COMPUTER 07 Requirements Readings • [cK99] Cris Kobryn, Co-Chair, "Introduction to UML: Structural and Use Case Modeling "UML Revision Task Force Object Modeling with OMG UML Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm • [OSBB99] Gunnar Övergaard, Bran Selic, Conrad Bock and Morgan Björkande, "Behavioral Modeling," UML Revision Task Force, Object Modeling with OMG UML Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational Software, Telelogic, Unisys http://www.omg.org/technology/uml/uml_tutorial.htm • [laM01] Maciaszek, L.A. (2001): Requirements Analysis and System Design. Developing Information Systems with UML, Addison Wesley Copyright © 2000 by • [cB04] Bock, Conrad, Advanced Analysis and Design with UML http://www.kabira.com/bock/ • [rM02] Miller, Randy, "Practical UML: A hands-on introduction for developers," Copyright © 2002 TogetherSoft, Inc. [now at Borland site] http://bdn.borland.com/article/0,1410,31863,00.html

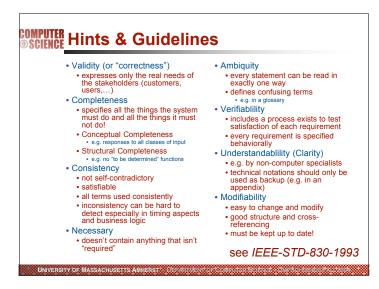
COMPUTER What about RFP/RFB/RFIs?

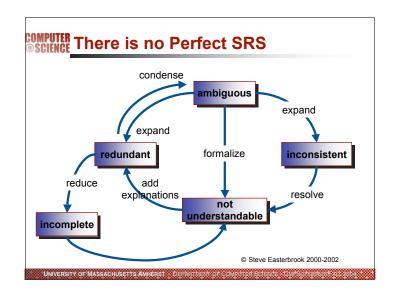
University of Massachusetts Amherst + Department of Computer Science + CMPSols

- RFP = 'SRS' written by the procurer (or by an independent RE contractor)
 - Selected developer may create a more detailed 'SRS'
 - · developer's understanding of the customers needs
 - basis for evaluation of contractual performance
 - Not typically response to RFP
 - IEEE Standard recommends SRS jointly developed by procurer and developer
- When to issue RFP/RFB?
- Early (conceptual stage)
- · Late (detailed specification stage)

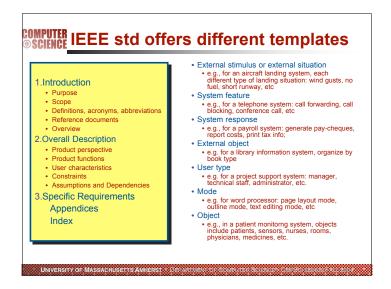
UNIVERSITY OF MASSACHUSETTS AMBERST DEPARTMENT OF COMPUTER SCIENCE + OMPSOI 520520F ALL 2004

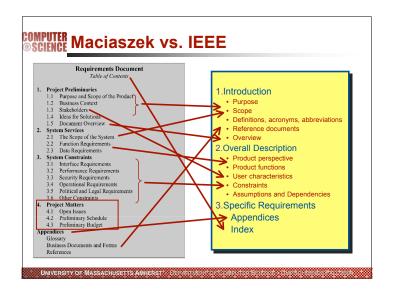
Now do we communicate the Requirements to others? It is common practice to capture them in an SRS But an SRS doesn't need to be a single paper document Purpose Contractual Baseline for evaluating subsequent products for change control Audience Users, Purchasers Systems Analysts, Requirements Analysts Developers, Programmers Testers Project Managers

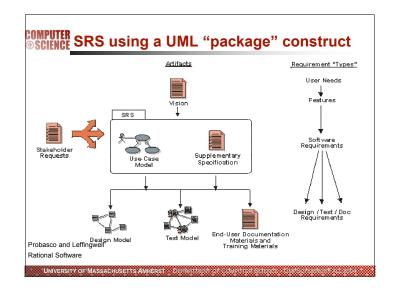

COMPUTER Appropriate Specification

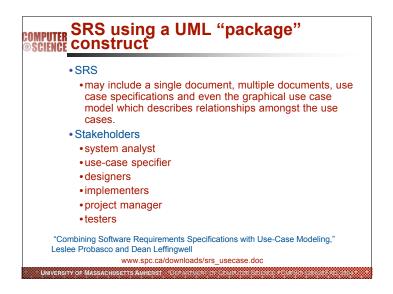

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF COMPUTER SOIL

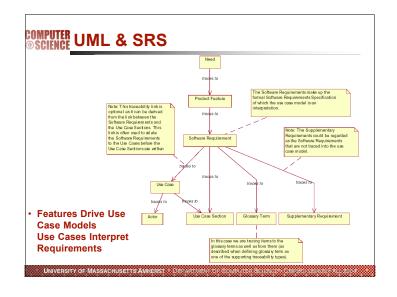
- Consider two different projects:
 - Tiny project, 1 programmer, 2 months work
 - Programmer talks to customer, then writes up a 5-page memo
- Large project, 50 programmers, 2 years work
- Team of analysts model the requirements, then document them in a 500-page SRS

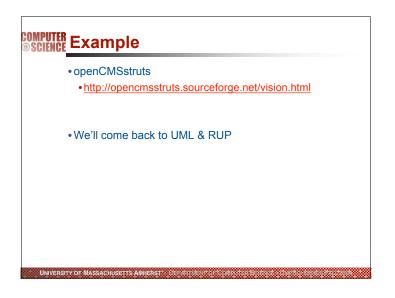

	Project A	Project B
Purpose of spec?	Crystalizes programmer's	Build-to document; must
	understanding; feedback to	contain enough detail for all
	customer	the programmers
Management	Spec is irrelevant; have	Will use the spec to estimate
view?	already allocated	resource needs and plan the
	resources	development
Readers?	Primary: Spec author;	Primary: programmers,
	Secondary: Customer	testers, managers;
		Secondary: customers

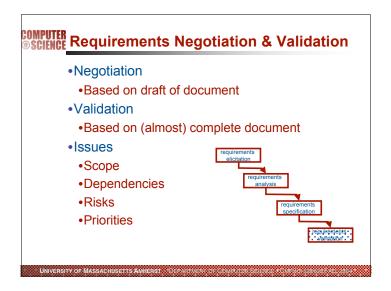

UNIVERSITY OF MASSACHUSETTS AMHERST . DEPARTMENT OF COMPUTER SCIENCE . CMPSC 520620 F ALL 2004

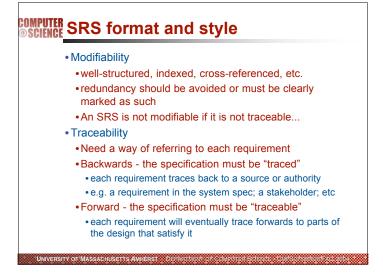


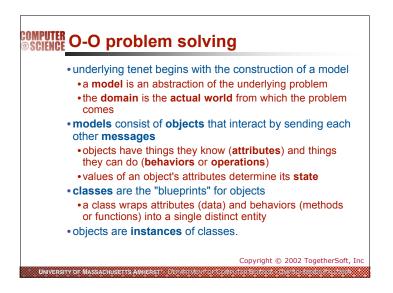


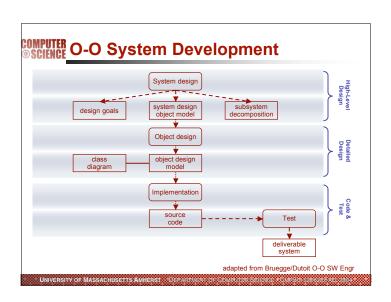


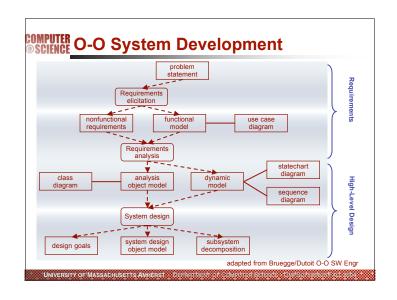


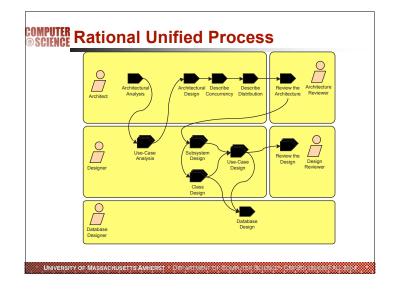


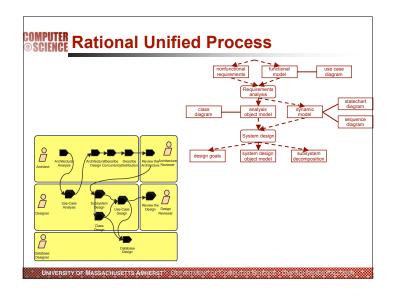


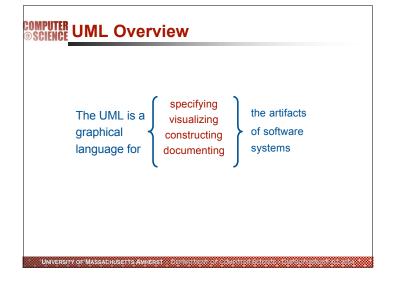


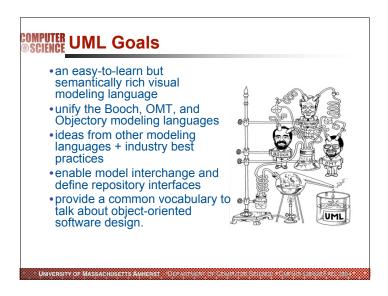

COMPUTER But first, let's discuss Project 1 • Goal - Develop a Software Requirements Specification for a Course Management System "tool" to be designed, developed and incorporated in the Sakai framework using the RUP template or the IEEE Std. or the OpenCms-Struts "template Vision Document Introduction Section 1: Purpose, Scope, Definitions, Acronyms and Abbreviations, and provide References Overall Description Section 2: a list of names and brief descriptions of all use cases and actors, along with applicable diagrams and relationships • In Section 3, for each use case diagram in Section 2 define a use-case report, making sure that each feature or requirement is clearly labeled and traceable to the Vision • Appendices, including: a) Table of contents, b) Index, and c) use-case storyboards or user-interface prototypes, if needed. Identify Stakeholders -- October 7 Develop questionnaires -- October 7 • Plan and carry out interviews -- by October 28 Define Vision Document Define Use-Cases -- November 4 · Complete the SRS UNIVERSITY OF MASSACHUSETTS AMHERST . Do


COMPUTER Note - UML overheads are adapted from

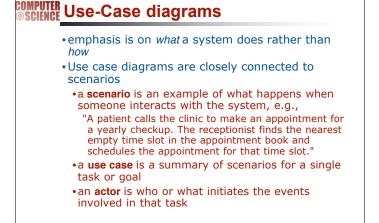

- "Introduction to UML: Structural and Use Case Modeling," Cris Kobryn, Co-Chair UML Revision Task Force Object Modeling with OMG UML Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational Software, Telelogic, Unisys
- "Behavioral Modeling," Gunnar Övergaard, Bran Selic, Conrad Bock and Morgan Björkande, UML Revision Task Force, Object Modeling with OMG UML Tutorial Series © 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten, Rational Software, Telelogic, Unisys
- MACIASZEK, L.A. (2001): Requirements Analysis and System Design. Developing Information Systems with UML, Addison Wesley Copyright © 2000 by Addison Wesley
- "Analysis and Design with UML," Rational Copyright © 1997 by Rational Software Corporation
- "Practical UML: A hands-on introduction for developers," Copyright © 2002 TogetherSoft, Inc.

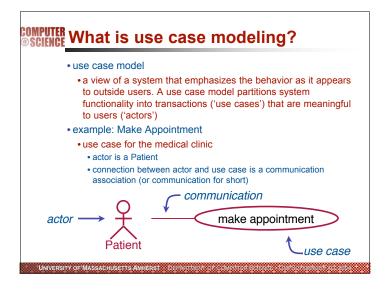

University of Massachusetts Amherst Department of Computer Science Computer Science

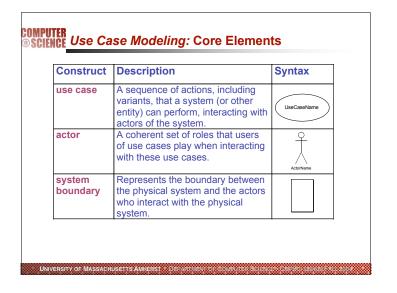


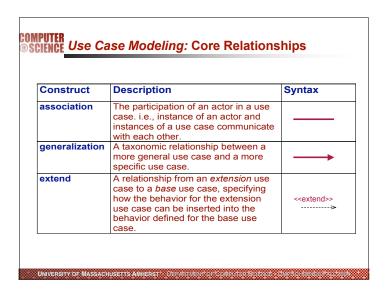


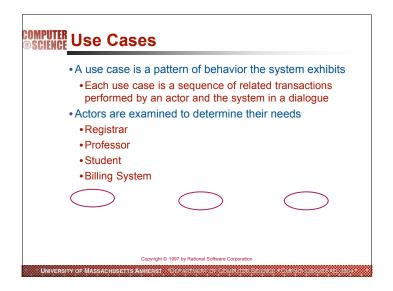
COMPUTER Unifying Concepts in UML

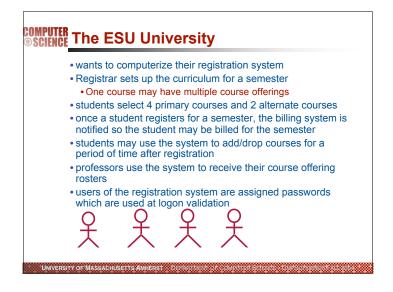

- classifier-instance dichotomy
- •e.g., an object is an instance of a class OR a class is the classifier of an object
- specification-realization dichotomy
 - •e.g., an interface is a specification of a class OR a class is a realization of an interface
- · building blocks:
- model elements (classes, interfaces, components, use cases, etc.)
- relationships (associations, generalization, dependencies, etc.)
- diagrams (class diagrams, use case diagrams, interaction diagrams, etc.)

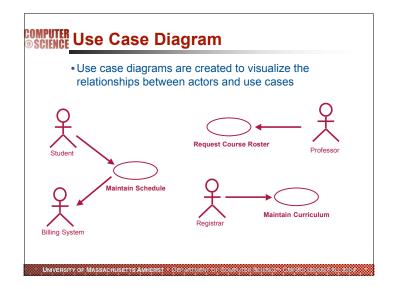

UNIVERSITY OF MASSACHUSETTS AMBERST . DEPARTMENT OF COMPUTER SOIENCE . OMPSO: S20820FALL 2004-


Well-formedness rules Well-formed: indicates that a model or model fragment adheres to all semantic and syntactic rules that apply to it.


- UML specifies rules for: naming, scoping, visibility, integrity & execution (limited)
- However, during iterative, incremental development it is expected that models will be incomplete and inconsistent.


UNIVERSITY OF MASSACHUSETTS AMHERST. DEPARTMENT OF COMBUTTOR SOFTIAL COMPSOLICITIES AND PROPERTY COMPSOLICITIES.





COMPUTER Documenting Use Cases

- A flow of events document is created for each use cases
- Written from an actor point of view
- Details what the system must provide to the actor when the use cases is executed
- Typical contents
- · How the use case starts and ends
- Normal flow of events
- Alternate flow of events
- Exceptional flow of events

Copyright @ 1997 by Rational Software Corporation

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF COMPUTER SCIENCE COMPS (\$200.000). Fact 2000.

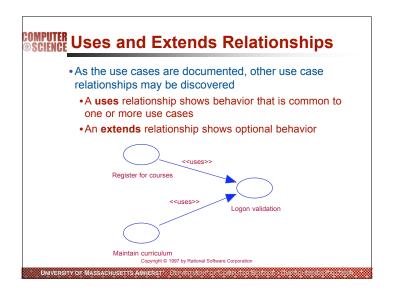
COMPUTER Documenting use cases

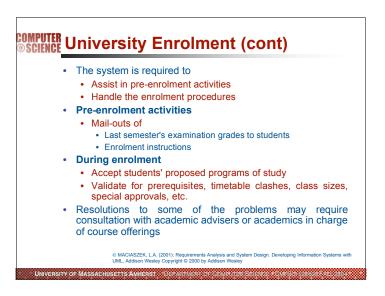
- Brief Description
- Actors involved
- Preconditions necessary for the use case to start
- Detailed Description of flow of events that includes:
- Main Flow of events, that can be broken down to show:
 - Subflows of events (subflows can be further divided into smaller subflows to improve document readability)
- Alternative Flows to define exceptional situations
- Postconditions that define the state of the system after the use case ends

UNIVERSITY OF MASSACHUSETTS AMBERST DEPARTMENT OF COMPUTER SCIENCE + OMPSOI 520520F ALL 2004

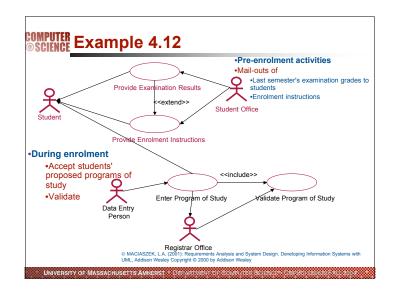
COMPUTER Maintain Curriculum Flow of Events

- This use case begins when the Registrar logs onto the Registration System and enters his/her password. The system verifies that the password is valid (E-1) and prompts the Registrar to select the current semester or a future semester (E-2). The Registrar enters the desired semester. The system prompts the Registrar to select the desired activity: ADD, DELETE, REVIEW, or QUIT.
- If the activity selected is ADD, the S-1: Add a Course subflow is performed.
- If the activity selected is DELETE, the S-2: Delete a Course subflow is performed.
- If the activity selected is REVIEW, the S-3: Review Curriculum subflow is performed.
- If the activity selected is QUIT, the use case ends.


Maintain Curriculum


UNIVERSITY OF MASSACHUSETTS AMHERST DEPMREMENT OF COMPUTER SCIENCE CAIPSO SUBJECT ALL 2004

COMPUTER Narrative use case specification


Use Case	Add a course to the curriculum	
Brief Description	This use case allows a Registrar to enter a new course	
Actors	Registrar	
Preconditions	Registrar has a valid password (E-1), has selected a semester default or E-2), and has selected the Add (S-1) function at the system prompt	
Main Flow	The system enters the Add a Course subflow	
Alternative Flows	The Registrar activates the Delete, Review, or Quit functions	
Postconditions	If the use case was successful, the Registrar has accessed the Add a Course function	

University of Massachusetts Amherst | Department of Computer Science Chipse Spinger At 2004

COMPUTER University Enrollment · The university offers · Undergraduate and postgraduate degrees • To full-time and part-time students • The university structure · Divisions containing departments · Single division administers each degree · Degree may include courses from other divisions · University enrolment system · Individually tailored programs of study · Prerequisite courses · Compulsory courses Restrictions Timetable clashes Maximum class sizes, etc. © MACIASZEK, L.A. (2001): Requirements Analysis and System Design. Develop UML, Addison Wesley Copyright © 2000 by Addison Wesley UNIVERSITY OF MASSACHUSETTS AMHERST . DEPARTME

COMPUTER When to model use cases

- · Model user requirements with use cases.
- Model test scenarios with use cases.
- If you are using a use-case driven method
- start with use cases and derive your structural and behavioral models from it.
- If you are not using a use-case driven method
- make sure that your use cases are consistent with your structural and behavioral models.

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF COMPUTER SCIENCE COMPS (\$200.000). Fact 2000.

COMPUTER Use Case Realizations

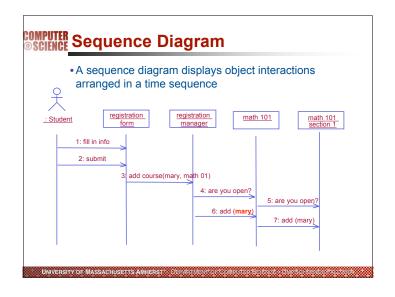
- The use case diagram presents an outside view of the system
- Interaction diagrams describe how use cases are realized as interactions among societies of objects
- Two types of interaction diagrams
- Sequence diagrams
- · Collaboration diagrams

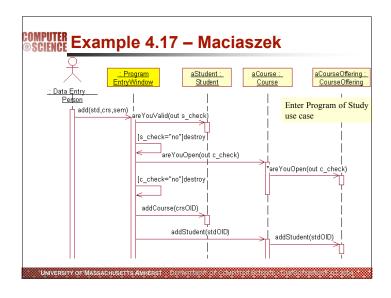
Copyright © 1997 by Rational Software Corporation

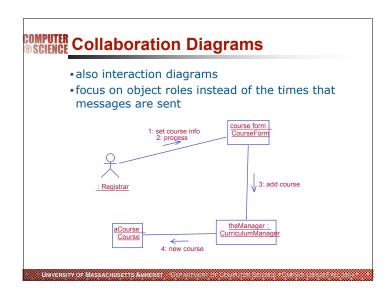
UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF COMPUTER SCIENCE FOR SCIS20620 FALL 2004

COMPUTER Use Case Modeling Tips

- Make sure that each use case describes a significant chunk of system usage that is understandable by both domain experts and programmers
- When defining use cases in text, use nouns and verbs accurately and consistently to help derive objects and messages for interaction diagrams (see Lecture 2)
- Factor out common usages that are required by multiple use cases
- If the usage is required use <<include>>
- If the base use case is complete and the usage may be optional, consider use <<extend>>
- · A use case diagram should
- contain only use cases at the same level of abstraction
- include only actors who are required
- Large numbers of use cases should be organized into packages


UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF COMPUTER SCIENCE CMPS of SURSO FAIR 2004


COMPUTER sequence diagram


- an interaction diagram that details how operations are carried out
- what messages are sent and when
- · are organized according to time
- time progresses as you go down the page
- objects involved in the operation are listed from left to right according to when they take part in the message sequence.

Symbol	Meaning
\longrightarrow	simple message which may be synchronous or asynchronous
>	simple message return (optional)
	a synchronous message
=;	an asynchronous message

UNIVERSITY OF MASSACHUSETTS AMBERST . DEPARTMENT OF COMPUTER SOIENCE . OMPSO: S20820FALL 2004-

