence of related transactions
performed by an actor and the system in a dialogue

•Actors are examined to determine their needs
•Registrar -- maintain the curriculum

•Professor -- request roster

•Student -- maintain schedule

•Billing System -- receive billing information

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Copyright © 1997 by Rational Software Corporation

Registrar

Professor

Billing System

Student

Maintain Schedule

Maintain Curriculum

Request Course Roster

Use Case Diagram

•Use case diagrams are created to visualize the
relationships between actors and use cases

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Copyright © 1997 by Rational Software Corporation

Documenting Use Cases

•A flow of events document is created for each use
cases
•Written from an actor point of view

•Details what the system must provide to the actor when
the use cases is executed

•Typical contents
•How the use case starts and ends

•Normal flow of events

•Alternate flow of events

•Exceptional flow of events

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Copyright © 1997 by Rational Software Corporation

Maintain Curriculum Flow of Events

• This use case begins when the Registrar logs onto the
Registration System and enters his/her password. The
system verifies that the password is valid (E-1) and prompts
the Registrar to select the current semester or a future
semester (E-2). The Registrar enters the desired semester.
The system prompts the Registrar to select the desired
activity: ADD, DELETE, REVIEW, or QUIT.
• If the activity selected is ADD, the S-1: Add a Course
subflow is performed.
• If the activity selected is DELETE, the S-2: Delete a
Course subflow is performed.
• If the activity selected is REVIEW, the S-3: Review
Curriculum subflow is performed.
• If the activity selected is QUIT, the use case ends.

• ...

Registrar
Maintain Curriculum

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Documenting use cases

•Brief Description

•Actors involved

• Preconditions necessary for the use case to start

•Detailed Description of flow of events that includes:

•Main Flow of events, that can be broken down to show:

• Subflows of events (subflows can be further divided into smaller
subflows to improve document readability)

•Alternative Flows to define exceptional situations

• Postconditions that define the state of the system after the
use case ends

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Narrative use case specification

If the use case was successful, the Registrar has
accessed the Add a Course function

Postconditions

The Registrar activates the Delete, Review, or
Quit functions

Alternative Flows

The system enters the Add a Course subflowMain Flow

Registrar has a valid password (E-1), has selected a
semester default or E-2), and has selected the Add (S-
1) function at the system prompt

Preconditions

RegistrarActors

This use case allows a Registrar to enter a new course.
…

Brief Description

Add a course to the curriculumUse Case

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Copyright © 1997 by Rational Software Corporation

Register for courses

<<uses>>

Logon validation
<<uses>>

Maintain curriculum

Uses and Extends Relationships

•As the use cases are documented, other use case
relationships may be discovered
•A uses relationship shows behavior that is common to
one or more use cases

•An extends relationship shows optional behavior

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

University Enrollment

• The university offers

• Undergraduate and postgraduate degrees

• To full-time and part-time students

• The university structure

• Divisions containing departments

• Single division administers each degree

• Degree may include courses from other divisions

• University enrolment system

• Individually tailored programs of study

• Prerequisite courses

• Compulsory courses

• Restrictions
• Timetable clashes

• Maximum class sizes, etc.

 MACIASZEK, L.A. (2001): Requirements Analysis and System Design. Developing Information Systems with
UML, Addison Wesley Copyright © 2000 by Addison Wesley

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

University Enrolment (cont)

• The system is required to
• Assist in pre-enrolment activities
• Handle the enrolment procedures

• Pre-enrolment activities
• Mail-outs of

• Last semester's examination grades to students
• Enrolment instructions

• During enrolment
• Accept students' proposed programs of study
• Validate for prerequisites, timetable clashes, class sizes,

special approvals, etc.
• Resolutions to some of the problems may require

consultation with academic advisers or academics in charge
of course offerings

 MACIASZEK, L.A. (2001): Requirements Analysis and System Design. Developing Information Systems with
UML, Addison Wesley Copyright © 2000 by Addison Wesley

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Example 4.12

Provide Enrolment Instructions

Student Office

Provide Examination Results

Student

•Pre-enrolment activities
•Mail-outs of

•Last semester's examination grades to
students
•Enrolment instructions

<<extend>>

Data Entry
Person

Enter Program of Study

Registrar Office

Validate Program of Study

•During enrolment
•Accept students'
proposed programs of
study
•Validate

<<include>>

 MACIASZEK, L.A. (2001): Requirements Analysis and System Design. Developing Information Systems with
UML, Addison Wesley Copyright © 2000 by Addison Wesley

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

When to model use cases

•Model user requirements with use cases.

•Model test scenarios with use cases.

• If you are using a use-case driven method
•start with use cases and derive your structural and
behavioral models from it.

• If you are not using a use-case driven method
•make sure that your use cases are consistent with your
structural and behavioral models.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Use Case Modeling Tips

• Make sure that each use case describes a significant chunk of
system usage that is understandable by both domain experts and
programmers
• When defining use cases in text, use nouns and verbs accurately

and consistently to help derive objects and messages for interaction
diagrams (see Lecture 2)
• Factor out common usages that are required by multiple use cases
• If the usage is required use <<include>>
• If the base use case is complete and the usage may be optional,

consider use <<extend>>

• A use case diagram should
• contain only use cases at the same level of abstraction
• include only actors who are required

• Large numbers of use cases should be organized into packages

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Copyright © 1997 by Rational Software Corporation

Use Case Realizations

•The use case diagram presents an outside view of the
system

• Interaction diagrams describe how use cases are
realized as interactions among societies of objects

•Two types of interaction diagrams
•Sequence diagrams

•Collaboration diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

an asynchronous message

a synchronous message

simple message return (optional)

simple message which may be synchronous or
asynchronous

MeaningSymbol

sequence diagram

• an interaction diagram that details how operations are carried
out
•what messages are sent and when
• are organized according to time
• time progresses as you go down the page
• objects involved in the operation are listed from left to right
according to when they take part in the message sequence.

CMPSCI520/620 07 Requirements & UML Intro

Rick Adrion 2004 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Copyright © 1997 by Rational Software Corporation

 : Student
registration

form
registration

manager
math 101

1: fill in info

2: submit

3: add course(mary, math 01)

4: are you open?

5: are you open?

6: add (mary)
7: add (mary)

math 101
section 1

Sequence Diagram

•A sequence diagram displays object interactions
arranged in a time sequence

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Example 4.17 – Maciaszek

Enter Program of Study
use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Collaboration Diagrams

•also interaction diagrams
• focus on object roles instead of the times that
messages are sent

 : Registrar

course form :
CourseForm

theManager :
CurriculumManager

aCourse :
Course

1: set course info
2: process

3: add course

4: new course

