
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

26- Analysis & Process

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Reminders, etc.

ßSchedule a Project#3 review

ßadrion@cs.umass.edu, cooper@cs.umass.edu

ßI am out 12/8-9, 12/16

ßRachel Smith, guest lecture 12/8

ßAll lecture notes, assignments through 12/1 are posted

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Approaches

ßStatic Analysis
ßInspections ¸

ßSoftware metrics ¸

ßSymbolic execution ¸

ßDependence Analysis

ßData flow analysis ¸

ßSoftware Verification ¸

ßDynamic Analysis
ßAssertions

ßError seeding,
mutation testing ¸

ßCoverage criteria ¸

ßFault-based testing ¸

ßSpecification-based
testing

ßObject-oriented testing

ßRegression testing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Putting it all together

ßunit testing

ßintegration & system testing

ßregression testing

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Scaffolding

Stubs

Unit testing

ßtest scaffolding
ßcan be created for general
or for specific tests

ßis composed of
ßone or more drivers
ßprovide a prototype activation
environment

ßdrivers initialize non-local
variables and parameters and call
the unit

ßone or more stubs
ßprovide a prototype of the units
used by the program to be tested

ßone or more oracles
ß identify the tests that cause
failures.

Driver

Instrument

Oracle

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Instrument

Oracle

Unit vs. Integration vs. System Testing

ß Integration testing
ß focuses on communication and

interface problems
ß tests derived from module

interfaces and detailed architecture
specifications
ßsome scaffolding is required

ßSystem testing
ß focuses on the behavior of the

system as a whole
ß tests are derived from requirements

specifications
ßcode is seen as a black box
ßsupport of scaffoldings not usually

needed
ß exception is embedded code, where

some simulation of the embedding
environment may be required

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Integration testing strategies

ßbig bang ßtop down

Outputs

Oracle

Stub

Stub

Outputs

Oracle

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Driver

Integration testing strategies

ß bottom up

Outputs

Oracle

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Relation to design

Traditional

Incremental

Prototype (spiral)

Critical Modules

Top Down

Bottom Up

Threads

Big Bang

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

O-O Programs are Different

ßHigh Degree of Reuse

ßDoes this mean more, or less testing?

ßUnit Testing vs. Class Testing
ßWhat is the right “unit” in OO testing?

ßReview of Analysis & Design

ßClasses appear early, so defects can be recognized
early as well

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Testing OOA and OOD Models

ßCorrectness (of each model element)
ßSyntactic (notation, conventions)
ß review by modeling experts

ßSemantic (conforms to real problem)
ß review by domain experts

ßConsistency (of each class)
ßRevisit Class Diagram
ßTrace delegated responsibilities
ßExamine / adjust cohesion of responsibilities

ßEvaluating the Design
ßCompare behavioral model to class model
ßCompare behavioral & class models to the use cases
ßInspect the detailed design for each class (algorithms & data
structures)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Unit Testing

ßWhat is a “Unit”?

ßTraditional: a “single operation”

ßO-O: encapsulated data & operations

ßSmallest testable unit = class
many operations

ßInheritance
ßtesting “in isolation” is impossible

ßoperations must be tested every place they are used

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Issues in O-O testing

ßNeed to re-examine all testing techniques and
processes

ßPrimary Issues:
ß implications of encapsulation

ß implications of inheritance

ß implications of genericity

ß implications of polymorphism

ßChanges concerns
ßState of instance variables

ßSequences of methods calls

ßMust test a class and its specializations

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Tests:
 input, expected output
 -1 Less
 0 Equal
 1 More

Tests:
 input, expected output
 -1 Less
 0 Equal
 1 More

Example

Base::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)

Base::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)

Derived::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{
 message(“More”)

 if(val==42) message(“Jackpot”)
}

Derived::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{
 message(“More”)

 if(val==42) message(“Jackpot”)
}

Tests:
 input, expected output
 -1 Less
 0 Equal
 1 More

OK
Change ------ Zero Equal
OK
Add 42 Jackpot

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

ßThe distance between object-oriented
specification and implementation is typically small
ßgap (and therefore usefulness) of the white-
box/black-box distinction is decreasing

ßBut object-oriented specification describes
functional behavior, while the implementation
describes how that is achieved
ßThese techniques can be adapted to method
testing, but are not sufficient for class testing
ßConventional flow-graph approaches
ßmay be inconsistent the object-oriented paradigm
ßmethod-level control faults are not likely

White-box vs. Black-box Testing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Black-box O-O Testing
ßConventional black-box methods are useful for object-
oriented systems
ßerror-guessing strategies
ßverification of ADTs can be adapted to object-
oriented systems

ßOther approaches
ßutilize specifications integrated with the
implementation as assertions
ßspecification integrated with the implementation
as dynamic assertions
ßC++ assertions or Eiffel pre/post-conditions offer
similar self-checking

ßUtilize method (event) sequence information
ßusually don’t have history of method invocations
so can’t do this with assertions

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Encapsulation
ßnot a source of errors but may be an obstacle to testing
ßhow to get at the concrete state of an object?
ßuse the abstraction
ßstate is inspected via access methods
ßequivalence scenarios
ß comparing sequences of events
ß state is implicitly inspected by comparing related behavior

ßexamine sequences of events
ß need to be able to define what are equivalent sequences and need to

determine equal states
ßuse or provide hidden functions to examine the state
ßuseful for debugging throughout the life of the system
ß but modified code, may alter the behavior
ß especially true for languages that do not support strong typing

ßproof-of-correctness techniques
ßa proved method could be excused from testing to bootstrap testing

of other methods
ßstate reporting methods tend to be small and simple, they should be

relatively easy to prove

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Implications of Inheritance

ßrule rather than the exception?

ßinherited features usually require re-testing
ßbecause a new context of usage results when features
are inherited

ßmultiple inheritance increases the number of contexts to
test

ßspecialization relationships
ß implementation specialization should correspond to problem
domain specialization

ßreusability of superclass test cases depends on this

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Base class contains:
inherited(int x)
redefined() - returns a number in range 1 to 10 inclusive

Base class contains:
inherited(int x)
redefined() - returns a number in range 1 to 10 inclusive

Derived class contains:
redefined() - returns a number in range 0 to20 inclusive
//inherited() is inherited

Derived class contains:
redefined() - returns a number in range 0 to20 inclusive
//inherited() is inherited

inherited contains the code:
if (x<0)
 x = x/redefined()
return x

inherited contains the code:
if (x<0)
 x = x/redefined()
return x

have to test
when x<0, could
divide by 0

Which fns must be tested

ß derived::redefined has to be tested afresh
ß does derived::inherited() have to be retested?

ß derived::inherited() may not have to be completely tested
ß if code in inherited() doesn’t depend on redefined(), doesn’t call it nor call any code

that indirectly calls it

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Inheritance Testing

ßflattening inheritance

ßeach subclass is tested as if all inherited features were
newly defined

ßtests used in the super-classes can be reused

ßmany tests are redundant

ßincremental testing
ßreduce tests only to new/modified features

ßdetermining what needs to be tested requires automated
support

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Polymorphism

ßin procedural programming, procedure calls are
statically bound
ßeach possible binding of a polymorphic component
requires a separate set of test cases
ßmany server classes may need to be integrated
before a client class can be tested

ßmay be hard to determine all such bindings
ßcomplicates integration planning and testing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Shape

move()

Circle

resize()

Square

resize()

Ellipse

resize()

Q: What if implementation of resize()
for each subclass calls inherited
operation move() ?

A: Shape cannot be completely tested unless
we also test Circle, Square, & Ellipse!

Testing under Inheritance

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Integration Testing

ßO-O Integration: Not Hierarchical
ßCoupling is not via subroutine

ß“Top-down” and “Bottom-up” have little
meaning

ßIntegrating one operation at a time is difficult
ßIndirect interactions among operations

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

O-O Integration Testing

ßThread-Based Testing
ßIntegrate set of classes required to respond to one input or
event
ßIntegrate one thread at a time
ßExample: Event-Dispatching Thread vs. Event Handlers in
Java
ß Implement & test all GUI events first
ßAdd event handlers one at a time

ßUse-Based Testing
ßImplement & test independent classes first
ßThen implement dependent classes (layer by layer, or cluster-
based)
ßSimple driver classes or methods sometimes required to test
lower layers

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Test Case Design
ß Focus: “Designing sequences of operations to exercise the states of a class

instance”
ß Challenges
ßObservability - Do we have methods that allow us to inspect the inner state of

an object?
ß Inheritance - Can test cases for a superclass be used to test a subclass?

ß Test Case Checklist
ß Identify unique tests & associate with a particular class
ßDescribe purpose of the test
ßDevelop list of testing steps:
ß Specified states to be tested
ß Operations (methods) to be tested
ß Exceptions that might occur
ß External conditions & changes thereto
ß Supplemental information (if needed)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Processes

ßSoftware processes are:
ßthe set of activities, methods, and practices that are used in
the production and evolution of software
ßdevices for creating, modifying, analyzing, understanding
software artifacts and products

‹ Hypothesis: Processes are software
ß Improve quality by improving processes

ßBuild in quality in, don’t “test in” quality (manufacturing)
ßUse processes to manage complex activities
ßMany observed “process errors”

ßProposed approach
ßUse computers to help perform processes
ßAnalyze processes to determine and eliminate defects
ßUse demonstrably superior processes to identify risks,
mitigate their consequences, demonstrate quality

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Process as Software

ßSoftware processes should be developed using a
(Software development process) development process

ßProcess Requirements
ßKey to designing suitable process

ßBasis for evaluation and improvement of process

ßProcess Specification/Modeling/Design
ßHelps conceptualization, communication, visualization

ßCan be management aid

ßProcess Code
ßProvides rigor and complete details

ßBasis for execution/tool support and integration

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Process Code

ßProvides details and elaborations upon process design

ßTries to include details omitted from model/design

ßSupports more detailed, precise, definitive reasoning

ßVehicle for meshing process control with product data at
arbitrarily low levels of detail

ßProvides superior visibility enabling better control

ßBasis for better predictability

ßBasis for process enaction/execution

ßBlueprint for tool integration

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Process as Software

ßSoftware processes should be developed using a (Software
development process) development process

ßProcess Measurements and Evaluation

ßResults of Static Analysis and Dynamic Measurement fi
Basis for Process Maintenance (i.e., Process Improvement)

OTHER INSTANCES
OF THE PRODUCT

P
R
O
D
U
C
T

O
B
J
E
C
T

MANUALS

PROCESS
EXECUTION
DATA

QUALITY
CONTROL
DATA

PROCESS
DOCUMENTATION Software

Practioner

APPL INSTANCE

USER

sw product

template Software
Process

Developer

process

__

code

Software
process
design

Software
process

requirements Software
execution
histories

&
analyses

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Process Formalisms

ßTechniques
ßLanguages
ßprocedural
ß rule-based
ßobject-oriented

ßModeling formalisms
ßData flow diagrams
ßPetri Nets
ßFlow graphs

ßKey considerations
ßconcurrency
ßexception handling
ßresource specification
ßself-modification/long lifetime
ßconstraint management
ßartifact specification/management
ßreal-time
ßvisualizability

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Language-based Formalisms

ßMore traditional coding languages:

ßProcedural (Sutton's Appl/A)

ßRule-based (Kaiser's Marvel)

ßFunctional Hierarchy (Katayama’s HFSP)

ßLaw based (Minsky)

ßObject Oriented (schema definition languages)

ßKey issue: developing abstractions to facilitate process
definition

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

HFSP design model
(a) JSD(Real_World | Design_Spec) =>
(1)Develop_Spec(Real_World_Desc |System_Spec_Diagram)
(2)Develop_Impl(System_Spec_Diagram |System_Impl_Diagram)
(3)Where Real_World_Desc = Interview(Users, Developers,Real_World)
(4) Design_Spec = union(System_Spec_Diagram, System_Impl_Diagram)
Second_level
(b) Develop_Spec(Real_World_Desc |System_Spec_Diagram) =>

(1)Develop_System_Model(Real_World_Desc |Real_World_Model,
Init_System_Spec_Diagram)

(2)Develop_System_Func(Real_World_Model, Init_System_Spec_Diagram
|System_Spec_Diagram)

Third_level
(c) Develop_System_Model(Real_World_Desc
|Real_World_Model, Init_System_Spec_Diagram) =>

(1)Model_Reality(Real_World_Desc |Real_World_Model)
(2)Model_System(Real_World_Model |Init_System_Spec_Diagram)

(d) Develop_System_Func(Real_World_Model,
Init_System_Spec_Diagram |System_Spec_Diagram)

(1)Define_Func(Real_World_Model, Init_System_Spec_Diagram |System_Function,
Function_Process)

(2)Define_Timing(Init_System_Spec_Diagram, System_Function |Timing)
(3)Where System_Spec_Diagram =
is_composed_of(Init_System_Spec_Diagram, System_Function, Function_Process, Timing)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

HFSP design model
(a) JSD(Real_World | Design_Spec) =>
(1)Develop_Spec(Real_World_Desc |System_Spec_Diagram)
Second_level
(b) Develop_Spec(Real_World_Desc |System_Spec_Diagram) =>

(1)Develop_System_Model(Real_World_Desc |Real_World_Model, Init_System_Spec_Diagram)
Third_level
(c) Develop_System_Model(Real_World_Desc
|Real_World_Model, Init_System_Spec_Diagram) =>

(1)Model_Reality(Real_World_Desc |Real_World_Model)
(2)Model_System(Real_World_Model |Init_System_Spec_Diagram)
Fourth_level
(e)Model_Reality(Real_World_Desc | Real_World_Model) =>

(1)Identify_Entity_Action(Real_World_Desc | Entity_Action_List)
(2)Draw_Entity_Structure(Entity_Action_List | Entity_Structure_List)
Where Real_World_Model = is(Entity_Structure_List)
 Real_World_Process = is(Entity_Structure)

(f) Model_System(Real_World_Model | Init_System_Spec_Diagram) =>
(1)Identify_Model_Process(Real_World_Model | M_Proc_Name_List)
(2)Connect(Real_World_Model, M_Proc_Name_List | Connection_List)
(3)Specify_Model_Process(Connection_List, Real_World_Model, M_Proc_Name_List

|Model_Process_List)
(4)Where Init_System_Spec_Diagram = is(Model_Process_List)
(5)Connection = is(State_Vector) or is(Data_Stream)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Process Formalisms

ßTechniques
ßLanguages
ßprocedural
ßrule-based
ßobject-oriented
ßModeling formalisms
ßData flow diagrams
ßPetri Nets
ßFlow graphs

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 18

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

IDEF 0

ßIntegration definition for
function modeling
ßAdapted from SADT

ßVery widespread usage in
industry

ßOverburdened DFD

ßOverly constrained
visualization

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

IDEF 0 Course Scheduling

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 19

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Other “DFD”’s

ßMany different adaptations of the basic idea

ßAdd control flow in

ßAdd various annotations on

ßAdd timing information

ßEtc.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Petri Net-like representations

ßParticularly effective for showing concurrency in
processes

ßWeak in dealing with artifacts

ßWeak in dealing with exception flow

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 20

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interview

Develop Spec

Develop Implementation

Developers
Real World

Users

RW_Desc

Sys_Spec_Diag

Sys_Impl_Diag +
Sys_Spec_Diag

Design_Spec

JSD

Petri net-like formalisms

Requirements specification process

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Init_Sys_Spec_Diagram

Model_System

RW_Model

RW_Model

Identify_Model_Process

Model_Process_
 Name_List

Connect

 Connection_List
 +
Model_Process_Name_List

Specify_Model_Process

Model_Process_List

RW_Model

Decomposition

Develop Spec

RW_Desc

Sys_Spec_Diag

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 21

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Req_Spec

Req_Spec

Identify_Object

Objects States

Identify_Operations

Operations Objects States

Establish_Visibility

Operations

Objects States

Visibility
Establish_Interface

Interface

Create_Implementation

Implementation Interface
Create_Design_Spec

Design_Spec

Design_Spec

BOOD

Design Process Petri net

Develop Implementation

Sys_Spec_Diag

Sys_Impl_Diag +
Sys_Spec_Diag

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Little-JIL

ßLittle-JIL
ßan agent coordination language. Programs describe the co-
ordination and communication among agents that enables
them to perform the process.
ßan executable, high-level language with formal yet graphical
syntax and

ßHypothesis:
ßCo-ordination structure is separable from other process
language issues.
ßProcesses are executed by agents that know how to perform
their tasks but benefit from co-ordination support.

ßDesign Principles
ßSimplicity
ßExpressiveness
ßPrecision

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 22

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Little JIL

ßFeatures
ßExplicit agent specifications

ßExplicit resource specification

ßAgent communication via agendas

ßVisualization

ßProactive and reactive control constructs

ßExplicit data flow

ßPrecondition and postcondition guards

ßCoordination Paradigm

ßCoordination is the process of building of program by gluing together
active pieces and is a vehicle for building programs that can include
“human and software processes”.

ßCollection of agents, communication mechanism, distribution
mechanism, assignment of tasks to agents.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

A “step” of Little-JIL

ßprovides scoping mechanism for control, data &
exception flow, and for agent and resource assignment.
ßorganized into static hierarchy, but can have a highly
dynamic execution structure including the possibility of
recursion and concurrency.
ßis a specification of a unit of work that is assigned to an
agent. “unit of encapsulation”

TheStepName

 Interface Badge
(includes resources)

Prerequisite Badge Postrequisite Badge

Sequencing
Reactions

Handlers

X X

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 23

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

TheStepName

 Interface Badge
(includes resources)

Prerequisite Badge Postrequisite Badge

Sequencing
Reactions

Handlers

X X

Little-JIL step’s Badge
ßControl flow :
ß 4 non-leaf steps
ß sequential, parallel, try, choice

ß Requisites :
ßMechanism to add checks before

and after a “step” is executed
ß pre-requisite, post-requisite

ß Exception & handlers:
ß augment the control flow construct

of the “step”

ß Messages & Reactions:
ß reactive power and expressive power

ß Parameters:
ß passed between steps allow

communication of information
necessary for the execution of a step
and for the return of step execution
results.

ß Resources:
ß are representations of entities that are

required during step’s execution e.g..
Steps execution agents, permission to
use tools, physical artifacts

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example

ßThe process involves 4 people:
ßTraveler; Travel agent; Two secretaries

ß “Rules”
ßWe try United first then USAir

ß If the traveler has gone over budget, and a Saturday stay over was
not included, the dates should be changed to include a Saturday stay
over and other attempts should be made.

ßAfter the airline reservations are made and the travel date and times
are set, car and hotel reservations should be made.

ßThe hotel reservations may either at Days Inn or, if budget is not tight,
a Hyatt.

ßThe car reservations may be made with either Avis or Hertz.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 24

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

A post requisite is used
in the Plane Reservation

step to check if
the airfare has not

exceeded the budget

A sequential step =
plane reservations

before hotel and car
reservations

try United
first then USAir

two secretaries try
to make car and

hotel reservations
simultaneously

choice allows a
secretary to choose
hotel chain or rental

car company

Reservation Process

A prerequisite is used for the Hyatt Reservation
 step. If the secretary reserves a room at Hyatt
& budget is tight that step aborts immediately

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The parent step’s handler
IncludeSaturdayStayover
 would check to see if

one was already included
else change the travel dates

and restart the PlanTrip
if the PlaneReservation
agent finds the budget
 has exceeded it throws

 the NotInBudget
exception to the parent

Example (continued)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 25

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More

ßIf there was already a Saturday stay over, the handler
could throw another exception that would go higher up
the tree or terminate the process.

ßDifferent continuation badges would create different
executions.

ßFor example, if Include SaturdayStayover were to
rewritten to make alternate plans, then the continuation
badge would be changed to “complete” indicating that
the exception step had provided an alternate
implementation of PlanTrip.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Data flow
• 3 parameter passing

modes defined in little JIL.
• Arrows attached to the

parameters indicate
whether a parameter is
copied into the sub steps
scope from the parent,
copied out or both.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 26

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Little-JIL

ßAdvantages
ßSemantically rich and yet easy to use

ßFormal yet graphical syntax

ßIndependent agent can benefit from the coordination with
other agents

ßFlexibility to operate/level of details

ßResource bounded recursion and parallelism

ßDisadvantages
ßNo data type model for parameters and resources
ßOmits expressions and commands
ßRelies of the agents to know how the tasks represents by leaf
steps are performed
ßSpecifies coordination and not execution, computation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Juliette: The Little-JIL Interpreter

ßPowerful substrate required in order to execute Little-JIL

ßArchitecture of Juliette is distributed

ßComponents include:

ßStep Interpreter (one for each step)

ßObject Management

ßResource Management

ßConstraint Management

ßAgenda Management

ßScheduler

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 27

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Process

ßMeasurement and Evaluation
ßanalogy to application software measurement and evaluation
ßdynamic monitoring of process execution is analogous to
interactive debugging of application software

ßProcess Maintenance
ßtakes place over an extended period of time
ßcan be expected to be more costly and important than process
development

ßProcess Improvement
ßaimed at progress towards process requirements and
improvement goals
ßprogress must be measured to assure progress is made and
improvement is underway

ßAll of these argue for
ßprocess requirements specification and precise process
measurement
ßgreater rigor that can lead to more effective improvement

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Define Use Measure Evaluate

Improvement
Goals

sw product

template

Software
Process

Developer

process

__

code

Software
process
design

Software
process

requirements

OTHER INSTANCES
OF THE PRODUCT

P
R
O
D
U
C
T

O
B
J
E
C
T

MANUALS

PROCESS
EXECUTION
DATA

QUALITY
CONTROL
DATA

PROCESS
DOCUMENTATION Software

Practioner

APPL INSTANCE

USER

Software
execution
histories

&
analyses

Software Process Improvement Cycle

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 28

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Capability Maturity Model (CMM)

ßSpecific Approach to Software Process Improvement

ßmodel the effectiveness of organizations in developing
software

ßdeveloped and promulgated by Watts Humphrey at the
CMU Software Engineering Institute

ßbased on work on industrial statistical process control by
Deming and Juran (decades ago)

ßHypothesizes a "normative model" of how software
should be developed, using a comprehensive profile of
activity areas

ßHypothesizes five levels of process maturity

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

CMM

„ Addison Wesley

Level 1
Initial

Level 2
Repeatable

Level 3
Defined

Level 4
Managed

Level 5
Optimizing

Improve
process
discipline

Unpredictable and undisciplined process
that depends on the current staff.

Repeatable project management;
consistent time and effort predictions for similar projects.

Improve
process
definition Both management and engineering

processes are codified and followed.

Improve
process
metrics Metrics used to

control the process.

Improve
process change
management Continuous process

improvement in place.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 29

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

CMM Attempts to Evaluate Predictability

• Highly mature processes are those that offer
assurance of predictable results

• Highest levels of process maturity also
demonstrably offer expectation of continuous
process improvement

• Higher maturity seems easiest to attain when
software development is in a restricted
domain

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

CMM and Process Formalisms

ßGreater rigor and formality in the specification of the CMM
can reduce confusion and ambiguity
ßUse of natural language (English) is always problematical
ßambiguous, imprecise, incomplete

ßSoftware formalisms address these problems, e.g.,
ß requirements specification formalisms to make CMM more

rigorous
ß testing formalisms and notations to solidify the acceptance testing

processes implied by the Software Capability Evaluation (SCE)
ßDeveloping Software Processes that Earn Superior CMM
Evaluations
ßCMM does not offer any guidance on how to develop superior
processes or on how to improve current processes
ßProcess modeling and process coding techniques can be
used to materialize the process.
ßTangible process representation can be studied, analyzed
evaluated using computer science techniques
ßTangible processes can be used as solid bases for
demonstrable improvement

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 30

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

CMM Integration Models

ßThe CMMI Product Suite
ßincludes multiple models and associated training and
appraisal materials
ßcontent from bodies of knowledge (e.g., systems
engineering, software engineering, IPPD)
ßhelps set process improvement objectives and priorities,
improve processes, and provide guidance for ensuring
stable, capable, and mature processes..

ßFour Categories of CMMI Process Areas
ßProcess Management
ßProject Management
ßEngineering
ßSupport

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Process Management examples

ßProcess Management process areas of CMMI are as follows:
ßOrganizational Process Focus
ßOrganizational Process Definition
ßOrganizational Training
ßOrganizational Process Performance
ßOrganizational Innovation and Deployment

basic advanced

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 31

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Product Management Examples
ßThe Project Management process areas of CMMI are as follows:
ßProject Planning
ßProject Monitoring and Control
ßSupplier Agreement Management
ß Integrated Project Management for IPPD
ßRisk Management
ß Integrated Teaming
ß Integrated Supplier Management
ßQuantitative Project Managementbasic advanced

