
CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

06 Requirements

•Readings
• IEEE Recommended Practice for Software
Requirements Specifications, IEEE Std 830-1998,
©Copyright 1998 by The Institute of Electrical and
Electronics Engineers, Inc. 345 East 47th Street, New
York, NY 10017-2394, USA

•http://opencmsstruts.sourceforge.net/vision.html

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Segue: Notation->Requirements
Lec Subject 5/620 Rdg 620 Rdg Assgnmt

Given
Date Assgnmt

Due

1 Introduction GJM03-Ch1 fpB95, fbB87,
dH92

W Sept
8

2 Products-Processes-
Stakeholders

GJM03-Ch2,7 fpB95 M Sept
13

3 Quality & Notation I GJM03-Ch2,7 fpB95 HW1, P0 W Sept
15

4 Notation II (Natural
Lang)

M Sept
20

5 Notation III (Survey) rW98 P1 W Sept
22

6 Requirements
Analysis

IEEE98 M Sept
27

7 Requirements (UML) cK99,
OSBB99,cB04,
rM02

HW2 W Sept
29

HW1

8 Requirements
Specification (UML)

GJM03-Ch5 M
October
4

9 Notation IV (Formal) GJM03-Ch5 jmW90, LZ75,
carH69,
GHW85

W
October
6

P1 (1-2)

Columbus Day
Holiday

M
October
11

10 Notation V (State) GJM03-Ch5 UMM
October
13

11 Notation VI
(Process)

ljO87, M
October
18

12 No Class GJM03-Ch7,7
/www.uml-forum.com/tutorials.htm

W
October
20

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Summary: What to represent?

• System functions.
• System behavior
• System communication
•Conceptual decomposition
•Component functions
•Component behavior
•Component communication

• Leads to a four category classification:
• function specification techniques,
• behavior specification techniques,
• communication specification techniques,
• decomposition specification techniques

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Techniques

decomposition techniques
• E-R Diagrams
• Class Diagrams, also called

“information model,” “object model,”
“object structure diagram,” “static
structure diagram,”…

communication techniques
• Context Diagrams
• SADT Activity Diagrams
• Statemate Activity Charts
• Object Communication Diagrams
• JSD System Network Diagrams
• SDL Block Diagrams
• Sequence Diagrams
• Collaboration Diagrams

function techniques
• Function Refinement Trees
• Event-Response Specification
• Use Case Diagrams

behavior techniques
• Process Graphs
• JSD Process Structure Diagrams
• Finite State Diagrams
• Extended Finite State Diagrams
• Mealy Machines
• Moore Machines
• Statecharts
• SDL State Diagrams
• Process Dependency Diagrams

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

SW Requirements Process

requirements
validation

requirements
elicitation

requirements
analysis

requirements
specification

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Outcomes of a Good Process

• The buyers or users

• often begin with only a vague idea of what they really need
and with little idea of what software technology might offer.

• a good process helps them explore and fully understand their
requirements
• separation of what they want and what they need

• constraints that might be imposed on the system by technology,
organizational practices or government regulations.

• understand alternatives, both technological and procedural, that
might be considered in the proposed system

• understand the tradeoffs

• a good understanding of the implications of their decisions ⇒
• fewer surprises

• users committed to the success of the project.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Outcomes of a Good Process

• software engineers and developers
• solving the right problem for the users.
• have clear, high-level specification of the system to be built.
• solving a problem that is feasible from all perspectives, not
only technical but human
• customers will be able to use the system, like it, make
effective use of it, and that the system will not have
undesirable side effects
• have the trust and confidence of the customers
• gained knowledge of the domain of the system
• they have a variety of peripheral or ancillary information about
the system useful for making low-level tradeoffs and design
decisions.
• prevented the system from being overly specified
• have freedom to make implementation decisions.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Outcomes of a Poor Process

• buyers and users can be dissatisfied
• developers did not really listen to them, or if the developers dominated

the process and tended to force their own views and interpretations on
the buyers and users.

• a chaotic development process -- developers are missing important
information
• requiring additional meetings with the buyers and users
• may make the wrong decisions or tradeoffs
• requirements may change more often,
• greater need for configuration management, or in delays or wasted effort

in design and implementation
• cost and schedule overruns, and sometimes failed or canceled projects.

• developers are solving the wrong problem
• guarantees the failure of the whole project

• outcome
• loss of money for the company developing or buying the software,
• loss of reputation or credibility for the developers
• a decline in the developers’ morale.

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Underlying Difficulties

•Articulation Problems

•Communication Barriers

•Knowledge and Cognitive Limitations

•Human Behavior Issues

•Technical Issues

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Articulation Problems

• aware of needs, but unable to articulate them appropriately

• aware of a need but be afraid to articulate it

• not be aware of their needs

• users and developers different meanings for common terms

• users cannot don’t understand the consequences or
alternatives.

• no single person has the complete picture, no matter how
articulate a user may be

• developers may not really be listening to the users

• developers may fail to understand, appreciate, or relate to the
users

• developers overrule or dominate the users

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Communication Barriers

• users and developers come from different worlds and have
different professional vocabularies and views
• users - high level attributes like usability and reliability
• developers- lower-level attributes like resource utilization,
algorithms, and hardware/ software tradeoffs.

• natural languages are inherently ambiguous
• social interactions
• different personality types and different value systems among
people.
• can lead to unexpected difficulties in communication
• SIS example -- not UMass!
• project leader was a high-level person in the company, and he would only

talk to comparably high-level people in the university - deans and vice
presidents
• developers on the project would only talk to the IT & administrative staff in

the university who (they thought) would actually use system
• no one talked to faculty, students, and department staff

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Knowledge and Cognitive Limits

• requirements elicitor must have adequate domain
knowledge

•no person has perfect memory

• informal or intuitive statistics are frequently interpreted
differently

• scale and complexity

•preconceived approach to the solution of a problem

• “tunnel vision”

• impatience

• conflicts and ambiguities in the roles

• fear that installation of the software will necessitate
change

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Technical Issues

• complexity and social impact

• changing requirements

• changing software and hardware technologies

•many sources of requirements

•nature or novelty of the system

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

SW Requirements Process & Products

requirements
validation

requirements
elicitation

requirements
analysis

requirements
specification

Market Needs
Business Needs

System Requirements
Stakeholder Needs

Requirements Definition
Requirements Document

Vision Document

Requirements Specification
Behavioral Specification

System Specification
Functional Specification

Let’s look ahead

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

1. Introduction
• Purpose
• Scope
• Definitions, acronyms, abbreviations
• Reference documents
• Overview

2. Overrall Description
• Product perspective
• Product functions
• User characteristics
• Constraints
• Assumptions and Dependencies

3. Specific Requirements
 Appendices
 Index

1. Introduction
• Purpose
• Scope
• Definitions, acronyms, abbreviations
• Reference documents
• Overview

2. Overrall Description
• Product perspective
• Product functions
• User characteristics
• Constraints
• Assumptions and Dependencies

3. Specific Requirements
 Appendices
 Index

IEEE Standard for SRS

Anything that will limit the
developer’s options (e.g. regs,
reliability, criticality, hardware
limitations, parallelism, etc)

Summary of major functions,
e.g. use cases

All the requirements go in here
(i.e.this is the body of the document)
IEEE STD provides 8 different
templates for this section

Identifies the product
& application domain

Describes contents and
structure of the remainder
of the SRS

Describes all external interfaces:
 system, user, hardware, software
;also operations and site adaptation,
and hardware constraints

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Techniques for System Planning

•Business strategy
•Small organizations

•Large organizations

•Approaches
•Strength, Weaknesses, Opportunities, Threats (SWOT)

•Value Chain Model (VCM)

•Business Process Re-Engineering (BPR)

• Information Systems Architecture (ISA)

•Effectiveness vs. efficiency

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Approaches

• SWOT
• Top-down classification, ranking and selection of projects
based on: mission statement, internal strengths and
weaknesses, external opportunities and threats, objectives,
goals, strategies, and policies

• VCM
• Look at “value chain” – from raw materials to final products
sold and shipped to customers and identify critical areas
where IT can transform organization’s value chain

• BPR
•Aimed at radical redesign of business processes, based on
business process”ownership,” and horizontally cross-cutting
processes with end at points of contact with customers. IT
support enables BPR

• ISA
•A neutral architectural framework with stakeholders (planner,
owner, designer, builder, subcontractor) and activities(what,
how, where, who, when, why)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

SW Requirements Process

•Requirements identification

• Identification of software development constraints

•Requirements analysis

•Requirements representation

•Requirements communication

•Preparation for validation of software requirements

•Managing the requirements definition process definition
process.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Source of requirements

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Steps

•Requirements identification
•elicited from people or derived from system
requirements

•software needs, context analysis -> technical,
operational, and economic boundary conditions

•development constraints - costs, hardware/software,
reliability, portability

•Requirements analysis
•assessment of potential problems

•classification of requirements mandatory, desirable, and
non-essential

•evaluation of feasibility and risks

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

More steps

•Requirements representation

•models
• facilitate the description of complex aspects and reduce the

amount of complexity that must be comprehended at one time

• are inexpensive to build and modify compared to the real thing

• prototyping
• prototype is not a substitute for a thorough written specification

• a system can be captured in a prototype

•Requirements communication
• present to stakeholders for review

• Preparation for validation of software requirements

• establish criteria

• identify techniques to be used

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Managing the requirements
definition process

•a major project management challenge.

•an application that must support five different classes of
users with significantly different expectations could
easily involve a requirements definition process that is
five times more difficult than the corresponding process
for a homogeneous group

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Software Requirement Products

•Requirements definition
•Functional

•Non-functional

• Inverse

•Design & implementation constraints

•Requirement documents
•Standards

•Customer/Developer
•Objectives
•Ranking of attributes
•Key contents

“C-requirements”
“D-requirements”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

“C-requirements”

• Functionality
• Information definitions
•Critical non-functional requirements
•Critical design constraints
• Acceptance criteria

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

“D-requirements”

• Functionality
• Information definitions
• Interfaces to external systems
•Critical non-functional requirements
•Critical design constraints
• Acceptance criteria and tests

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

SW Requirements Process

•Requirements identification

• Identification of software development constraints

•Requirements analysis

•Requirements representation

•Requirements communication

•Preparation for validation of software requirements

•Managing the requirements definition process definition
process.

requirements
validation

requirements
elicitation

requirements
analysis

requirements
specification

more traditional “requirements engineering” process

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Requirements Engineering

• requirements elicitation
• the process through which the customers, buyers, or users of
a software system discover, reveal, articulate, and understand
their requirements.

• requirements analysis
• the process of reasoning about the requirements that have
been elicited; it involves activities such as examining
requirements for conflicts or inconsistencies, combining
related requirements, and identifying missing requirements.

• requirements specification
• the process of recording the requirements in one or more
forms, including natural language and formal, symbolic, or
graphical representations; also, the product that is the
document produced by that process.

• requirements validation
• the process of confirming with the customer or user of the
software that the specified requirements are valid, correct, and
complete.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Requirements Elicitation

•often called
• identifying, gathering, determining, formulating,
extracting, or exposing

• these terms have different connotations
•gathering suggests that the requirements are already
present somewhere and we need only bring them
together

• formulating suggests that we get to make them up

•extracting and exposing suggest that the requirements
are being hidden by the users

• some truth to all of these connotations

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

A General Elicitation Procedure

• identify relevant sources of requirements (the users).
• ask them appropriate questions to gain an understanding of

their needs.
• analyze the gathered information, looking for implications,

inconsistencies, or unresolved issues.
• confirm your understanding of the requirements with the

users.
• synthesize appropriate statements of the requirements.
• how?
• detailed processes
• specific questions or categories of questions to as
• structured meeting formats
• specific individual or group behaviors, or
• templates for organizing and recording information.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Participants = stakeholders
• lead = software engineer (software requirements engineer)
• responsible for producing the requirements specification

• support = other software engineers, documentation specialists, or
clerical staff.
• users = depends on application
• IS: sales representatives, order processing personnel, shipping

department personnel, and accounting personnel. Department
managers and company executives
• Embedded System: design engineers (HW & SW), regulators,

system users, managers
• Productivity tools: users of existing packages, market researchers
• SIS: students, faculty, advisors, department staff, college staff,

registrars, bursars, financial aid, accountants, financial officers,
admissions officers, administrators, laboratory technical staff, IT staff,
human resources staff, …

• no one person knows everything about what a software system
should do
• always many participants in a successful requirements elicitation

effort

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

General approach

•Asking
• Identify the appropriate person, such as the buyer or
user of the software, and ask what the requirements are.

•Observing and inferring.
•Observe the behavior of users of an existing system
whether manual or automated), and then infer their
needs from that behavior.

•Discussing and formulating
•Discuss with users their needs and jointly formulate a
common understanding of the requirements.

•Negotiating with respect to a standard set
•Beginning with an existing or standard set of
requirements or features, negotiate with users which of
those features will be included, excluded, or modified.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

General approach

•Studying and identifying problems.
•Perform investigations of problems to identify
requirements for improving a system.

•Discovering through creative processes
•For very complex problems with no obvious solutions,
employ creative processes involving developers and
users.

•Postulating
•When there is no access to the user or customer, or for
the creation of an unprecedented product, use creative
processes or intuition to identify features or capabilities
that the user might want.

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Traditional methods

• Interviewing customers and domain experts

•Questionnaires

•Observation

•Study of documents and software systems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Interviews

•Tutorial interview
•Expert offers potential solutions and alternatives

•Focused interview
•Analyst prepares topics but not questions

•Structured interview
•Analyst prepares & follows a flexible topic structure
•Open-ended questions

•Close-ended questions

•Card sorting, repertory grids

•Teachback interview
•Users describe problem solving activity to analyst

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Interviews

• Interviewing customers and domain experts

•Questions to be avoided
•Opinionated questions

•Biased questions

• Imposing questions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

questioning techniques

• scenario
•system-specific questions

• reflects less mature evaluation

•questionnaire
•more general items

• reflects more mature evaluation practices

• checklist
•domain-specific

• reflects more mature evaluation practices

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Scenario

•a specified sequence of steps involving the use or
modification of the system

•provides a means to characterize how well a particular
architecture responds to the

•demands placed on it by those scenarios test what we
normally call modifiability

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Scenario usage -- current practice

•Form
•narrative text

•Structured text

•Diagrammatic notation

• Images

•Animations and simulations

•Content
•System context

•System interaction

•System internals

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Purpose of Scenarios

•Concretize abstract models

•Scenarios instead of abstract models

•Scenario use with prototypes

•Complexity reduction

•Agreement and consistency

•Scenario usage with glossaries

•Reflection on static models

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

When to use scenarios

•When abstract modeling fails
•Cost

• Inherent complexity

•Team issues

• In conjunction with prototypes
•Can yield symbiotic results

•Steps
•Develop scenarios

•Develop prototypes

•Validate prototypes

•Refine scenarios

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

When to use scenarios

•For complexity reduction
•Use-case approach

•Scenarios become a structuring device

•For exception handling & identification

•For achieving partial agreement
•Stakeholders have different goals & interests

•Use scenarios to drive the agreement process

• In conjunction with glossaries
•Establish a common understanding of terms

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Questionnaire

•a list of general and relatively open questions that apply
to all systems

•how the requirements were generated and documented

•details of the requirements description
•user interface aspects separated from functional
aspects?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Checklist

•a more detailed set of questions that is developed after
much experience evaluating a common (usually
domain-specific) set of systems.

•help keep a balanced focus on all areas of the system

•more focused on particular qualities of the system than
questionnaires
•e.g., performance questions in a real-time information
system
• is the system writing the same data multiple times to disk?

• has consideration been given to handling peak as well as
average loads?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Questionnaires & Observation

•Questionnaires
• In addition to interviews

•Close-ended questions
•Multiple-choice questions

•Rating questions

•Ranking questions

•Observation
•Passive

•Active

•Carried for a prolonged period of time

•People tend to behave differently

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Other

•Study of documents and software systems
•Use case requirements
•Organizational documents

•System forms and reports

•Domain knowledge requirements
•Domain journals and reference books

•ERPS-s

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

simulations, prototypes, etc

•may help to create and to clarify the requirements

•performance models are an example of a simulation

• simulation or prototype may answer an issue raised by
a questioning technique
•e.g., what evidence do you have to support this
assertion?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Prototyping

• strategies

• throw-away prototype

• evolutionary prototype

• advantages
• users may be better able to understand and express their
needs by comparing to an existing or reference system

• process
• iterative process of building a prototype and evaluating it with
the users.

• each iteration allows the users to understand their
requirements better, including understanding the implications
of the requirements articulated in previous iterations.

• eventually, a final set of requirements can be formulated and
the prototypes discarded.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Prototyping

• distinguish the terms prototype and mock-up,
•A prototype demonstrates behavior of a part of the desired
system,
•A mock-up demonstrates the appearance of the desired
system
•mock-ups of user interfaces are especially common.

• beneficial only if the prototype can be built substantially faster
than the actual system
• prototyping should not be viewed as a euphemism for trial-

and-error programming or “hacking.”
• prototyping is properly used to elicit and understand

requirements, followed by a structured and managed process
to build the actual system
• useful in overcoming articulation problems and

communication barriers.

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Sample methods

•Cleanroom

• Joint Application Development (JAD)

•Rapid Application Development (RAD)

•Adaptive Loops Framework

•Critical Success Factors Analysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Cleanroom method

Customer/User
Feedback

Customer

Complete system

Increment 1
• Sign on/off
• setup

Increment 2
• Sign on/off
• Setup
• Panel navigation

Increment 3
• Sign on/off
• Setup
• Panel navigation
• Primary functions Increment 4

• Sign on/off
• Setup
• Panel navigation
• Primary functions
• Secondary functions

Requirements

Top Level Specs

Incremental
Development Plan

New
Reused
Stubbed

Customer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Joint Application Design

•a technique for promoting cooperation, understanding,
and teamwork among buyers, users, and developers

• facilitates creating a shared vision of what the system
should be

• four main tenets of JAD
•group dynamics (using facilitated group sessions to
enhance the capabilities of individuals)

• the use of visual aids to enhance communication and
understanding

•maintaining an organized, rational process

• “what you see is what you get” documentation
philosophy (using standard document forms that are
filled in and endorsed by all participants in a session).

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Joint Application Design

• two major steps:
• JAD/Plan
• addresses requirements elicitation and specification

• JAD/Design
• addresses software design.

• each step has three phases:
• customization
• consists of preparation tasks for the session
• organizing the team, tailoring the process for the particular system to be

built, and preparing materials

• session
• one or more structured and facilitated meetings involving the developers

and users
• requirements (or the design) are developed and documented

• wrap-up
• converting the information from the session phase into its final form, such

as the requirements specification document.

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Participants in JAD
• all participants need training in JAD techniques,
• session leader
• responsible for the overall success of a JAD effort
• leader and facilitator at meetings
• good meeting management skills and experience in the application area

• analyst
• responsible for the production of the output documents of the JAD sessions
• an experienced developer who can understand the technical issues

• executive sponsor
• manager or executive who has ultimate responsibility for the product being built

• user representatives
• requirements elicitation- managers or key people within the organization
• design - variety of other users

• Information systems representatives
• help the users understand what is and is not reasonable or feasible

• specialists
• from the user community
• from the developer community

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

JAD details
• JAD/plan customization phase
• conduct orientation
• organize the team
• tailor the process
• prepare materials

• the JAD/plan session phase
• conduct orientations
• define high-level requirements
• bound the scope of the system
• identify and estimate JAD/designs
• identify participants for JAD/design step
• schedule JAD/design meetings
• conclude the session phase

• JAD/plan wrap-up phase
• complete the JAD/plan document
• review the JAD/plan document.
• obtain executive sponsor approval

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

RAD

• Evolutionary prototyping

• CASE tools

• Specialists with Advanced Tools (SWAT)

• Interactive JAD

• Timeboxing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Adaptive Loops Framework

• similar in spirit to JAD - uses an adaptive
process of learning cycles or loops.

•developers are assisted by the users to gain new
viewpoints about their requirements, and through
reformulating the requirements, the user learns
more about them

•system receives pressure for evolution as the users
learn more about how it can be used, and the
system induces that learning on the users

•system evolves by actions of the developers, who
in turn gain enhanced understanding of the system
through that evolution.

• especially useful when there are requirements
articulation problems and to overcome the
technical issues of complex systems.

CMPSCI520/620 06 Requirements

Rick Adrion 2004 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Critical Success Factors Analysis
• basic premise = the effectiveness of a system

typically depends on a small set of critical factors
• six major steps:

• understand the operation of the system.
• identify the factors that are critical for the effectiveness of
the system.
• identify the strengths and weaknesses of the system with
respect to each of
• these factors.
• identify areas of problems and opportunities.
• gather relevant details for enhancing system
performance relative to these critical success factors.
• formulate requirements using these details.

• widely used in building information and decision
support systems
• useful in addressing some of the difficult technical

and cognitive issues of requirements elicitation.

