

COMPUTER Examinations and Major Assignments

- ■The course assignments will include 4-6 homework assignments and 3 projects.
- **There are no examinations**: the scheduled final exam date/time is the last date/time that projects & homework assignments will be accepted without penalty.
- I am usually flexible about late submission of assignments, but I will not accept a late submission of an assignment without prior approval.
- Homework assignments will include "essay" and analytical problems which cover topics from the lectures and readings.
- Projects will be team projects (except for PEEAS) on specifications, design, and coding and may require the use of software tools.

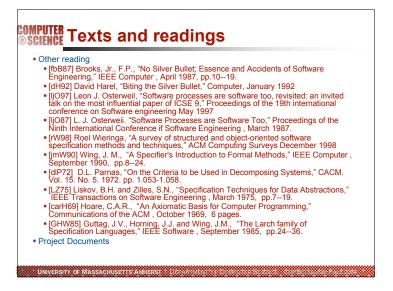
UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF COMPOSED SOENCE CAPECO 200-

COMPUTER Grading

- Attendance is not mandatory, but if you are absent from class, it is your responsibility to check on announcements & assignments made while you were away. I do count class participation as 10% of the final grade.
- Grades will be based on homework (45%), projects (45%) and class participation (10%). Final grades will be calculated with specific grades assigned to average scores in a more or less traditional manner. I reserve the right to review the grade distribution and lower the ranges of scores for a given grade
- Students always expected to work independently, except when collaboration is explicitly expected (such as for the team projects). Failure to do independent work may result in a failing grade for the assignment or, in some cases, for the course.

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SCIENCE. CI

COMPUTER Projects


- On-campus
- Planning to have teams specify, design, develop and implement CMS tools to be incorporated within the Sakai CLE framework (http://www.sakaiproject.org/)
- Each team will develop a different tool
- Discussion Forums, File Exchange, Internal Email, Online Journal/Notes. Real-time Chat, Video Services, Whiteboard, Calendar/Progress Review, Student Portfolios, etc.
- Each team will interview various stakeholders
- Off-campus
- TBD

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SCIENCE - CMPSCI \$20,680 FALL 2

COMPUTER Texts and readings

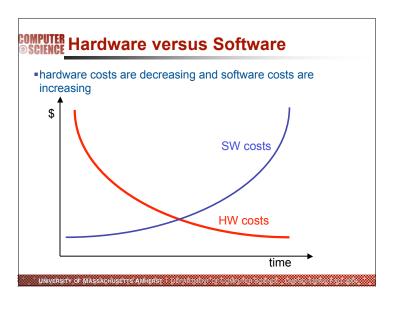
- Required text
- [GJM03] Fundamentals of Software Engineering by Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli, Second Edition, Prentice Hall; 2nd Edition (2003)ISBN 0-13-305699-6
- Suggested texts
 - [fpB95] The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition (2nd Edition) by Frederick P. Brooks Addison-Wesley Pub Co: 1st edition (1995)
 - [BJR98] The Unified Modeling Language User Guide by Grady Booch, Ivar Jacobson, James Rumbaugh Addison-Wesley Pub Co; 1st edition (1998)
- Other interesting books
- [mJ95] Software Requirements & Specifications: A Lexicon of Practice, Principles and Prejudices (Acm Press Books) by Michael Jackson Addison-Wesley Pub Co; 1st edition (1995)
- [blK98] Practical Software Requirements: A Manual of Content and Style by Benjamin L. Kovitz Manning Publications Company; (December 1998) [dB03] Software Design (2nd Edition) by David Budgen Pearson Addison Wesley; 2nd edition (2003)
- ■[GHJV95] Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides Addison-Wesley Pub Co; 1st edition (1995)

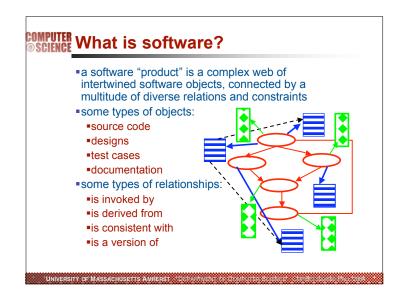
UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMPUTER:

COMPUTER 01-Introduction

- Readings:
- •Fundamentals of Software Engineering, Ch. 1
- The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition
- •"No Silver Bullet; Essence and Accidents of Software Engineering," Computer, April 1987
- "Biting the Silver Bullet," Computer, January 1992

UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMPUTER SCIENCE. CMPSci 520/620 Faul. 2004


COMPUTER Software as Key Infrastructure


- In roads, bridges, schools, banks, hospitals.....
- America's critical infrastructure
- ... provide the foundation for our national security, governance, economic vitality, and way of life
- ... their continued reliability, robustness, and resiliency create a sense of confidence and form an important part of our national identity and purpose
- ... frame our daily lives and enable us to enjoy one of the highest overall standards of living in the world.
- The facilities, systems, and functions that comprise our critical infrastructures
- are highly sophisticated and complex
- include human assets and physical and cyber systems that work together in processes that are highly interdependent

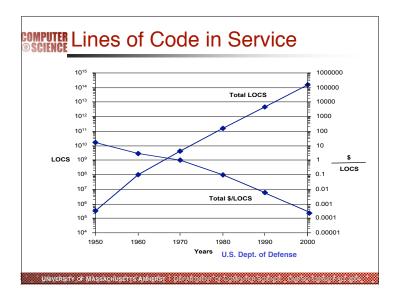
Software is the infrastructure in our infrastructure

UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMPUTER SCIENCE - CMPSci 520/620 Fall 2004

Science The nature of software software is a complex, intricately interconnected data aggregate software development is the process of creating such a complex product, while continuously assuring that it remains consistent software engineering combines some of the approaches of classical engineering with some of the abstract approaches of mathematics

COMPUTER Hardware versus Software

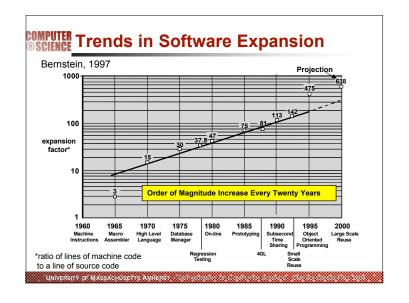
- once upon a time software was flexible and hardware was difficult to change.
- now software is brittle and expensive to change and maintain, while hardware has become much easier to design due to advances in CAD, ASICs, and FPGAs.
- even drivers -- software intended to be customized to hardware and be replaced -- are obstacles to success of new hardware. (See ATM vs. Gigabit Ethernet.)
- moreover, distribution of this inflexible media in binary has dramatically reduced opportunities for innovation in instruction sets and compilers.


Dave Patterson, University of California at Berkeley

UNIVERSITY OF MASSACHUSETTS AMHERST DEPARTMENT OF COMPUTER SCIENCE CIMPSOISSURSOFAUL 2004.

COMPUTER Hardware versus Software

- Is hardware development done better than software development?
- ■Yes, but...
 - software systems tend to be more complex
- tend to do new applications in software and well-understood applications in hardware
- despite the use of more rigorous and systematic processes, hardware systems fail too


UNIVERSITY OF MASSACHUSETTS AMHERST : DEPARTMENT OF GOMPUTER/SOCIOCE CMPSC/520689/F401/2004

COMPUTER What is novel about software?

- product is unprecidentedly complex
- application horizons expand very fast--with human demands/imagination
- construction is human-intensive
- •solutions require unusual rigor
- extremely malleable--can modify the product all too easily

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SCIENCE CMPSCI 520/680 FAL 2004

Practical engineering challenges -SW is -a critically important infrastructure component -a key enabler -militarily -economically -scientifically -culturally -BUT..... -expensive -usually of poor quality - It raises important scientific questions -foundation of the engineering solutions

COMPUTER What is software engineering?

- ■name coined at the NATO Science Committee Conference, October 1968
- engineering-- established, scientifically sound, practices that the typical practitioner follows

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SQUAME: OMESOIG20020 FALL 2004

COMPUTER What is software engineering?

- •is it engineering?
- •is management?
- ■is it art?
- •is it any kind of discipline?

UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMPUTER SCIENCE - CMPSCI \$20020 FALL 2004

COMPUTER What is software engineering?

- software-- ALL associated documents to assist with the development, operation, validation, and maintenance of programs/software systems
- •e.g., code, documentation, designs, requirements, user manuals, installation manuals, test cases, test results, trouble reports, revision history, make files,...
- software engineering-- the application of scientific knowledge to the the development and maintenance of software systems

UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMPUTER SCIENCE - CMPSci-520/620 FAU 2004

COMPUTER Other definitions

- •Ghezzi: A field of computer science that deals with the building of software systems that:
- ■are so large & complex to require team or teams
- exist in multiple versions
- used for many years
- undergo changes
- to repair defects
- ■to enhance features
- to add new features
- ■to remove features
- to adapt to new environment

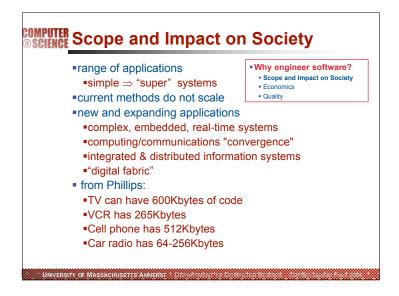
UNIVERSITY OF MASSACHUSETTS AMHERST : DEPARTMENT OF COMPUTER SCIENCE CMPSQL520/689-FAUL 2004

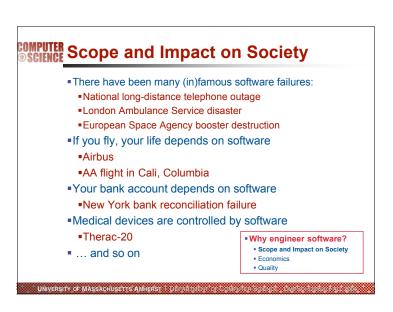
COMPUTER More definitions

- Parnas (original): multi-person construction of multiversion software
- Parnas (now): failed attempt by software researchers to stimulate the interest of engineers in software
- Need computer scientists, but need software engineers who are educated differently, know how to apply "software science," know broader areas of knowledge, are skilled in the discipline of design and analysis and are licensed.

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SQUENCE (CMPSQL520820 FALL 2004)

COMPUTER More definitions


- Shaw defines engineering as
- creating cost-effective solutions to practical problems by applying scientific knowledge to building things in the service of mankind
 - cost-effective not just solutions
- practical, i.e., for a customer
- things, i.e., artifacts
- in the service, i.e., society


UNIVERSITY OF MASSACHUSETTS AMBERST DEPARTMENT OF COMPLETE SCIENCE OMPSEC SALESS FACE 2004

COMPUTER Why engineer software?

- Scope and Impact on Society
- Economics
- Quality

UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMPUTER SCIENCE COMPSOI

COMPUTER Scope and Impact on Society •Why engineer software? Scope and Impact on Society Economics Quality Safety techniques are adapted from non-safety-critical applications are adapted from non-safety-critical Security and privacy tolerate breaches & failures discourse, law way behind technology ■"O Ring effect" technology removed for extended period of time "Firewall effect" •firewalls, barriers erected that limit the effectiveness & applicability, limit the evolution of technology UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SCIENCE - CMPSCI 520620 PALL.

COMPUTER (in)famous software failures:

- National long-distance telephone outage 1990
 - ■114 switching nodes failed -- out of service misinterpreted
 - ■Error in C code
 - •60k people without service, \$60M in lost revenue
- London Ambulance Service disaster
 - Incomplete, un-tuned and untested SW fielded; vehicle locator inaccurate, no paper backup
- European Space Agency booster destruction 1996
- 2 inertial computers, 2 on-board computers, both ICs failed, but due to an exception thrown based on earlier model of Ariane

UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMPUTER SOLENCE. CMRSci-520620 Fall 2004

• If you fly, your life depends on software • Airbus 1990 • 1st fly-by-wire - incidents 12/1000 in 1st year • AA flight in Cali, Columbia • Your bank account depends on software • New York bank reconciliation failure • Bank of NY - computer errors cause a \$32B overdraft • Medical devices are controlled by software • Therac-20 • ... and so on