
CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

04-Notation

ßReadings:
ßFundamentals of Software Engineering, Ch. 5

ß[[rW98] Roel Wieringa, “A survey of structured and object-oriented
software specification methods and techniques,” ACM Computing
Surveys December 1998

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Which of these are best
adapted to providing which
types of answers to which
types of stakeholders?

Which of these are best
adapted to providing which
types of answers to which
types of stakeholders?

How to write it down?

ßnatural language
ßstructured natural language
ßpictorial notation
ßBox-and-Arrow Charts
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ßCharts, Diagrams
ßdata models
ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

© Rannoch Corporation 1998

TCAS Overview

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Levison “Intentional” Spec

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

TCAS Truth Tables for Threat_Range_Test

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

RMSL

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

TCAS Statechart

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

SMV program
MODULE main
VAR

u: boolean;
v: boolean;
w: boolean;
switch: fup, down, testg;
alt: 0..20000;
prev-alt: 0..20000;
Alt-Layer: fHigh, Mid, Lowg;

…
DEFINE

stable := !(u|v|w);
in-Sys := 1;
in-Alt-Layer := in-Sys;
in-High := in-Alt-Layer & Alt-Layer = High;
in-Mid := in-Alt-Layer & Alt-Layer = Mid;
in-Low := in-Alt-Layer & Alt-Layer = Low;
in-Alarm := in-Sys;
in-Shutdown := in-Alarm & Alarm = Shutdown;

…

ASSIGN
init(Alt-Layer) := Mid;
next(Alt-Layer) :=

case
t1|t4 : High;
t2|t5|t6: Mid;
t3|t7 : Low;
1 : Alt-Layer;

esac;
init(Alarm) := Shutdown;
next(Alarm) :=
case

t8|t14: Operating;
t9 : Shutdown;
1 : Alarm;

esac;
…

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Best laid plans …

ßFAA
ß“CAASD personnel have conducted safety
studies to evaluate the performance of each
successive version of the TCAS logic ..”
ß“In a 1997 report on version 7, CAASD's Dr.
Michael McLaughlin examined the reduced
risk of collision in aircraft equipped with
TCAS II versus the risk in aircraft without
TCAS … and concluded that
ß "TCAS should reduce NMAC probability by at least
90 to 98 percent," depending on whether one or
both aircraft in an encounter are equipped with
TCAS.”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

 … go oft astray
ßThe investigation into the chain of events behind
mid-air collision over southern Germany has
increasingly focused on the Swiss air traffic
control agency Skyguide. Intially Skyguide
blamed the Russian crew of one of the two
aircraft for ignoring warnings to dive. But since
then new important information has come to
light: The pilot of the Russian Tu-154 was given
conflicting instructions by air traffic control and
his onboard computer The Russian pilot was
given only 44 seconds warning A warning system
at the control centre was switched off for
maintenance Only one controller was on duty at
the time The centre's radar system does not
meet EU standards … BBC

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Natural Language

ßWrite in "plain English"
ßAll stakeholders understand natural language (?)

ßPossible to augment with defined terms

ßUse of punctuation for clarification

ßText/word processing systems help
automate/maintain/alter

ßExamples of Natural Language artifacts:
ßUser manuals

ßRequirements specifications

ßTest Plans

ßDevelopment status reports

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Natural language

ßInherently ambiguous and also complex

ßFrom one of Michael Jackson’s books:
ßIn an airport at the foot of an escalator are two
signs
ß“Shoes must be worn.”

ß“Dogs must be carried.”

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

What does this mean?

ßIn logic it ’s clear
 "x (OnEscalator(x) fi $y(PairOfShoes(y) Ÿ IsWearing(x,y))

 "x ((OnEscalator(x) Ÿ IsDog(x)) fi IsCarried(x)

ßOr is it?
ß Do dogs have to wear shoes?
ß Is this a question of the types of x and y?

ß What are “shoes”? What are “dogs”? What does it mean
to “wear shoes”?

ß Why do the formalizations say “dogs are carried” and
“shoes are worn” while the signs say “must be”?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Mood

ßThe formalizations are in the indicative mood:
statements of fact

ßThe signs are in the optative mood: statements of
desire

ßThis kind of “mood mixing” increases confusion

in·dic·a·tive
1:of, relating to, or constituting a verb form or set of verb forms
that represents the denoted act or state as an objective fact
op·ta·tive
1 a :of, relating to, or constituting a verbal mood that is
expressive of wish or desire
© 2003 by Merriam-Webster, Incorporated

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Meaning of terms

ß“dog” (noun)
ßOED has 15 definitions
ß11K words in the full definition

ß“shoe” (noun)
ßWebster’s has six definitions including
ßcovering for the human foot
ßa device that retards, stops, or controls the motion
of an object
ßa device (as a clip or track) on a camera that
permits attachment of accessory items
ßa dealing box designed to hold several decks of
playing cards

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Optative vs. indicative mood

ß Indicative: describes how things in the world are
regardless of the behavior of the system
ß“Each seat is located in one and only one theater.”
ß Optative: describes what you want the system to
achieve
ß“Better seats should be allocated before worse seats at
the same price.”

ßPrinciple of uniform mood
ßIndicative and optative properties should be entirely
separated in a document
ßReduces confusion of both the authors and the readers
ßIncreases chances of finding problems
ßIf the software works right, both sets of properties will
hold as facts

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Mood mixing: example

ß The lift never goes from the nth to the n+2nd floor without passing
the n+1st floor.
ß The lift never passes a floor for which the floor selection light inside

the lift is illuminated without stopping at that floor.
ß If the motor polarity is set to up and the motor switch setting is

changed from off to on, the lift starts to rise within 250 msecs.
ß If the upwards arrow indicator at a floor is not illuminated when the

lift stops at the floor, it will not leave in the upwards direction.
ß The doors are never open at a floor unless the lift is stationary at

that floor.
ß When the lift arrives at a floor, the lift-present sensor at the floor is

set to on.
ß If an up call button at a floor is pressed when the corresponding

light is off, the light comes on and remains on until the call is
serviced by the lift stopping at that floor and leaving in the upwards
direction.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

•

Natural Language

ßAdvantages
ßEasy to train users
ßClarity is possible (but may be difficult)
ßCompleteness is possible (but by no mean assured)
ßEasily modified
ßIt is the “least common denominator”

ßDisadvantages
ßDetermining consistency between natural language
artifacts and anything else is hard/subjective
ßAmbiguity in natural language is easy and often intentional
ßClear natural language expression is very difficult
ßThe longer the text, the more information, the more the risk of
inconsistency, the harder it is to determine
ß No way of knowing when a specification is "complete"

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Natural Language Summary

ßCannot reason definitively about natural language

ßCannot be sure that natural language artifacts are
consistent with other artifacts

ßAssurances to stakeholders are shaky

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

How to write it down?

ßnatural language
ßstructured natural language
ßpictorial notation
ßCharts, Diagrams, Box-and-Arrow Charts
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Structured “Natural” Language

ßDisciplined Use of Natural Language
ßResponse to natural language problems of:
ßImprecision
ßAmbiguity
ßConsistency (especially when due to size)
ßInability to reason effectively and definitively
ßFamiliar approaches:
ßRestricted use of reserved terms
ßStructuring (paragraph numbering, outline form,
templates, etc.)

ßOther, earlier examples of disciplined use of natural
language:
ßLegal documents
ßRecipes
ßHelp systems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Declarative vs. Imperative

ßDeclarative specification [indicative, descriptive]

ßPre and post condition pairs, where
ßa precondition is a condition on the input and system state
at the start of executing the function and the postcondition is
a condition on the output and the system state after the
execution of the function.

ßImplementation independent, but under specifies

ßImperative specification [optative?, prescriptive, operational]

ßdescribe the activities to be performed to get from the
input and initial system state to the output and resulting
system state.
ßLeads to executable specification, but over specifies
by giving an implementation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Juice Plant Example

storage cooking

ßtwo kinds of TANKs
ßSTORAGE TANKs and COOKING TANKs

ßeach COOKING TANK is connected to one HEATER

ßeach HEATER belongs to one COOKING TANK

ßBATCH of juice is allocated to one COOKING TANK
and belongs to exactly one RECIPE.

ßeach RECIPE is related to a JUICE SPECIFICATION

 RECIPE

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Declarative

ACM Computing Surveys, Vol. 30, No. 4, December 1998

But what about state
of other data?

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Imperative

Implementation
specific?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

DESCRIPTION:
this process performs those actions needed to interpret

 time records to produce a pay statement for each hourly
employee;

KEYWORDS: independent;
ATTRIBUTES ARE:

complexity-level
high;

GENERATES pay-statement, error-listing;
RECEIVES: time-card;
SUBPARTS ARE: hourly-paycheck-validation, hourly-emp-update,

h-report-entry-generates, hourly-paycheck-production;
PART OF: payroll-processing;
DERIVES: pay-statement;
USING: time-card, hourly-employee-record;
DERIVES: hourly-employee-report;
USING: time-card, hourly-employee-record;
DERIVES: error-listing;
USING: time-card, hourly-employee-record;
PROCEDURE: read record, add up hours, multiply by pay rate…..
HAPPENS: number-of-payments TIMES-PER pay-period;
TRIGGERED BY: hourly-emp-processing-event;
TERMINATION-CAUSES: new-employee-processing-event;
SECURITY IS: company-only;

PSL (Problem Statement Language)

„1977 IEEE Computer Society Press

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

PROCEDURE:
1. compute gross pay from time card data
2. compute tax from gross pay
3. subtract tax from gross pay to obtain net pay
4. update hourly employee record
5. update department record accordingly
6. generate paycheck
Note: if status code indicates that employee did
not work this pay period, no processing will be
done for this employee

PSL (Problem Statement Language)

„1977 IEEE Computer Society Press

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Discipline Mechanisms in PSL

ßUse of keywords (defined elsewhere in specification)
ß fosters precision, clarity
ßhelps support consistency determination: some
ßkeyword fields have defined relations to others (eg. Input-to and

output-from)
ßUse of templates
ß facilitates determination of completeness
ß fosters clarity
ß facilitates consistency checking

ßUse of structure:
 HIERARCHY:
ßstandard practice for dealing with size, complexity
ßexploits innate human capacity for abstraction

 DATA FLOW:

 CONTROL FLOW:

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Structured Natural Language

ßbig step in the right direction
ßimprovement over unstructured natural language
ßpossible to determine some kinds of consistency thru:
ßmechanisms for reducing ambiguity
ßmechanisms for fostering completeness
ßstructuring mechanisms for dealing with complexity
ßbut
ßstilted form reduces clarity: less suitable for some key
stakeholder groups
ßsome residual reliance on natural language means
ambiguity remains
ßsize is still a problem: PSL specs (for example) can be
huge: consistency determination is long/error prone

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

How to write it down?

ßnatural language
ßstructured natural language
ßpictorial notation
ßCharts, Diagrams, Box-and-Arrow Charts
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Various charts

ßFlowcharts

ßStoryboards

ßCause and Effect Diagram
ßPareto Chart
ßHistogram

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Various charts

ßFlowcharts

ßStoryboards

ßCause and Effect Diagram
ßPareto Chart
ßHistogram … and more

80/20 Rule
• 80% of process defects arise from 20% of

the process issues.
• 80% of delays in schedule arise from 20% of

the possible causes of the delays.
• 80% of customer complaints arise from 20%

of your products or services.

©2000-2003 iSixSigma LLC

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Pictorial and Diagrammatic Approaches

ßDiagrams composed of visual elements
ßrigorously defined (definable?) semantics
ßused as modeling devices
ßdepict key structural aspects of system
ßBenefits
ßgreatly improve clarity
ßgreatly improve clarity consistency
ßfacilitate completeness of notation
ßreduce ambiguity
ßbut
ßreduce modifiability, perhaps significantly
ßrestrictions in semantics impede completeness
ßmore on these issues later.....

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

How to write it down?

ßnatural language
ßstructured natural language
ßpictorial notation
ßCharts, Diagrams
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Graphs

ßA graph, G = (N, E), is an ordered pair consisting of a node
set, N, and an edge set, E = {(ni, nj)}
ßIf the pairs in E are ordered, then G is called a directed graph,
and is depicted with arrowheads on its edges
ßIf not, the graph is called an undirected graph

ßRelations:
ßA relation, R, over a set, S = {st} is a set of ordered n-tuples
 R = {ri}, where ri = (si,1, si,2, ... , si,n)
ßA binary relation is a relation where all the tuples are 2-tuples

If (si, sj) is an element of R, then we often write siR sj

• Another view of relations:
• The relation, R, over the set S can be defined as:

 R= { (si, .., sj) | PRED(si, ..., sj) = True, for some predicate, PRED}
ßIf the tuples are ordered, the relation is called an ordered
relation
ßIf the tuples, <ti,1 , ti,2 , ti,n> are unordered, the relation is an
unordered relation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Relations & graphs

ßBinary relations (siR sj) can be represented as a graph
ßunordered

ßordered

ßGeneral relations can be represented as multigraphs,
hypergraphs

siR sj

si sj

si sj

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Flowgraphs & relations

ßExamples
ßLet I = {all integers}, define Q= { (x,y,z) | x, y, z are integers and y =

x**2 , z = x**3 }

ßLet S = {all states of the U.S., Si}, define B = { (Si, Sj) | Si and Sj share
a border}

ßLet L = {all statements Li in a program, P}, define ImmFol = {(Li, Lj) |
the execution of Lj may immediately follow the execution of Li for
some execution of P}

ßFlowgraphs
• Let S = {all statements si in a program, P} and ImmFol

ßThen FG = (S, ImmFol) is called the flowgraph of P
ß FG is an ordered graph

ß Every execution sequence (ie. the sequence in which the statements of P
are executed for a given execution of P) corresponds to a path in FG.

ß However, the converse is not true. A path through FG may not correspond
to an execution sequence for P

ß A loop in P appears as a cycle in FG

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Example with an infeasible path
1

X > 0

Y := 5

X * Y > 0

Z := 10 Z := 20

X := Y + Z

2 3

4

5 6

7

Y := X / 2

X < = 0

X < = 0, Y = 5

X > 0

X > 0, Y > 0

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Some Properties of Relations

ßSome familiar properties of ordered binary relations, R, over
the set S={sk}:
ßSymmetry: si R sj ==> sj R si for all pairs, si and sj in S

ßReflexivity: s R s, for all s in S

ßTransitivity: si R sj and sj R sk ==> si R sk, for all si, sj and sk

in S

ßA relation that is symmetric, reflexive and transitive is called
an equivalence relation

ßIf R = {(si, sj)} is transitive, then C={(sa, sb)| there exists a
sequence, i1, i2, ..., in, such that sa=si1 R si2, si2 R si3,

sin-1 R sin = sb } is called the transitive closure of R

ßAntisymmetry: si R sj ==> ~(sj R si) for all pairs, si and sj in S

ßIrreflexivity: s ~R s for all s in S

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Examples

ß If S={all subroutines written in Fortran} s1 R s2 if and only if s1 calls s2, then
R is an irreflexive relation
ß Let PS ={ce, all the statements in a program that consists of
 a set of modules, M={mt} },
 INMOD = { (ce, cf) | ce and cf appear in

the same module mt }
 INMOD is an equivalence relation

ß Is the relation ImmFol transitive?

ßWhat about
Fol = { (L1, L2) | the execution of L2 may follow the execution of L1 for some

execution of P} ?

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Paths
ß A path, P, through an ordered graph G=(N ,E) is a sequence of edges, (<n i,1,

n j,1 >, <n i,2, n j,2 >, ... , <n i,t, n j,t >) such that n j,k-1 = n i,k for all 2 ≤ k ≤ n
ß A path, UP, through an unordered graph UG=(N,U) is a sequence of edges, (

<n i,1, n j,1 >, <n i,2, n j,2 >, ... , <n i,t, n j,t >) such that all of the <n i,z , n j,z> can be
ordered to assure that n j,z-1 = n i,z for all 2 ≤ k ≤ n
ß In either case, n i,1 is called the start node and n j,t is called the end node.
ßThe length of a path is the number of edges in the path

ß A graph G is connected if and only if, for every pair of nodes, n1, n2, there is
path from one of them to the other with G considered to be an unordered graph.
ß A path, P, through a directed graph G = (N, E) is a sequence of edges, ((ni,1,

nj,1), (ni,2, nj,2), ... , (ni,t, nj,t))
 such that nj,k-1 = ni,k for all 2≤ k ≤t
ß ni,1 is called the start node and nj,t is called the end node
ß the length of a path is the number of edges in the path
ß paths are also frequently represented by a sequence of nodes (ni,1, ni,2, ni,3,

…, ni,t)
ß Cycles
ß a cycle in a graph G is a path whose start node and end node are the same
ß a simple cycle in a graph G is a cycle such that all of its nodes are different

(except for the start and end nodes)
ß if a graph G has no path through it that is a cycle, then the graph is called

acyclic

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Examples

1

3

5

2

4

Cycle:1,3,2,4,3,1

Simple cycle:1,2,3,1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Trees

ßA cycle in a graph G is a path whose start node and end
node are the same

ßA simple cycle in a graph G is a cycle such that all of its
nodes are different (except for the start and end nodes)

ß If a graph G is connected and has no path through it that is a
cycle, then the graph is called acyclic.

ßAn acyclic unordered graph is called a tree
ßIf the unordered version of an ordered graph is acyclic, the
graph is called a directed tree

ßA collection of trees is called a forest

ß If the unordered version of an ordered graph has cycles, but
the ordered graph itself has no cycles, then the graph is
called a Directed Acyclic Graph (DAG)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Examples

tree
directed tree

cyclic undirected
graph

directed acyclic
graph (DAG)

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Abstract Syntax Tree (AST)

ßa common form for representing expressions
ßexecutable statements are expressions

ßprograms are expressions, where the operator is
execute and the operands are the statements

ß2 kinds of nodes: operator and operands
ßoperator applied to N operands

ßAn abstract syntax graph G = (N1, N2, E) where N1 are
nodes that represent operators in the language, N2 are
nodes that represent identifiers or literals , and E
represents is "applied to"

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

:=

X

A

+

5

X:= A + 5;

Abstract Syntax Tree

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Abstract Syntax Trees

ßhave many advantages
ßprovide a visual display of the body of an object
ßbody of an assignment, addition, while, etc.

ßsupports incremental modification
ß incremental syntactic or semantic analysis

ßbasis for structural editing
ßuser is provided with a template and fills in the slots

ßcan assure syntactic consistency

ßneed to control granularity of consistency checking
ße.g., keystroke, semi-colon, user-request

ßused to create other graph models

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

computation tree

ßmodels all the possible executions of a system

ßat each node, shows the state (value) of each variable

ßeffectively infinite number of paths

ßsome paths may be effectively infinite

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

example computation tree

total, value, count, maximum : pos int;

read maximum;

total := 0;

count := 1;

while (count <= maximum) do

total := total + value;

count: = count + 1;

read value;

endwhile;

print total;

<total, value, count, maximum>

<0,J,1,2>

<0,J,1,J>

<0,J,1,1> <0,J,1,max pos>...

<0,1,1,2> <0, max pos,1,2>...

<1,1,1,2>

...

<0,J,J,J>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Computation Trees

ßhave advantages
ßrepresent the space that we want to reason about

ßfor anything interesting they are too large to create or
reason about

ßother models of executable behavior are providing
abstractions of the computation tree model
ßabstract values

ßabstract flow of control

ßspecialize abstraction depending on focus of analysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Callgraphs

ßLet PROC = {procedures Si comprising a program P}
and CALLS = {(Si, Sj) | Sj is directly invoked from Si

during some execution of P}, then CG = (PROC, CALLS)
is called the Call Graph of P

ßCG is
ßa directed graph

ßdoes not represent the order entities are invoked

ßdoes not represent the number of times an entity is invoked

ßa cycle in g indicates that the nodes along the cycle
syntactically participate in a recursive calling chain

ßif P is written in a language that does not allow recursion,
then CG will be acyclic

ßprovides a framework for inter-component analysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Call Graph Example

a

b c d

e f g

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Control Flow Graph (CFG)

ßrepresents the flow of executable behavior

ßG = (N, E, S, T) where
ßthe nodes N represent executable instructions
(statement or statement fragments);

ßthe edges E represent the potential transfer of
control;

ßS is a designated start node;

ßT is a designated final node

ßE = { (ni, nj) | syntactically, the execution of nj
follows the execution of ni}

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Control Flow Graph (CFG)

ßnodes may correspond to single statements, parts of
statements, or several statements

ßexecution of a node means that the instructions
associated with a node are executed in order from the
first instruction to the last

ßnodes are 1-in, 1-out

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

read n

i := 1

product := 1

sum := 0

while i ≤ n

write prod

write sum

sum :=

i:=i+1

prod :=

Control Flow Graph Model

read n;

i := 1;

sum := 0;

product := 1;

while i ≤ n do

 sum := sum +1;

 product := product * i;

 i:= i+1;

endwhile;

write sum;

write product;

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Reducing the CFG

ßbasic blocks are nodes that
contain sequential
execution

ßCan reduce the number of
nodes in the CFG, but may
add more complications to
the analysis

read n

i := 1

product := 1

sum := 0

while i ≤ n

write prod

write sum

sum :=

i:=i+1

prod :=

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Benefits of CFG

ß probably the most commonly used representation
ß numerous variants

ß basis for inter-component analysis
ß collections of CFGs

ß basis for various transformations
ß compiler optimizations

ß S/W analysis

ß basis for automated analysis
ß graphical representations of interesting programs are

too complex for direct human understanding

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Some dataflow relations

ß DataFlow(i, j) if node i creates data that node j uses

ß Input(n) if n is a node that supplies initial input data

ß Output(n) if n is a node that transmits data to end users

ß EdgeAnnotation(e, text) if the string text describes the data
that flows along edge e

ß NodeAnnotation(n, text) if the string text describes the
functioning of node n

ß Questions this helps answer:
ß Why create this data? Who uses this data? What results

does the end user see? What does the end user have to
input?

ß Questions this can’t answer: What is the exact sequence
of events? How does a node do its job?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Program Dependence Graphs

ß G is a directed graph, G = (V, E)
ß edges in E are of several types, representing control and

data dependencies
ß vertices in V represent assignment statements and

predicates and other special nodes
ß Program Slice - Concept introduced by Mark Weiser in 1979
ß Argued it was a mental abstraction that programmers used

when debugging
ß Program slice S is a reduced, executable program obtained

from P by removing statements from P, such that S
replicates part of the behavior of P

ß A slice includes all statements and predicates that might
affect V at point p.

ß How can we use the Program Dependency Graph to create
slices?
ß A slice corresponds to all nodes that are reachable from a

selected node (forward slice)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Example
entry

read n i := 1 product := 1sum := 0 while i ≤ n write prod write sum

sum := i := i+1 prod :=

read n;
i := 1;
sum := 0;
product := 1;
while i ≤ n do
 sum := sum +1;
 product := product * i;
 i:= i+1;
endwhile;
write sum;
write product;

Control (flow) dependencies
Data (flow) dependencies

CMPSCI520/620 Fall 2004- Lecture 04-Notation-II 9/19/04

„ Rick Adrion 2004 [except where noted] 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Program Dependence Graph
entry

read n i := 1 product := 1sum := 0 while i ≤ n write prod write sum

sum := i:=i + 1prod :=

read n;
i := 1;
sum := 0;
product := 1;
while i ≤ n do

sum := sum +1;
product := product * i;
i:= i+1;

endwhile;
write sum;
write product;

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL ALL 20042004

Dataflow graphs & slices

ß Uses
ß Data flow coverage criteria for selecting test cases

ß coverage criteria exercise subsets of control and data dependencies
in the hope of exposing faults

ß debugging:
ß which statements could have caused an observed failure?

ß maintenance:
ß which statements will be affected by a change?
ß which statements could affect this statement?

ß dependence analysis
ß program dependencies provide a theory for restricting/focusing

attention

ß Problems
ß in practice, a program slice is often too big to be useful
ß infeasible paths lead to imprecision
ß complex data structures lead to imprecision

