CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

c"ﬂ-‘;ﬂé‘;‘ 04-Notation

=Readings:
=*Fundamentals of Software Engineering, Ch. 5

=[[rW98] Roel Wieringa, “A survey of structured and object-oriented
software specification methods and techniques,” ACM Computing
Surveys December 1998

UNIVERSITY; OF - MASSACHUSETTS: AMHERST 4]

COMMTER How to write it down?

=natural language
= structured natural language
= pictorial notation
=Box-and-Arrow Charts
=Graphs
= Flowgraphs
=Parse Trees
= Call graphs
= Dataflow graphs
=Charts, Diagrams
=data models
=formal language(s)
=state-oriented
=function-oriented
=object-oriented

CONPUTER TCAS Overview

Iniruder TCAS
p P
Transponder Reply TCAS Intermogation
Directional
Laterow - Toan | Traffic Advisory Only
TCAS Il Wertical Resolution A dvisonies (escape
maneuvers provided by the TCAS unit to
the pilot to solve a conflict)
Inderrogaior’ .
e} {m)
» Corventional Made » Detection = Traffic
= Selective Addmss = Resobution Advisary
Mode = Coondivation =Resalution
Adviscay
Mode §
Transponder
Oninidirec fonal
Antenna © Rannoch Corporation 1998

UNIVERSITYOF MASSACHUSETTS AMHERST %4

© Rick Adrion 2004 [except where noted]

UNIVERSITY; OF - MASSACHUSETTS: AMHERST

CONFHE Levison “Intentional” Spec

High-Level Functional Requirements

[1.18]

TCAS shall provide collision avoidance protection for any two aireraft closing
horizontally at any rate up 10 1200 knots and vertieally up to 10,000 foet per
minute.

Assumption: This requirement is deived from the assamption that
commercial aircraft can operate up te 600 knots and 3000 fom during
vertieal elimb or conrolled deseent (and therefore two plancs can close
horizontally up to 1200 knots and vertically up to 10,000 fpm).

[1.19)

TCAS shall handle encounters involving multiple aireraft in arcas with large
wummbers of aircraft within a selectod range (without ssturation of the aper-
ating froquencies)

[110.1]
‘TCAS shall operate in en-route and terminal areas with traffic densities
up to 0.3 aireralt per square nautical miles (i) (1., 24 aireralt within
5 i) (1213, [Page 202).
Assumption: Traffic deasity may increase w0 this level by 1990,
and this will be the maximum density over the next 20 years.
1192
TCAS shall operate: out ta 14 nantical miles (| Page 188)

UNIVERSITY;OF MASSACHUSETTS AMHERST 4

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

COMPUTER

»SciENeE TCAS Truth Tables for Threat_Range_Test

Other_Tracked_Range_Rate; 0 > 1085 gy

Other_Tracked_Range, ;3 > DMOD

Moddied_Tau_Capped, ¢,y < TRTHR

Other_Tracked_Rangey 535 = 12.0 gy,

Other_Tracked_Range_Rate ;4 * Other_Tracked_Range, 4o > H1
AND

Nuisance_Alarm_Fitter

Fiter_Status,_, in state Dont_Fiter_RA

5300

Intruder_Status_,, in state Threat

Range_Track_Firmness_ ;77 in one of {3, 4,5, 6, 7, &}

Range_Trackers, 5, In State Not_Iniialized

T
F

[~ -T"

|

==

I I [

| -1

UNIVERSITY:OF -MASSACHUSETTS: AMHERST.

CONPUTER TCAS Statechart

Thre

Descend

Gewm 3

UNIVERSITY. OF MASSACHUSETTS AMHERST.

© Rick Adrion 2004 [except where noted]

A RMSL

Srs

Alr-Layer

4y ualt = 9950, [£ ujalt < 2050 /3

tr et < 19500 fw

to < ulswitch = dowii

UNIVERSITY:OF -MASSACHUSETTS: AMHERST.

CXEEG: SMV program

MODULE main
VAR

u:boolean:
+ boolean
: boolean

switch: ip, down, testg
e 0.20000

it 0,200

AleLayer: High, Mid, Lowg:

DEFINE.

ASSIGN
ni(AI-Layer) = Mid
nexAltLayer) =

s - Highs

1+ AltLager

ini(Alarm) := Shutdove
nextAlarm) =
181014: Operating
1 Shutdown:
1 Al

UNIVERSITY. OF MASSACHUSETTS AMHERST:

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

CONPUTER Best laid plans ...

*FAA

="CAASD personnel have conducted safety
studies to evaluate the performance of each
successive version of the TCAS logic ..”

=“In a 1997 report on version 7, CAASD's Dr.
Michael McLaughlin examined the reduced
risk of collision in aircraft equipped with
TCAS 1I versus the risk in aircraft without
TCAS ... and concluded that

= "TCAS should reduce NMAC probability by at least
90 to 98 percent," depending on whether one or
both aircraft in an encounter are equipped with
TCAS.”

UNIVERSITY:OF :-MASSACHUSETTS; AMHERST 25

CONPUTER Natural Language

=Write in "plain English"
=All stakeholders understand natural language (?)
=Possible to augment with defined terms
=Use of punctuation for clarification

=Text/word processing systems help
automate/maintain/alter

=Examples of Natural Language artifacts:
=User manuals
=Requirements specifications
=Test Plans
=Development status reports

UNIVERSITY; OF ‘MASSACHUSETTS AMHERST 51X

© Rick Adrion 2004 [except where noted]

COMPUTER .. go oft astray

=The investigation into the chain of events behind
mid-air collision over southern Germany has
increasingly focused on the Swiss air traffic
control agency Skyguide. Intially Skyguide
blamed the Russian crew of one of the two
aircraft for ignoring warnings to dive. But since
then new important information has come to
light: The pilot of the Russian Tu-154 was given
conflicting instructions by air traffic control and
his onboard computer The Russian pilot was
given only 44 seconds warning A warning system
at the control centre was switched off for
maintenance Only one controller was on duty at
the time The centre's radar system does not
meet EU standards ... BBC

UNIVERSITY:OF -MASSACHUSETTS: AMHERS T+ [

COMMTER Natural language

=Inherently ambiguous and also complex
=From one of Michael Jackson’s books:
=In an airport at the foot of an escalator are two
signs
=“Shoes must be worn.”
=“Dogs must be carried.”

UNIVERSITY, OF MASSACHUSETTS AMHERST 41X

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

CONPUTER What does this mean?

=In logic it ’s clear
vx (OnEscalator(x) = Jy(PairOfShoes(y) A IsWearing(x,y))
VX ((OnEscalator(x) A IsDog(x)) = IsCarried(x)
=Oris it?
= Do dogs have to wear shoes?
=|s this a question of the types of x and y?
= What are “shoes”? What are “dogs”? What does it mean
to “wear shoes”?

= Why do the formalizations say “dogs are carried” and
“shoes are worn” while the signs say “must be”?

UNIVERSITY: OF MASSACHUSETTS: AMHERST 4 DEF:

COMPUTER Meaning of terms

=“dog” (noun)
=OED has 15 definitions
=11K words in the full definition

=“shoe” (noun)
=\Webster’s has six definitions including
=covering for the human foot
=a device that retards, stops, or controls the motion
of an object

=a device (as a clip or track) on a camera that
permits attachment of accessory items

=a dealing box designed to hold several decks of
playing cards

COMPUTER
Sseinee Mood

=The formalizations are in the indicative mood:
statements of fact

=The signs are in the optative mood: statements of
desire

=This kind of “mood mixing” increases confusion

in-dic-a-tive

1:0f, relating to, or constituting a verb form or set of verb forms
that represents the denoted act or state as an objective fact
op-ta-tive

1 a :of, relating to, or constituting a verbal mood that is
expressive of wish or desire
© 2003 by Merriam-Webster, Incorporated

UNIVERSITY; OF ‘MASSACHUSETTS AMHERST 51X 2

© Rick Adrion 2004 [except where noted]

UNIVERSITY:OF -MASSACHUSETTS: AMHERST: -4+ DE

COMMTER Optative vs. indicative mood

= Indicative: describes how things in the world are
regardless of the behavior of the system
=“Each seat is located in one and only one theater.”
= Optative: describes what you want the system to
achieve
=“Better seats should be allocated before worse seats at
the same price.”
=Principle of uniform mood
=Indicative and optative properties should be entirely
separated in a document
=Reduces confusion of both the authors and the readers

=Increases chances of finding problems

=If the software works right, both sets of properties will
hold as facts

UNIVERSITY OF MASSACHUSETTS AMHERST 4+ DE

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

CONPUTER Mood mixing: example

= The lift never goes from the nt" to the n+2nd floor without passing
the n+1%t floor.

= The lift never passes a floor for which the floor selection light inside
the lift is illuminated without stopping at that floor.

= If the motor polarity is set to up and the motor switch setting is
changed from off to on, the lift starts to rise within 250 msecs.

= If the upwards arrow indicator at a floor is not illuminated when the
lift stops at the floor, it will not leave in the upwards direction.

= The doors are never open at a floor unless the lift is stationary at
that floor.

= When the lift arrives at a floor, the lift-present sensor at the floor is
set to on.

= If an up call button at a floor is pressed when the corresponding
light is off, the Ii?ht comes on and remains on until the call is
serviced by the lift stopping at that floor and leaving in the upwards
direction.

UNIVERSITY:OF -MASSACHUSETTS; AMAERS T4 DEP;

COMPUTER Natural Language Summary

=Cannot reason definitively about natural language

=Cannot be sure that natural language artifacts are
consistent with other artifacts

= Assurances to stakeholders are shaky

UNIVERSITY OF ‘MASSACHUSETTS: AMHERST 4 DEP:

© Rick Adrion 2004 [except where noted]

CONFUTER Natural Language

= Advantages
. =Easy to train users
=Clarity is possible (but may be difficult)
=Completeness is possible (but by no mean assured)
=Easily modified
=1t is the “least common denominator”
=Disadvantages

=Determining consistency between natural language
artifacts and anything else is hard/subjective

=Ambiguity in natural language is easy and often intentional
=Clear natural language expression is very difficult

=The longer the text, the more information, the more the risk of
inconsistency, the harder it is to determine

= No way of knowing when a specification is "complete”

UNIVERSITY:OF -MASSACHUSETTS: AMHERS T+ [

COMMTER How to write it down?

sstructured natural language
= pictorial notation
=Charts, Diagrams, Box-and-Arrow Charts
=Graphs
= Flowgraphs
=Parse Trees
= Call graphs
= Dataflow graphs
=formal language(s)
=state-oriented
=function-oriented
=object-oriented

UNIVERSITY;OF MASSACHUSETTS AMHERST 3 DEP.

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

COMPITER Structured “Natural” Language

=Disciplined Use of Natural Language
=Response to natural language problems of:
=|mprecision
=Ambiguity
=Consistency (especially when due to size)
=Inability to reason effectively and definitively
=Familiar approaches:
=Restricted use of reserved terms

=Structuring (paragraph numbering, outline form,
templates, etc.)

=Other, earlier examples of disciplined use of natural
language:
=Legal documents
=Recipes
=Help systems

UNIVERSITYOF -MASSACHUSETTS: AMAERST 4 DEPA]

COMPUTER

=two kinds of TANKs

*STORAGE TANKs and COOKING TANKs
=each COOKING TANK is connected to one HEATER
=each HEATER belongs to one COOKING TANK
=BATCH of juice is allocated to one COOKING TANK
and belongs to exactly one RECIPE.

=each RECIPE is related to a JUICE SPECIFICATION

Sseienee Juice Plant Example
%

aan
LI

STORAGE COOKING

T
|)
\%

UNIVERSITY OF MASSACHUSETTS AMHERST 4 DEPA]

© Rick Adrion 2004 [except where noted]

CONPUTER Declarative vs. Imperative

=Declarative specification [indicative, descriptive]
=Pre and post condition pairs, where
=a precondition is a condition on the input and system state
at the start of executing the function and the postcondition is
a condition on the output and the system state after the
execution of the function.
=Implementation independent, but under specifies
=|mperative specification [optative?, prescriptive, operational]
=describe the activities to be performed to get from the
input and initial system state to the output and resulting
system state.
=L_eads to executable specification, but over specifies
by giving an implementation

UNIVERSITY:OF -MASSACHUSETTS: AMHERST. DEPAE;-

COMPUTER Declarative

Evert How input start hesting

Data fow Enput-batch 1D

[Data store input ALLOCATION OF BATCH TO COOKING TANK
HEATER OF COUKING TAMK

RECIPE OF BATCH

Ewent flaw autput: sterl cantealling

ata store output: TEMPERATURE RAMP DATA

Preconditian 1:

ateh |0 oocurs eactly ance in ALLDCATION OF BATCH TO LOPKING TANK

and allecation of batch is ceoking tank 1D

and recipe for batch 1D occurs in RECIPE OF BATCH with time and end temperature
Pesteesdition 1)

newel ramp |0 + bateh 1D + cooking tank 1D + heater Iy%rnd time + end t=mgerature
wxists in TEMPERATURE RAMP DATA

Frecondition 2

batch |0 does not secur seactly once in ALLOCATION OF BATCH TO COOKING TANK
Peostcondition 2, error

Frecondition 3.

racipe for batch 1D does nat cccur in RECIPE OF BATCH temperature

Pastcondition 3. error

But what about state
of other data?

Figure 17, A declarative specification.

UNIVERSITY, OF MASSACHUSETTS AMHERST 4 DEF:

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

COMPUTER
SCIENCE

Imperative

Event flows input: start heating

Diata flow input:batch 1D

Data store input ALLOCATION GF BATCH TO COCKIMG TANK
HEATER OF CODKING TANK

RECIPE OF BATCH

Evert flow autput: start contralling

Dlata stare autput: TEMPERATLIRE RAMP DWTA

Implementation
specific?

If tate 1D ocurs exactly ance in ALLOCATION OF H.ﬂTC%@ﬁKING TANK
than get coobing tank o fram ALLOCATION OF BATCH T KING TANE;
gat heatar |0 fram HEATER OF CODKING TANK;
If recioe far batch 1D occurs in RECIPE OF BATCH
than get end time and and temperature Tram RECIPE OF BATCH,
create ramp 10,
update TEMPERATLURE RAMP DATA

with ramp ID + batch ID + coaking tank 1D + heater |0 + emd time + el temparature

eIE errer.
elum arror

Figurs 18, An imperative sperification.

UNIVERSITY:OF :-MASSACHUSETTS; AMHERST 25

COMPUTER

seienee PSL (Problem Statement Language)

PROCEDURE:

1. compute gross pay from time card data

. compute tax from gross pay

. subtract tax from gross pay to obtain net pay
. update hourly employee record

. update department record accordingly

. generate paycheck

Note: if status code indicates that employee did
not work this pay period, no processing will be
done for this employee

oA WN

©1977 IEEE Computer Society Press

UNIVERSITY; OF ‘MASSACHUSETTS AMHERST 51X

© Rick Adrion 2004 [except where noted]

COMMTER PSL (Problem Statement Language)

DESCRIPTION:
this process performs those actions needed to interpret
time records to produce a pay statement for each hourly

KEYWORD§I
ATTRIBUTES ARE:
compIeX|t¥] -level

igh;
GENERATES ay-statement error-listing;
RECEIVES: ime-card;
SUBPARTS ARE: hourly- paycheck-valldatlon hourly-emp-update,
h-report-entry-generates, hourly-paycheck-| productlon

|ndependent

PART OF: payroll-processing;

DERIVES: ay-statement;

USING: ime-card, hourly-employee -record;

DERIVES: hourly-employee report;

USING: time-card, hourly-employee-record;

DERIVES error-llstlng

USING: time-card ourg/-employee -record;
PROCEDURE: read record, ad up hours, multi Iy by pay rate..

HAPPENS: number-of-payments TIMES-PE pay-period;
TRIGGERED BY: hourl y-emp-| processing-event;
TERMINATION-CAUSES: new-employee-processing-event;
SECURITY IS: company-only,

©1977 IEEE Computer Society Press

UNIVERSITY:OF -MASSACHUSETTS: AMHERST: -4+ DE

COMMTER Discipline Mechanisms in PSL

= Use of keywords (defined elsewhere in specification)
=fosters precision, clarity
=helps support consistency determination: some
=keyword fields have defined relations to others (eg. Input-to and
output-from)
= Use of templates
=facilitates determination of completeness
=fosters clarity
=facilitates consistency checking
= Use of structure:
HIERARCHY:
=standard practice for dealing with size, complexity

=exploits innate human capacity for abstraction
DATA FLOW:

CONTROL FLOW:

UNIVERSITY OF MASSACHUSETTS AMHERST 4+ DE

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

COMPUTER Structured Natural Language

=big step in the right direction

=improvement over unstructured natural language
=possible to determine some kinds of consistency thru:

=mechanisms for reducing ambiguity

=mechanisms for fostering completeness

sstructuring mechanisms for dealing with complexity
=but

sstilted form reduces clarity: less suitable for some key
stakeholder groups

=some residual reliance on natural language means
ambiguity remains

ssize is still a problem: PSL specs (for example) can be
huge: consistency determination is long/error prone

UNIVERSITY:OF :-MASSACHUSETTS; AMHERST:

COMPUTER Various charts o

=Flowcharts

=Storyboards

=Cause and Effect Diagram
=Pareto Chart

=Histogram

Reason Phone Not Answered

LAN Disectory
NotUpdated

Multimedia Storyboard

A gl Ao \«‘

P —
Burgunnd:

Wionf Extension

Line Busy

Phone Not
Answered

Call comes
efare/after

Athinch

Avway from
Desk

Atmecting,

UNIVERSITY, OF ‘MASSACHUSETTS AMHERST: &)

© Rick Adrion 2004 [except where noted]

COMPUTER

= pictorial notation

=Graphs

= Flowgraphs

=Parse Trees

= Call graphs

= Dataflow graphs

=formal language(s)

=state-oriented
=function-oriented
=object-oriented

UNIVERSITY:OF -MASSACHUSETTS: AMHERST:

SCIENCE How to write it down?

=Charts, Diagrams, Box-and-Arrow Charts

CONPUTER Various charts

=Flowcharts

=Storyboards

=Cause and Effect Diagram
=Pareto Chart

=Histogram ... and more

Histogram
5
4 o
2
bl 8
g §
ES =
o 2 =
=

11 12 13 14 145 16 17

Queue Time (minutes)

UNIVERSITY. OF MIASSACHUSETTS AMHERST:)

80/20 Rule

+ 80% of process defects arise from 20% of
the process issues.

+ 80% of delays in schedule arise from 20% of
the possible causes of the delays.

+ 80% of customer complaints arise from 20%
of your products or services.

Pareto Chart

50 e 100%
40 0%
/

04 B0%
20 4 40%
10 20%

0 f y Y y 0%

& 4 & 3 ¢

@'\) t?’@% wq'z e\u& &

6\% b o o
&

o
©2000-2003 iSixSigma LLC

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

cu{“{:ﬁ?ﬂ(‘;‘[‘ Pictorial and Diagrammatic Approaches

=Diagrams composed of visual elements
=rigorously defined (definable?) semantics
=used as modeling devices
=depict key structural aspects of system
=Benefits
=greatly improve clarity
=greatly improve clarity consistency
=facilitate completeness of notation
=sreduce ambiguity
=but
=reduce modifiability, perhaps significantly
=restrictions in semantics impede completeness
=more on these issues later.....

UNIVERSITY:OF :-MASSACHUSETTS; AMHERST 25

U808 Graphs

=Agraph, G = (N, E), is an ordered pair consisting of a node
set, N, and an edge set, E = {(n;, n))}
=|f the pairs in E are ordered, then G is called a directed graph,
and is depicted with arrowheads on its edges

=1f not, the graph is called an undirected graph

=Relations:
=A relation, R, over a set, S = {s;} is a set of ordered n-tuples
R={r}, where r,=(s;;, S5, -, Sin)
=A binary relation is a relation where all the tuples are 2-tuples
If (s;, S;) is an element of R, then we often write R S;
* Another view of relations:
* The relation, R, over the set S can be defined as:
R={(s; .., s;) | PRED(s, ..., s;)=True, for some predicate, PRED}
=|f the tuples are ordered, the relation is called an ordered

relation
=If the tuples, <t , t, , t; > are unordered, the relation is an
unordered relation

UNIVERSITY; OF ‘MASSACHUSETTS AMHERST 51X

© Rick Adrion 2004 [except where noted]

COMMTER How to write it down?

= pictorial notation

=Graphs

= Flowgraphs

=Parse Trees

= Call graphs

= Dataflow graphs

=formal language(s)

=state-oriented
=function-oriented
=object-oriented

UNIVERSITY:OF -MASSACHUSETTS: AMHERS T+ [

CONPUTER Relations & graphs

=Binary relations (sRs;) can be represented as a graph

=unordered
sR's;
=ordered

=General relations can be represented as multigraphs,
hypergraphs

UNIVERSITY, OF MASSACHUSETTS AMHERST 41X

9/19/04

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

COMPUTER Flowgraphs & relations

= Examples
=Let | = {all integers}, define Q= { (x,y,z) | x, y, z are integers and y =
X2 ,z2=x"3}
=Let S = {all states of the U.S., S}, define B ={(S;, §)| S, and S share
a border}
=Let L = {all statements L, in a program, P}, define ImmFol = {(L;, L)) |
the execution of Ly may immediately follow the execution of L; for
some execution of P}
= Flowgraphs
* Let S = {all statements s; in a program, P} and ImmFol
=Then FG = (S, ImmFol) is called the flowgraph of P
= FG is an ordered graph

= Every execution sequence (ie. the sequence in which the statements of P
are executed for a given execution of P) corresponds to a path in FG.

= However, the converse is not true. A path through FG may not correspond
to an execution sequence for P

= A loop in P appears as a cycle in FG

UNIVERSITYOF :-MASSACHUSETTS: AMAERST -4 DEPART!

COMPUTER Some Properties of Relations

= Some familiar properties of ordered binary relations, R, over
the set S={s,}:

=Symmetry: s;R's; ==> g R's; for all pairs, s;and s;in S

=Reflexivity: sRs,forallsinS

=Transitivity: s;Rs; and s;Rs, ==> s;R's, forall s, s and s,
in S

=A relation that is symmetric, reflexive and transitive is called
an equivalence relation

*If R = {(s; s)} is transitive, then C={(s,, s,)| there exists a
sequence, i1,i2, ..., in, such thats,=s;; R's;,, s;, R s;5,

Sin.1 RS, =5, }is called the transitive closure of R

=Antisymmetry: s;R's; ==>~(s; R s;) for all pairs, s;and s; in S

=Irreflexivity: s ~R s forall s in S

UNIVERSITY OF ‘MASSACHUSETTS: AMHERST 4 DEPART! B

© Rick Adrion 2004 [except where noted]

CONPUTER Example with an infeasible path

X>0Y>0 =0,Y=

\ 4
UNIVERSITY:OF -MASSACHUSETTS: AMHERS T+ DEPARTM

COMPITER Examples

= If S={all subroutines written in Fortran} s, R's, if and only if s, calls s,, then
Ris an irreflexive relation

= Let PS ={c,, all the statements in a program that consists of
a set of modules, M={m} },
INMOD = { (c,, ¢;) | ¢, and c; appear in
the same module m,}
INMOD is an equivalence relation

= Is the relation ImmFol transitive?

= What about

Fol ={ (L1, L2)| the execution of L2 may follow the execution of L1 for some
execution of P} ?

UNIVERSITY, OF MASSACHUSETTS AMHERST 4 DEPARTM B

9/19/04

10

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

U8 Paths

= A path, P, through an ordered graph G=(N ,E) is a sequence of edges, (<n ,,
N4> <Ni5 N> ...,<N;,n;>)suchthat nj=n; forall2sksn
= A path, UP, through an unordered graph UG=(N,U) is a sequence of edges, (
<Niq,Njg > <Njo N>, <n g, Ny >) such thatall of the <n j,, n > can be
ordéred'to assurs that n jz1 =Nz for fi2’<k<n
*In either case, n;, is called the start node and n ; is called the end node.
= The length of a path is the number of edges in the path
= A graph G is connected if and only if, for every pair of nodes, ny, n,, there is
path from one of them to the other with G considered to be an unoréered graph.

= A path, P, through a directed graph G = (N, E) is a sequence of edges, ((n; 4,

N) (Mg, Nig), (N Ny
" Tsuckthaf Nt = n,'v': forall 2< k <t

*n;, is called the start node and n;; is called the end node

= the length of a path is the number of edges in the path

= paths)are also frequently represented by a sequence of nodes (n; 4, n;,, n;3,
)

= Cycles

=a cycle in a graph G is a path whose start node and end node are the same

= a simple cycle in a graph G is a cycle such that all of its nodes are different
(except for the start and end nodes)

=ifa glraph G has no path through it that is a cycle, then the graph is called
acyclic

iz

UNIVERSITY:OF :-MASSACHUSETTS; AMHERST 25

FHHEE Trees

=Acycle in a graph G is a path whose start node and end
node are the same

= A simple cycle in a graph G is a cycle such that all of its
nodes are different (except for the start and end nodes)
=|f a graph G is connected and has no path through it that is a
cycle, then the graph is called acyclic.
= An acyclic unordered graph is called a tree
=|f the unordered version of an ordered graph is acyclic, the
graph is called a directed tree
= A collection of trees is called a forest
= |f the unordered version of an ordered graph has cycles, but
the ordered graph itself has no cycles, then the graph is
called a Directed Acyclic Graph (DAG)

UNIVERSITY OF ‘MASSACHUSETTS: AMHERST 4 DEP:

© Rick Adrion 2004 [except where noted]

CEHe Examples

Cycle:1,3,2,4,31
Simple cycle:1,2,3,1
@, Smley

UNIVERSITY; OF - MASSACHUSETTS: AMHERST. -+ DEP:

computek Examples
SCIENCE

N
/N

cyclic undirected \
graph .\ /.\
@) o

<

/ \ directed tree
o

\ directed acyclic
(@] b graph (DAG)
A\VA
O

)
@)

UNIVERSITY OF MASSACHUSETTS AMHERST 4+ DE

9/19/04

11

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

CONPUTER Abstract Syntax Tree (AST)

=a common form for representing expressions
=executable statements are expressions
=programs are expressions, where the operator is
execute and the operands are the statements
=2 kinds of nodes: operator and operands
=operator applied to N operands
=An abstract syntax graph G = (N,, N, E) where N, are
nodes that represent operators in the language, N, are
nodes that represent identifiers or literals , and E
represents is "applied to"

UNIVERSITY: OF MASSACHUSETTS: AMHERST 4 DEF:

COMPUTER Abstract Syntax Trees

=have many advantages

=provide a visual display of the body of an object
=body of an assignment, addition, while, etc.

=supports incremental modification
=incremental syntactic or semantic analysis

=basis for structural editing
=user is provided with a template and fills in the slots
=can assure syntactic consistency

=need to control granularity of consistency checking
=e.g., keystroke, semi-colon, user-request

=used to create other graph models

UNIVERSITY; OF ‘MASSACHUSETTS AMHERST 51X 2

© Rick Adrion 2004 [except where noted]

CONPUTER Abstract Syntax Tree

X:=A +5;

UNIVERSITY:OF -MASSACHUSETTS: AMHERST: -4+ DE

CONPUTER computation tree

=models all the possible executions of a system

=at each node, shows the state (value) of each variable
=effectively infinite number of paths

=some paths may be effectively infinite

UNIVERSITY OF MASSACHUSETTS AMHERST 4+ DE

9/19/04

12

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

COMPUTER

example computation tree .
l}ﬂﬂ_l;g'}'(i:lil P P seienee Computation Trees

total, value, count, maximum : pos int; =have advantages

total := 0; =represent the space that we want to reason about
<total, value, count, maximum> =for anything interesting they are too large to create or
count :=1;
<0.8,9,9> reason about
read maximum; <0,9,1,9> =other models of executable behavior are providing
while (count <= maximum) do abstractions of the computation tree model
l <0,8,1,1> l l <0,9,1,2> l -- [<0,9,1,max pos; =abstract values
read value;

’_./_‘ ’—>—‘ =abstract flow of control
total := total + value; <0,1,1,2> w. |[S0, max pos,1,2>

=specialize abstraction depending on focus of analysis

count: = count + 1;

endwhile;

print total;

UNIVERSITY:OF :-MASSACHUSETTS; AMHERST:

UNIVERSITY:OF -MASSACHUSETTS: AMHERST.

CONPUTER Callgraphs COMMTER Call Graph Example

=Let PROC = {procedures S; comprising a program P}
and CALLS ={(S;, S)) | S; is directly invoked from S,
during some execution of P}, then CG = (PROC, CALLS)

a
is called the Call Graph of P
=CGis
=a directed graph b c J (d J
=does not represent the order entities are invoked

=does not represent the number of times an entity is invoked

=a cycle in g indicates that the nodes along the cycle
syntactically participate in a recursive calling chain

=if P is written in a language that does not allow recursion, e f 9
then CG will be acyclic

=provides a framework for inter-component analysis

UNIVERSITY, OF ‘MASSACHUSETTS AMHERST:

UNIVERSITY. OF MASSACHUSETTS AMHERST:

© Rick Adrion 2004 [except where noted] 13

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

CONPUTER Control Flow Graph (CFG)

*G=(N, E, S, T) where

control;

=S is a designated start node;
=T is a designated final node

=E = { (ni, nj) | syntactically, the execution of nj
follows the execution of ni}

UNIVERSITY:OF :-MASSACHUSETTS; AMHERST:

=represents the flow of executable behavior

=the nodes N represent executable instructions
(statement or statement fragments);

sthe edges E represent the potential transfer of

CONPUTER Control Flow Graph Model

read n;

i=1;

sum = 0;

product :=1;

while i £n do
sum :=sum +1;
product := product * i;
= i+1;

endwhile;

write sum;

write product;

UNIVERSITY, OF ‘MASSACHUSETTS AMHERST: w&

© Rick Adrion 2004 [except where noted]

CONPUTER Control Flow Graph (CFG)

=nodes may correspond to single statements, parts of
statements, or several statements

=execution of a node means that the instructions
associated with a node are executed in order from the
first instruction to the last

=nodes are 1-in, 1-out

UNIVERSITY:OF -MASSACHUSETTS: AMHERST: q.ﬁ

comeuteR Reducing the CFG
SCIENCE

=basic blocks are nodes that
contain sequential
execution

=Can reduce the number of
nodes in the CFG, but may
add more complications to
the analysis

UNIVERSITY. OF MIASSACHUSETTS AMHERST: q.ﬁ

9/19/04

14

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

FMENE Benefits of CFG

= probably the most commonly used representation
= numerous variants
= basis for inter-component analysis
= collections of CFGs
= basis for various transformations
= compiler optimizations
= S/W analysis
= basis for automated analysis

= graphical representations of interesting programs are
too complex for direct human understanding

UNIVERSITYOF -MASSACHUSETTS: AMAERST 2]

CONPUTER Program Dependence Graphs

= Gis adirected graph, G = (V, E)
= edges in E are of several types, representing control and
data dependencies
= vertices in V represent assignment statements and
predicates and other special nodes
= Program Slice - Concept introduced by Mark Weiser in 1979
= Argued it was a mental abstraction that programmers used
when debugging
= Program slice S is a reduced, executable program obtained
from P by removing statements from P, such that S
replicates part of the behavior of P
= A slice includes all statements and predicates that might
affect V at point p.
= How can we use the Program Dependency Graph to create
slices?
= A slice corresponds to all nodes that are reachable from a
selected node (forward slice)

UNIVERSITY. OF MASSACHUSETTS: AMHERST 4

© Rick Adrion 2004 [except where noted]

COMMTER Some dataflow relations

= DataFlow(i, j) if node i creates data that node j uses
= Input(n) if nis a node that supplies initial input data
= Qutput(n) if n is a node that transmits data to end users
= EdgeAnnotation(e, text) if the string text describes the data
that flows along edge e
= NodeAnnotation(n, text) if the string text describes the
functioning of node n
= Questions this helps answer:
= Why create this data? Who uses this data? What results
does the end user see? What does the end user have to
input?
= Questions this can’t answer: What is the exact sequence
of events? How does a node do its job?

UNIVERSITY:OF -MASSACHUSETTS: AMHERST. D.

A Example

read n;

i=1,

sum :=0;

product :=1;

while i<n do
sum :=sum +1;
product := product * i;
i:=i+1;

endwhile;

write sum; Control (flow) dependencies

write product; Data (flow) dependencies

UNIVERSITY. OF MASSACHUSETTS AMHERST:)

9/19/04

15

CMPSCI520/620 Fall 2004- Lecture 04-Notation-I1

COMPUTER

sciENce Program Depe_ndence Graph

product :=1;

while i < ndo
sum = sum +1;
product := product * i;
i=i+1;

endwhile;

write sum;

write product;

UNIVERSITY:OF -MASSACHUSETTS: AMHERST.

© Rick Adrion 2004 [except where noted]

COMMTER Dataflow graphs & slices

= Uses
= Data flow coverage criteria for selecting test cases

= coverage criteria exercise subsets of control and data dependencies
in the hope of exposing faults

= debugging:

= which statements could have caused an observed failure?
= maintenance:

= which statements will be affected by a change?

= which statements could affect this statement?
= dependence analysis

= program dependencies provide a theory for restricting/focusing
attention

= Problems
= in practice, a program slice is often too big to be useful
= infeasible paths lead to imprecision
= complex data structures lead to imprecision

UNIVERSITY:OF -MASSACHUSETTS: AMHERST: q.

9/19/04

16

