CMPSCI520/620

COMPUTER
'SCIENCE

26- Analysis & Process

Rick Adrion

UNIVERSITY: OF MASSACHUSETTS ANHERST: +DEPAR

©Rick Adrion 2003 (except where noted)

COMPITER Reminders, etc.

=Schedule a Project#3 review
=adrion@cs.umass.edu, cooper@cs.umass.edu
=] am out 12/8-9, 12/16
=Rachel Smith, guest lecture 12/8
=All lecture notes, assignments through 12/1 are posted

UNIVERSITY..OF MASSACHUSETTS AMHERST: DEF’;’




CMPSCI520/620

U Approaches

=Inspections v’
=Software metrics v/
=Symbolic execution v/
=Dependence Analysis
=Data flow analysis v’
=Software Verification v/

UNIVERSITY OF'MASSACHUSETTS AMHERST %D

©Rick Adrion 2003 (except where noted)

=Static Analysis =Dynamic Analysis

=Assertions

=Error seeding,
mutation testing v/

=Coverage criteria v’
=Fault-based testing v/

=Specification-based
testing

=Object-oriented testing
=Regression testing

COMPIER Putting it all together

=unit testing
sintegration & system testing
sregression testing

UNIVERSITY. OF MASSAGHUSETTS IAMHERST S DEF




CMPSCI520/620

Pt Unit testing

=test scaffolding

=can be created for general
or for specific tests

=is composed of
=one or more drivers

=provide a prototype activation
environment 5
=drivers initialize non-local

variables and parameters and call
the unit
=one or more stubs
=provide a prototype of the units
used by the program to be tested
=one or more oracles

=identify the tests that cause
failures.

UNIVERSITY OF'MASSACHUSETTS AMHERST %D

Stubs

c"ﬂr‘i{'ﬂﬁ'{ Unit vs. Integration vs. System Testing

= Integration testing

=focuses on communication and
interface problems

= tests derived from module
interfaces and detailed architecture
specifications
= some scaffolding is required
= System testing

=focuses on the behavior of the ‘ ‘ ‘ ‘ ‘ ‘
system as a whole

= tests are derived from requirementﬁ;_‘ h_‘ ‘
specifications ! !
P —

Instrument

I-®

=code is seen as a black box — *7
JCAC

= support of scaffoldings not usually
needed
= exception is embedded code, where
some simulation of the embedding
environment may be required ! }

©Rick Adrion 2003 (except where noted)

UNIVERSITY..OF MASSACHUSETTS AMHERST: D




CMPSCI520/620

COMPUTER

Sseience INntegration testing strategies

=big bang

L 1 =

UNIVERSITY: OF MASSACHUSETTS AMHERST: > DEPARTVENT. OF COMPUTERSCIENCE 2 GNP SOI RO FAER803 527

©Rick Adrion 2003 (except where noted)

‘ =top down I

COMPUTER Integration testing

= bottom up

L
(& [¢] [

strategies

o

UNIVERSITY. OF MASSACHUSETTS AMHERST - DEPARTVENT OF COMPUTER SOIENCE GNP SCH S20Ba0 AL PB03E 22




CMPSCI520/620

CONFUTER Relation to design

Traditional

Incremental

I

Prototype (spir'al)I

UNIVERSITY OF'MASSACHUSETTS AMHERST = X DEPARTVENT-OF. CG)

©Rick Adrion 2003 (except where noted)

CONMTER 0-O Programs are Different

=High Degree of Reuse

=Does this mean more, or less testing?
=Unit Testing vs. Class Testing

=What is the right “unit” in OO testing?
=Review of Analysis & Design

=Classes appear early, so defects can be recognized
early as well

UNIVERSITY.OF MASSACHUSETTS AMHERST . D EPARTVENT: OFE




CMPSCI520/620

CONrTE Testing OOA and OOD Models COMPIER Unit Testing

= Correctness (of each model element) =\\What is a “Unit"?
=Syntactic (notation, conventions)
=review by modeling experts
= Semantic (conforms to real problem)

=Traditional: a “single operation”
=O-0O: encapsulated data & operations

=review by domain experts =Smallest testable unit = class
= Consistency (of each class) many operations
=Revisit Class Diagram s|Inheritance

=Trace delegated responsibilities
=Examine / adjust cohesion of responsibilities
= Evaluating the Design
=Compare behavioral model to class model
=Compare behavioral & class models to the use cases

=Inspect the detailed design for each class (algorithms & data
structures)

stesting “in isolation” is impossible
=operations must be tested every place they are used

UNIVERSITY OF'MASSACHUSETTS AMHERST DEF}; UNIVERSITY..OF MASSACHUSETTS AMHERST: DEP’

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

COMPUTER

CONPUTER Issues in O-O testing COMPUTER

@SCIENCE

Example

=Need to re-examine all testing techniques and
processes

=Primary Issues:
=implications of encapsulation
=implications of inheritance
=implications of genericity
=implications of polymorphism

=Changes concerns
= State of instance variables
=Sequences of methods calls
=Must test a class and its specializations

UNIVERSITY OF'MASSACHUSETTS AMHERST: 3 DEPARTVMENT: OF COMPUTER SCENCE - ONP. SOl SPOE20- P20 UNIVERSITY. OF M ASSACHUSETTS AMHERS T 1) E R AR TN T O O BT B S O EN e O N RS G S RO G20 A28

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

CONPTER White-box vs. Black-box Testing

=The distance between object-oriented
specification and implementation is typically small

=gap (and therefore usefulness) of the white-
box/black-box distinction is decreasing

=But object-oriented specification describes
functional behavior, while the implementation
describes how that is achieved

=These techniques can be adapted to method
testing, but are not sufficient for class testing
=Conventional flow-graph approaches
=may be inconsistent the object-oriented paradigm
=method-level control faults are not likely

UNIVERSITY: OF MASSACHUSETTS AMHERST: ++DE) Gl SO BB A PALC SO ok,

©Rick Adrion 2003 (except where noted)

POMEITEr Black-box O-O Testing

=Conventional black-box methods are useful for object-
oriented systems

merror-guessing strategies
=verification of ADTs can be adapted to object-
oriented systems

=Other approaches

sutilize specifications integrated with the
implementation as assertions

sspecification integrated with the implementation
as dynamic assertions

=C++ assertions or Eiffel pre/post-conditions offer
similar self-checking

=Utilize method (event) sequence information

=usually don’t have history of method invocations
so can’t do this with assertions

UNIVERSITY..OF MASSACHUSETTS AMHERST: DE i L0 A AL PBOE ik




CMPSCI520/620

CONMTER Encapsulation

= not a source of errors but may be an obstacle to testing
= how to get at the concrete state of an object?
= use the abstraction
= state is inspected via access methods
= equivalence scenarios
= comparing sequences of events
= state is implicitly inspected by comparing related behavior
= examine sequences of events

= need to be able to define what are equivalent sequences and need to
determine equal states

= use or provide hidden functions to examine the state
= useful for debugging throughout the life of the system
= but modified code, may alter the behavior
= especially true for languages that do not support strong typing
= proof-of-correctness techniques
=a proved method could be excused from testing to bootstrap testing
of other methods
= state reporting methods tend to be small and simple, they should be
relatively easy to prove

UNIVERSITY OF'MASSACHUSETTS AMHERST = D5

©Rick Adrion 2003 (except where noted)

COMFUTER Implications of Inheritance

=rule rather than the exception?
=inherited features usually require re-testing
=because a new context of usage results when features
are inherited
=multiple inheritance increases the number of contexts to
test
=specialization relationships

=implementation specialization should correspond to problem
domain specialization

=reusability of superclass test cases depends on this

UNIVERSITY.:OF MASSACHUSETTS AMHERST:“DE




CMPSCI520/620

CONPUTER Which fns must be tested

= derived::redefined has to be tested afresh
= does derived::inherited() have to be retested?

have to test
when x<0, could
divide by 0

= derived::inherited() may not have to be completely tested

= if code in inherited() doesn’t depend on redefined(), doesn't call it nor call any code
that indirectly calls it

UNIVERSITY OF'MASSACHUSETTS AMHERST: £ DEPARTMENT: OF COMPUIT!

©Rick Adrion 2003 (except where noted)

CONTITER Inheritance Testing

=flattening inheritance

=each subclass is tested as if all inherited features were
newly defined

stests used in the super-classes can be reused
=many tests are redundant

=incremental testing
=reduce tests only to new/modified features

=determining what needs to be tested requires automated
support

UNIVERSITY.OF MASSACHUSETTS AMHERST:>DEPARTVENT: O COMBEUT]

10



CMPSCI520/620

““ﬂm‘i{'ﬂﬁ'{ Polymorphism

*in procedural programming, procedure calls are
statically bound

=each possible binding of a polymorphic component
requires a separate set of test cases

*many server classes may need to be integrated
before a client class can be tested

=may be hard to determine all such bindings
=complicates integration planning and testing

UNIVERSITY OF'MASSACHUSETTS AMHERS!

©Rick Adrion 2003 (except where noted)

COMPUTER

seienee 1esting under Inheritance

Shape

Q: What if implementation of resize()
for each subclass calls inherited

move()

operation move() ?

e

S

Circle

Square

Ellipse

resize()

resize()

resize()

UNIVERSITY. OF - MASSACHUSETTS AMHERST:

A: Shape cannot be completely tested unless
we also test Circle, Square, & Ellipse!

11



CMPSCI520/620

COMEIE Integration Testing

=O-0 Integration: Not Hierarchical
=Coupling is not via subroutine

=“Top-down” and “Bottom-up” have little
meaning

=Integrating one operation at a time is difficult
=Indirect interactions among operations

UNIVERSITY OF'MASSACHUSETTS AMHERST %D

©Rick Adrion 2003 (except where noted)

CIMTIER 0-0 Integration Testing

= Thread-Based Testing

=Integrate set of classes required to respond to one input or
event

=Integrate one thread at a time

=Example: Event-Dispatching Thread vs. Event Handlers in
Java

=Implement & test all GUI events first
= Add event handlers one at a time
=Use-Based Testing
=Implement & test independent classes first
=Then implement dependent classes (layer by layer, or cluster-
based)
=Simple driver classes or methods sometimes required to test
lower layers

UNIVERSITY. OF MASSAGHUSETTS IAMHERST S DEF

12



CMPSCI520/620

COMMTH Test Case Design

= Focus: “Designing sequences of operations to exercise the states of a class
instance”
= Challenges
= Observability - Do we have methods that allow us to inspect the inner state of
an object?
= Inheritance - Can test cases for a superclass be used to test a subclass?
= Test Case Checklist
= |dentify unique tests & associate with a particular class
= Describe purpose of the test
= Develop list of testing steps:
= Specified states to be tested
= Operations (methods) to be tested
= Exceptions that might occur
= External conditions & changes thereto
= Supplemental information (if needed)

UNIVERSITY OF'MASSACHUSETTS AMHERST = D5

©Rick Adrion 2003 (except where noted)

COMPUTER Software Processes

= Software processes are:

=the set of activities, methods, and practices that are used in
the production and evolution of software

=devices for creating, modifying, analyzing, understanding
software artifacts and products
2 Hypothesis: Processes are software
=Improve quality by improving processes
=Build in quality in, don’t “test in” quality (manufacturing)
=Use processes to manage complex activities
=Many observed “process errors”
= Proposed approach
=Use computers to help perform processes
= Analyze processes to determine and eliminate defects

=Use demonstrably superior processes to identify risks,
mitigate their consequences, demonstrate quality

UNIVERSITY.:OF MASSACHUSETTS AMHERST:“DE

13



CMPSCI520/620

COMPITER Software Process as Software

=Software processes should be developed using a
(Software development process) development process
=Process Requirements
=Key to designing suitable process
=Basis for evaluation and improvement of process
=Process Specification/Modeling/Design
=Helps conceptualization, communication, visualization
=Can be management aid
=Process Code
=Provides rigor and complete details
=Basis for execution/tool support and integration

UNIVERSITY OF'MASSACHUSETTS AMHERST

©Rick Adrion 2003 (except where noted)

COMPUTER

seienee Software Process Code

=Provides details and elaborations upon process design
=Tries to include details omitted from model/design
=Supports more detailed, precise, definitive reasoning

=Vehicle for meshing process control with product data at
arbitrarily low levels of detail

=Provides superior visibility enabling better control
=Basis for better predictability

=Basis for process enaction/execution

=Blueprint for tool integration

UNIVERSITY..OF MASSACHUSETTS AMHERST D!

14



CMPSCI520/620

CONMTER Software Process as Software

= Software processes should be developed using a (Software
development process) development process
=Process Measurements and Evaluation

=Results of Static Analysis and Dynamic Measurement =
Basis for Process Maintenance (i.e., Process Improvement)

sw product
process process
histories
&
analyses

process
Process
Developer

Practioner i =
OTHER INSTANCES

UNIVERSITY! OF'MASSACHUSETTS AMHERST: 32 DEPA

©Rick Adrion 2003 (except where noted)

COMPUTER Software Process Formalisms

= Techniques
=L anguages
= procedural
=rule-based
= object-oriented
=Modeling formalisms
= Data flow diagrams
= Petri Nets
= Flow graphs
= Key considerations
=concurrency
=exception handling
=resource specification
=self-modification/long lifetime
=constraint management
=artifact specification/management
=real-time
=visualizability

UNIVERSITY.:OF MASSACHUSETTS AMHERST:“DE

15



CMPSCI520/620

Cititvet Language-based Formalisms COiE HFSP design model

. . . (a) JSD(Real_World | Design_Spec) =>
=More traditional coding languages: |(1)Deve/op78pec(ReaLWorldeesc |System_Spec_Diagram)
' (2)Develop_Impl(System_Spec_Diagram [System_Impl_Diagram)
*Procedural (SUttOh S Appl/A) (3)Where Real_World_Desc = Interview(Users, Developers,Real_World)
=Rule-based (Kaiser's Mar\/e|) (4) Design_Spec = union(System_Spec_Diagram, System_Impl_Diagram)
Second_level

=Functional Hierarchy (Katayama’s HFSP) (b) Develop_Spec(Real_World_Desc |System_Spec_Diagram) =>
H 1)Develop_System_Model(Real_World_Desc |Real_World_Model,
=Law based (MlnSky) (I)niLSystem;VSpeciDiagra(m) I
=Object Oriented (schema definition languages) (ﬁé@iyglgpggggt%%gig%(ReaLWorld,Model, Tni_System_Spec_Diagram |$
=Key issue: developing abstractions to facilitate process Third_Tevel
definition (c) Develop_System_Model(Real_World_Desc

|Real_World_Model, Init_System_Spec_Diagram) =>
(1)Model_Reality(Real_World_Desc |Real_World_Model)
(2)Model_System(Real _World_Model |Init_System_Spec_Diagram)

(d) Develop_System_Func(Real_World_Model,

Init_System_Spec_Diagram |System_Spec_Diagram)

(1)Define_Func(Real_World_Model, Init_System_Spec_Diagram |System_Function,
Function_Process)

(2)Define_Timing(Init_System_Spec_Diagram, System_Function |Timing)
(3)Where System_Spec_Diagram =
is_composed_of(Init_System_Spec_Diagram, System_Function, Function_Process, Timing)

UNIVERSITY OF'MASSACHUSETTS AMHERST = £ DEP) UNIVERSITY..OF MASSACHUSETTS AMHERST: DEPAﬁ

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

CONMTE HFSP design model

(a) JSD(Real_World | Design_Spec) =>

(1)Develop_Spec(Real_World_Desc |System_Spec_Diagram)

Second_level

(b) Develop_Spec(Real_World_Desc |System_Spec_Diagram) =>
(1)Develop_System_Model(Real_World_Desc |Real_World_Model, Init_System_Spec_Diagram)
Third_level
(c) Develop_System_Model(Real_World_Desc
|Real_World Model, Init System Spec Diagram) =>

(1)Model_Reality(Real_World_Desc |Real_World_Model)

(e)Model_Reality(Real_World_Desc | Real_World_Model) =>
(1)Identify_Entity _Action(Real_World_Desc | Entity Action_List)
(2)Draw_Entity Structure(Entity_Action_List | Entity Structure_List)
Where Real_World_Model = is(Entity_Structure_List)

Real_World_Process = is(Entity_Structure)
lodel_System(Real_World_Model | Init_System_Spec_Diagram) =>
(1)ldentify_Model_Process(Real _World_Model | M_Proc_Name_List)
(2)Connect(Real_World_Model, M_Proc_Name_List | Connection_List)
(3)Specify_Model_Process(Connection_List, Real_World_Model, M_Proc_Name_List

|Model_Process_List)
(4)Where Init_System_Spec_Diagram = is(Model_Process_List)
(5)Connection = is(State_Vector) or is(Data_Stream)

UNIVERSITY! OF'MASSACHUSETTS AMHERST: 22 DEPAR:

©Rick Adrion 2003 (except where noted)

COMFUTER Software Process Formalisms

=Techniques

=Languages
=procedural
=rule-based
=object-oriented

=Modeling formalisms
=Data flow diagrams
=Petri Nets
=Flow graphs

UNIVERSITY. OF MASSACHUSETTS AMHERST  DEPAR:

17



CMPSCI520/620

Teacher Schedules

IDEF 0 Course Scheduling
|

Bll!lll’llTEll IDEF 0 GOMP"TEB
CIENCE CIENCE
=Integration definition for -

function modeling IE i v Samastr
L - & Z I ?3}?}:3%5 (Constraints ——w|Couse Scheduling | Sopnoyys

/ More General T L i

I;ea:hev H

v D i, rcpuend

Availability

;

l”

;

Registrar V’

!”

!

/

;

!

/

=Adapted from SADT
=\Very widespread usage

industry
=Qverburdened DFD

=QOverly constrained
visualization

/
NOTE: Mode nmibers sShowi
/' here indicare that the box has
¢/ beendetaled, The C-waber
or page number of the child
UNIVERSITY..OF - MASSACHUSETTS AMH:'

[Backto A0
Department
Chair
Teachers
JPartan

Contol

FUNCTION
Input —— b HAME Crutput

Mechanizm Call

disgram could have been used
instead of the node nmber.

UNIVERSITY OF'MASSACHUSETTS AMH:

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

Hitnet Other “DFD”’s

=Many different adaptations of the basic idea
=Add control flow in

=Add various annotations on

=Add timing information

=Eftc.

UNIVERSITY OF'MASSACHUSETTS AMHERST = D5

©Rick Adrion 2003 (except where noted)

COMFUTER Petri Net-like representations

=Particularly effective for showing concurrency in
processes

=Weak in dealing with artifacts
=Weak in dealing with exception flow

UNIVERSITY..OF MASSACHUSETTS AMHERST: DE}%’

19



CMPSCI1520/620

COMPUTER

seienee Petri net-like formalisms

Developerso o OUsers

l Real World l

|
==
S ¥ P

| Interview |
A4
o RW_Desc
A4

| Develop Spec |
é Sys_Spec_Diag
v

| Develop Implementatiori

L Sys_Impl_Diag +

o Sys_Spec_Diag

COMPUTER

seienee Decomposition

Q RW_Desc
Develop Spec
—

O RW_Model

v
O Sys_Spec_Diag

Model_System RW. Modelo/

| Identify_| Model Process

Model_| Process
Name_| Llst

Connect

Connectlon Llst

Model_Process_| Name List
Speclfy Model_Process

Model_Process_List o

— o

Requirements specification process l

o Design_Spec

o RW_Model

UNIVERSITY.:OF MASSACHUSETTS:

UNIVERSITY OF'MASSACHUSETTS:

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

COMPUTER

seienee Design Process Petri net

O Sys_Spec_Diag

Develop Implementatiol

L Sys_Impl_Diag +
O Sys_Spec_Diag

Req_Spec
BOOD
Cﬁ@j—/m\o
>

Identify Object

Objects « ngaie s

<

Identify_Operations

UNIVERSITY OF'MASSACHUSETTS AMHé

O i —O
Operations™ —, \bome!cis o States
Establish_Visibility
v objects> D stacesC\D‘/ v
Operations > — Visibility
Establish_Interface

> nterface
Create_Implementation
O——" — >
Interface
Create Design Spec
~» .
D Design_Spec

©Rick Adrion 2003 (except where noted)

COMPIER Little-JIL

=Little-JIL

=an agent coordination language. Programs describe the co-
ordination and communication among agents that enables
them to perform the process.

=an executable, high-level language with formal yet graphical
syntax and

=Hypothesis:

= Co-ordination structure is separable from other process
language issues.

=Processes are executed by agents that know how to perform
their tasks but benefit from co-ordination support.

= Design Principles
=Simplicity
=Expressiveness
=Precision

UNIVERSITY.:OF MASSACHUSETTS AMH]

21



CMPSCI520/620

COMPITER |_ittle JIL

= Features
= Explicit agent specifications
= Explicit resource specification
= Agent communication via agendas
=Visualization

= Proactive and reactive control constructs
= Explicit data flow
= Precondition and postcondition guards

= Coordination Paradigm

= Coordination is the process of building of program by gluing together
active pieces and is a vehicle for building programs that can include
“human and software processes”.

= Collection of agents, communication mechanism, distribution
mechanism, assignment of tasks to agents.

UNIVERSITY OF'MASSACHUSETTS AMHERST:

©Rick Adrion 2003 (except where noted)

COMPUTER A “step” of Little-JIL

=provides scoping mechanism for control, data &

exception flow, and for agent and resource assignment.

=organized into static hierarchy, but can have a highly
dynamic execution structure including the possibility of
recursion and concurrency.

=is a specification of a unit of work that is assigned to an
agent. “unit of encapsulation”
Interface Badge
(includes resources)

Prerequisite Badge ) Postrequisite Badge
» y TheStepName pe——

Sequencing Handlers
Reactions

UNIVERSITY. OF - MASSACHUSETTS AMHERST:

22



CMPSCI520/620

CONNENER Little-JIL step’s Badge

)SCIENGE
= Control flow : = Messages & Reactions:
= 4 non-leaf steps = reactive power and expressive power
= sequential, parallel, try, choice " Paramet:rbs:t . .
. ) = passed between steps allow
* Requisites : communication of information
= Mechanism to add checks before necessary for the execution of a step
and after a “step” is executed and If;)r the return of step execution
. . results.
= pre-requisite, post-requisite « Resources:

= are representations of entities that are
required during step’s execution e.g..
Steps execution agents, permission to
use tools, physical artifacts

= Exception & handlers:
= augment the control flow construct

of the “step”
Interface Badge
(includes resources)

Prerequisite Badge Postrequisite Badge

[
T y TheStepName pe—

Reactions
UNIVERSITY: OF MASSACHUSETTS AMHERST

©Rick Adrion 2003 (except where noted)

“¥tinet Example

= The process involves 4 people:
= Traveler; Travel agent; Two secretaries

= “Rules”

=We try United first then USAir

= |f the traveler has gone over budget, and a Saturday stay over was
not included, the dates should be changed to include a Saturday stay
over and other attempts should be made.

= After the airline reservations are made and the travel date and times
are set, car and hotel reservations should be made.

= The hotel reservations may either at Days Inn or, if budget is not tight,
a Hyatt.

= The car reservations may be made with either Avis or Hertz.

Sequel@v ‘ Handlers

UNIVERSITY. OF - MASSACHUSETTS AMHERST:

23



CMPSCI1520/620

PG Reservation Process

A sequential step = H .T
plane reservations Eva s
before hotel and car

reservations

HotelReservation

. )
try United Dsyslnnkcser\'alg 'H mmmmnnnA

first then USAir

A post requisite is used

in the Plane Reservation
step to check if

the airfare has not

exceeded the budget

A prerequisite is used for the Hyatt Reservation
S€ step. If the secretary reserves a room at Hyatt
& budget is tight that step aborts immediately

two secretaries try
to make car and

hotel reservations
simultaneously

AvisReservation HertzReservation

choice allows a
kind¢ secretary to choose
hotel chain or rental
car company

COMPUTER
CIENCE

UNIVERSITY'OF MASSACHUS:

©Rick Adrion 2003 (except where noted)

if the PlaneReservation
agent finds the budget
has exceeded it throws
the NotInBudget
exception to the parent

NoPlane: exception
NotInBudget: exception

PlancReservation  InBudget

== NoUnited
== NolUSAir
NoMoreChoices
INoPtnnc

NoUnited: exception NoUSAir: exception ~

UnitedReservation USAir Resc‘mlinnA

Example (continued)

The parent step’s handler
IncludeSaturdayStayover
would check to see if
one was already included

[ ] else change the travel dates
PlanTrip and restart the PlanTri
! -\\\
! ‘_ “x\,} NotlnBudget
‘ "aMecnngCancelcd ;::de »
! IncludeSaturdayStayover
| CancelAndSiop i
CarAndHotelReservation
S —
= Conlinug
e b Thow
< Restat
V‘ Complete

Figure 3. Reservation process showing reactive control: exceptions, messages.

UNIVERSITY.:OF - MASSACHU!

24



CMPSCI520/620

U8 More

=|f there was already a Saturday stay over, the handler
could throw another exception that would go higher up
the tree or terminate the process.

=Different continuation badges would create different
executions.

=For example, if Include SaturdayStayover were to
rewritten to make alternate plans, then the continuation
badge would be changed to “complete” indicating that

the exception step had provided an alternate
implementation of PlanTrip.

UNIVERSITY OF'MASSACHUSETTS AMH|

©Rick Adrion 2003 (except where noted)

Ctive: Data flow

¢ 3 parameter passing
modes defined in little JIL.

 Arrows attached to the
parameters indicate

agent: Traveller \.

¥ input
PlanTrip + Oulput
whether a parameter is v I
AN ¥ hputioutput
copied into the sub steps TripDates ks
scope from the parent, Budge
copied out or both. . Airling TripDates Hotel
T”PTLm“/// TripTimes Car

agent: TravelAgent Budget

PlaneReservation CarAndHote|Reservation

TripDates s TripDates,
TripTimes TripDates T”"ﬁ".’" Budgtt/ TripDates ‘%
A]r]ine/ P \ Airline s ”U\cl/ TripTimes
Airling := United Airling := USAir — BRCIL SCCTeany

UnitedReservation

agent: Secretary.
USAir Reservation,
JANN v/ A

HotelReservation

< ation A

A

Figure 4. Reservation process showing data flow.

UNIVERSITY.:OF MASSACHUSETTS AMH]

25



CMPSCI520/620

COMPITER |_ittle-JIL

= Advantages
=Semantically rich and yet easy to use
=Formal yet graphical syntax

other agents
=Flexibility to operate/level of details
=Resource bounded recursion and parallelism
=Disadvantages

=No data type model for parameters and resources
=Omits expressions and commands

steps are performed
= Specifies coordination and not execution, computation

=Independent agent can benefit from the coordination with

=Relies of the agents to know how the tasks represents by leaf

COMPUTER
SCIENCE

Juliette: The Little-JIL Interpreter

=Powerful substrate required in order to execute Little-JIL
= Architecture of Juliette is distributed
=Components include:

=Step Interpreter (one for each step)

=Object Management

=Resource Management

=Constraint Management

=Agenda Management

=Scheduler

UNIVERSITY OF'MASSACHUSETTS AMHERST %D

©Rick Adrion 2003 (except where noted)

UNIVERSITY. OF MASSAGHUSETTS IAMHERST S DEF

26



CMPSCI520/620

COMPUTER COMPUTER

Seeienee Software Process Seieiee Software Process Improvement Cycle

=Measurement and Evaluation
=analogy to application software measurement and evaluation

=dynamic monitoring of process execution is analogous to
interactive debugging of application software

=Process Maintenance
=takes place over an extended period of time

=can be expected to be more costly and important than process
development

=Process Improvement

=aimed at progress towards process requirements and
improvement goals

=progress must be measured to assure progress is made and
improvement is underway

= All of these argue for

=process requirements specification and precise process
measurement

=greater rigor that can lead to more effective improvement

process
requirements

process

design

Software
Process
Developer

UNIVERSITY OF'MASSACHUSETTS AMHERST = £ DEP) UNIVERSITY.:OF MASSACHUSETTS AMHERST: “DEPA]

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

CoNriTER Ccapability Maturity Model (CMM)

=Specific Approach to Software Process Improvement

=model the effectiveness of organizations in developing
software
=developed and promulgated by Watts Humphrey at the
CMU Software Engineering Institute
=based on work on industrial statistical process control by
Deming and Juran (decades ago)
=Hypothesizes a "normative model" of how software
should be developed, using a comprehensive profile of
activity areas

=Hypothesizes five levels of process maturity

UNIVERSITY OF'MASSACHUSETTS AMHERST:

©Rick Adrion 2003 (except where noted)

A CuM

Level 5
Improve Optimizing
process change, -
management Cantmuous process
improvement in place.
Improve
process -
metrics Metrics used to
control the process.
Level 3
Improve Defined
process
definition Both management and engineering
_ processes are codified and followed.

Level 2
Improve Repeatable
process
iscipli R ble project ;
discipline| P
consistent time and effort predictions for similar projects.

Unpredictable and undisciplined process
that depends on the current staff.

© Addison Wesley

UNIVERSITY. OF - MASSACHUSETTS AMHERST:

28



CMPSCI520/620

CONPITER MM Attempts to Evaluate Predictability

* Highly mature processes are those that offer
assurance of predictable results

* Highest levels of process maturity also
demonstrably offer expectation of continuous
process improvement

» Higher maturity seems easiest to attain when
software development is in a restricted
domain

UNIVERSITY OF'MASSACHUSETTS AMHERST %D

©Rick Adrion 2003 (except where noted)

COMPUTER CMM and Process Formalisms

= Greater rigor and formality in the specification of the CMM
can reduce confusion and ambiguity
=Use of natural language (English) is always problematical
=ambiguous, imprecise, incomplete
= Software formalisms address these problems, e.g.,
=requirements specification formalisms to make CMM more
rigorous
= testing formalisms and notations to solidify the acceptance testing
processes implied by the Software Capability Evaluation (SCE)
=Developing Software Processes that Earn Superior CMM
Evaluations
=CMM does not offer any guidance on how to develop superior
processes or on how to improve current processes
=Process modeling and process coding techniques can be
used to materialize the process.
=Tangible process representation can be studied, analyzed
evaluated using computer science techniques
=Tangible processes can be used as solid bases for
demonstrable improvement

UNIVERSITY..OF MASSACHUSETTS AMHERST:

29



CMPSCI520/620

CONTETER CMM Integration Models

=The CMMI Product Suite

=includes multiple models and associated training and
appraisal materials

=content from bodies of knowledge (e.g., systems
engineering, software engineering, IPPD)

=helps set process improvement objectives and priorities,
improve processes, and provide guidance for ensuring
stable, capable, and mature processes..

=Four Categories of CMMI Process Areas
=Process Management
=Project Management
=Engineering
=Support

UNIVERSITY OF'MASSACHUSETTS AMHERST

©Rick Adrion 2003 (except where noted)

COMPUTER

seience Process Management examples

=Process Management process areas of CMMI are as follows:
=Organizational Process Focus
=Organizational Process Definition
=Organizational Training
=Organizational Process Performance
=Organizational Innovation and Deployment

improvement information
(Sssons leaed, dta, rifacts)

advanced

UNIVERSITY. OF - MASSACHUSETTS AMHERST:

30



CMPSCI520/620

e Product Management Examples

= The Project Management process areas of CMMI are as follows:
= Project Planning
= Project Monitoring and Control
= Supplier Agreement Management
= Integrated Project Management for IPPD
= Risk Management
= Integrated Teaming
= Integrated Supplier Management
basic = Quantitative Proiect Manaaement

advanced

Risk exposurs dus to

Corrective
action,

What o build

Whatto do

ppler @

su
ivre!m;"/‘/'
Suppler

UNIVERSITY OF'MASSACHUSETTS AMHERS!

technical lssues,
com) duct cor

©Rick Adrion 2003 (except where noted)



