CMPSCI520/620

COMPUTER
)SCIENCE

25- Static & Dynamic Analysis

Rick Adrion

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPAF;‘:_

CONPUTER Verification

=How are they different?
=(Automated) mathematical reasoning
=difficult, error prone

=decidability vs. expressiveness
=Propositional calculus is decidable
=Predicate calculus is semi-decidable

=Finite-state verification
=Reason about a finite model of the system

=Fast, yields counterexamples, manages partial
specifications, applies to concurrency

=State explosion!

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPAE

©Rick Adrion 2003 (except where noted)

COMPUTER

seience Approaches

=Static Analysis =Dynamic Analysis
=Inspections =Assertions
=Software metrics =Error seeding,
=Symbolic execution mutation testing
=Dependence Analysis =Coverage criteria
=Data flow ana|ysis =Fault-based testing
=Software Verification =Specification-based

testing

=Object-oriented testing
=Regression testing

UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERARIM

4808 Proof

predicate logic

assertions @

“

lemmas and theorems in
predicate logic

™

typically inferred
by symbolic
execution of the
specifications

ode
orodu Behavior

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPA;_

CMPSCI520/620

COMPUTER

= Creates a functional
representation of a path
of an executable
component
=P is composed of partial
functions corresponding
to the executable paths
P={P,,...P.}
P :Xi—> Y
=For a path P,
=D[P] is
the domain for path P,
=C[P] is the
computation for path P,

ceienee Symbolic Evaluation/Execution

UNIVERSITY: OF MASSACRUSETTS AMHERST. = DEPAF‘\TME[:‘_

n+l n+5

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ - DERARTI

©Rick Adrion 2003 (except where noted)

n+2

COMPUTER | oops -- unroll them?
input asssertion)
n do_while predicate1 <= better: find a
n+1 if predicate2 |00p invariant
n+2 then code ;
n+3 else code;
n+4 end;

n+5 output assertion ; \A

L input assertion
n

n+1 n+5
\ output assertion

n+3

COMPUTER

seienee EXecution tree (Hantler-King)
ABSOLUTE PC: true, PV: X: a, Y: -

assume (true)
1 procedure(X);

! PC: true
2 declare X,Y integer
3 ifX<0
4 then Y« -X; PC: a<0 PC: 20
5 else Y« X; /
'S

end;

6 return (Y); PC:a<0 PC: a20
prove((Y = X'|Y =-X") & Y20 & X = X’) PV:X:o,Yi-oo PV:X:a,Y:o
7 .

((a=a)\/
Aa20A o= a)

(Vv (a=a)
AF)20 A o = a)

verified

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTIN

COMPUTER Floyd Proof: Wensley's Algorithm

Procedure Wensley (P:input, Q:input, E:input, Y:output);
Declare P, Q, E, Y, A, B, D real;

A := 0.0;
B := 0/2.0;
D := 1.0;
Y := 0.0;

Do_While (D>=E)
If ~(P - A - B = 0.0)
{ Y := ¥+(D/2.0);
A := A+B};
B := B/2.0;
D := D/2.0;
End_do;
End Wensley;

UNIVERSITY- OF MASSACHUSETTS AMHERST - DERARTM

CMPSCI520/620

COMPUTER

=Summary of Five Lemmas Needed
=A, to A,
=A,, true branch, to A,
=A,, false branch, to A,
=A,, true branch, to A¢
=A,, false branch, to Ag

UNIVERSITY. OF MASSACHUSETTS AMHERST - DERPARTH

seienee Floyd Proof: Wensley's Algorithm

COMPUTER

= axiom of assignment
=P {x:=f} Q,
=where Q is obtained from P by substituting f for all
occurrences of x in P (symbolic execution)
= rule of composition
"P{S1,82}Q=>3P1, P{S1}P1 A P1{S2}Q
=rule for the alternative statement

=P{if B then S1 else S2 }Q =
P{B A S1}Q A P{-B A S2}Q

= rules of consequence
[P{S}QAQ=R]=P{S}R
"[P{S}QAR = P]=R{S}Q
=rule of iteration

=P {while Bdo S }Q =
P(~B)QA@P(BAS)IAI(BAS}I/\I(~B)Q

loop invariant

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPAT

©Rick Adrion 2003 (except where noted)

<eienee Hoare axioms and proof rules

o

backwards substitution

COMPUTER Hoare axiomatic proof

=assertions are preconditions and post conditions on

some statement or sequence of statements
P{S}Q

=if P is true before S is executed and S is executed then
Qis true

=as in Floyd's inductive assertion method, we construct a
sequence of assertions, each of which can be inferred
from previously proved assertions and the rules and
axioms about the statements and operations of the
program

=to prove P{S}Q, we need some axioms and rules about
the programming language

UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERARIM

4808 Proof

=Hoare-style and Floyd- style verification are essentially the
same
= one is based on graphical representation and the other on a
textual representation.
-Icr;lFFGond—ster proof, we visualize the proof goal by annotating a

=In the other, we define the proof goal as a Hoare triple
=Mechanism for applying proof
= may work either direction on such a proof, but because it's
typically easier to work backwards, often use a technique
called backwards substitution
= we work our way from the post-condition, using the proof
rules to "push formulas through" the program
= at each point where a "pushed-through" predicate "runs into"
a supplied predicate, we have a verification condition (VC) that
must be proved.
=After all VCs are proved, we need to be prove termination
= Without a termination proof, we achieve partial correctness
=With a termination proof, we achieve total correctness

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPA.

CMPSCI520/620

COMPUTER Straightforward Observations

=Problems

=formal proofs are long, tedious and are often hard; assertions
are hard to get right; invariants are difficult to get right (need to
be invariant, but also need to support overall proof strategy)
= Unsuccessful proof attempt = ??7?
=incorrect software? assertions? placement of assertion? inept
prover? although failed proofs often indicate which of the
above is likely to be true (especially to an astute prover)
=Deeper Issues
=undecidability of predicate calculus = no way to be sure when
you have a false theorem
=there is no sure way to know when you should quit trying to
prove a theorem (and change something)
=proofs are generally much longer than the software being

verified = errors in the proof are more likely than errors in the
software being verified

UNIVERSITY: OF M ASSACHUSETTS AMHERST 4 DER;

CONPUTER Conservative Analysis

=|f property is verified, property holds for all possible
executions of the system

=|f property is not verified:
=an error found
OR

=a spurious result
=System model abstracts information to be tractable

=Conservative abstractions usually over-approximate
behavior

=If inconsistency relies upon over-approximations, then a
spurious result

=e.g. all counter example correspond to infeasible paths

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DER)

©Rick Adrion 2003 (except where noted)

CONPUTER Model Checking: Overview

= properties usually expressed in

= in a propositional logic (e.g., roperties stated as
temporal |Og|C) propgslt?onaFFoglc assertions

properliengtAated as
an
=asaFSA

= system represented as a @‘
(possibly “abstracted”)

reachability graph \
= reasoning engine

Comparison
" |OgIC = propagates valid sub- exhaustive search ‘
formulas through the graph | of state space
language containment
= FSA = compares FSAs via reachabiity analysis
language inclusion; bisumulation odug

reachability; or bisumulation

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘_

COMPUTER Temporal logic

= augments the standard operators of propositional logic with “tense”
operators

= "possible worlds semantics" = Kripke model
=relativize the truth of a statement to temporal stages or states
=a statement is not simply true, but true at a particular state

= states are temporally ordered, with the type of temporal order
determined by the choice of axioms.

=model of time
=partially ordered time
=linearly ordered time

= linear temporal logic is typically extended by two additional operators, “until”
and “since”

=discrete time
=branching (nondeterministic) time

= foundation for one of the principal approaches to verifying concurrent
systems = Computational Tree Logics.

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

CMPSCI520/620

CONPUIER Computation Tree Logics

= specification language
=a propositional temporal logic. Fp
= verification procedure
= exhaustive search of the state space of
the concurrent system to determine AFp
truth of specification.
= formulas constructed from path
quantifiers and temporal operators:
=path quantifier: Fp
= A “for every path” EFp
= E “there exists a path”
=temporal operator:
= Xp “p holds next time’
= Fp “p holds sometime in the future” p

= Gp “p holds globally in the future” Xp
= pUqg “p holds until g holds” . ‘

UNIVERSITY. OF MASSACHUSETTS AMHERST - DERPARTHENTEOR-COME

CONPUTER Example: propagation
AG(t1 —AF 01) =a =b means (b or " a)
=*(t1 = AF c1)means (AFc1 v t1)
t1=AF c1

AF c1
t1=AF c1

A
t1=AF cl AF c1
t1=AF c1
<process1, process2, turn>

UNIVERSITY-OF- MASSACHUSETTS AMHERST: - DEBARTMENT- QR B0

©Rick Adrion 2003 (except where noted)

FMEHE mutual exclusion protocol

=Example: processes can be null, trying to

. > " ’ process1 =n1,t1,c1
obtain the lock, or in a critical region (n1, t1, c1)

or (n2, 12, c2) process2 =n2,t2,c2
=TURN is a variable that indicates which turn =012
process can obtain the lock (0,1,2)

=Need a reachability graph that shows that
states (i.e., the values) of the variables “McMillan

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTMENT QR CC:]

CONTENER Automata-Theoretic Model Checking

properties stated as an FSA

freent

language containment
reachability analysis
bisumulation

UNIVERSITY- OF MASSACHUSETTS AMHERST. - DERPARTMENTOFED

CMPSCI520/620

480 Example

= Specification:
happen _at least once

c
a!

T

Ac

(ba)*(ac*+ bbc*)

UNIVERSITY OF MASSACHUSETTS: AMHERST - DEPARTHEN

= of the possible observable events (a, b, c), ¢ must

a,)b, c

. Jmplementation

FHtie Approaches

=Static Analysis
=Inspections
=Software metrics
=Symbolic execution
=Dependence Analysis
=Data flow analysis
=Software Verification

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ - DERART]

©Rick Adrion 2003 (except where noted)

=Dynamic Analysis

=Assertions

=Error seeding,
mutation testing

=Coverage criteria
=Fault-based testing

=Specification-based
testing

=Object-oriented testing
=Regression testing

CONPUTER Some observations

=Model Checking

=worst case bound linear in size of the model
=but the model is exponential

=not clear if model checking or symbolic model

checking is superior

=depends on the problem

=experimentally often very effective!
=used selectively to verify hardware designs

strying to develop appropriate abstractions to make
it applicable to software systems

UNIVERSITY-OF MASSACRUSETTS AMHERST - DERARTMENT:

COMPUTER Types of Testing--what is tested

=Unit testing
=exercise a single simple (procedure) component
=|ntegration testing
=exercise a collection of inter-dependent components
=focus on interfaces between components
=System testing
=exercise a complete, stand-alone system
= Acceptance testing
scustomer’s evaluation of a system
=usually a form of system testing
=Regression testing
=exercise a changed system
=Focus on modifications or their impact

UNIVERSITY- OF MASSACHUSETTS AMHERST: # DEPARTM

CMPSCI520/620

COMPUTER COMPUTER

seience 1esting approaches seince White & Black box testing processes
=“black box”

. test case
analysis

executable
component

test data selection
criteria

test cases
=“white box” or “glass box” executable >

execution results

component specification: testing report
‘analysis
execution results
specifications———p| oracle testing report

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPARTM%:

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPAF‘\TME.

ONPUTE Testing Theory COMPUTER Testing Theory
Dg=Xy, Xy, -, X,=precondition P Rs=Y3, Yy, ..., Y,=postcondition Q =Criterion C for Test Adequacy
=C:SxE ->27
=specification-based C (s) “black box”
=interface-based C(x1,x2, ...xn_vy1,vy2 .. yn)
=program-based C(e)
=combined C(s,e) “white box”
=Types
sstructural =if specification S defines a function F,

such that P{F}Q, then C is reliable if

T, Ty .., T C(T,,E);and D (E) 2 T,
=T, (Vt €T, E(t)= F(t)) v VT,

n (3t e T, E(t) #F(t)

=fault-based
=error-based

Dg=X4, Xg ory X,
specification S
executable component E; show P{E}Q Wte Ti, E(t): F(t) =
test data set(s) T Vte Ti OK(Ti) = E=F

test data adequac ion C

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPAF‘\TM:E;_

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ - DERART] &

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

COMPUTER |deal Test Criterion

= test criterion C is ideal if for any executable component E
and every test set T, D(E) such that C(T; ,E), T is
successful

= of course we want T, << D(E)
= butin general, T= D(P) is the only ideal test
criterion

= In general, there is no ideal test criterion

“Testing shows the presence, not the absence of bugs”
E. Dijkstra

= Dijkstra was arguing that verification was better than testing
= but, verification has similar problems
= can’t prove an arbitrary program is correct
= can'’t solve the halting problem
= can’t determine if the specification is complete

= need to use these techniques so that they compliment one
another

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

CONPUTER «White Box” Test Data Selection

sstructural

=coverage based
=fault-based

=e.g., mutation testing, RELAY
=error-based

=domain and computation based

=use representations created by symbolic
execution

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER
)SCIENCE

Black Box Testing

= Functional/Interface Test Data Selection
=typical cases
=boundary conditions/values
=illegal conditions (if robust)
=fault-revealing cases
=based on intuition about what is likely to break the system
=other special cases
= stress testing
=large amounts of data
=worse case operating conditions
=combinations of events
=select those cases that appear to be more error-prone
=common representations for selecting sequences of events
=decision tables
=cause and effect graphs
=usage scenarios

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPfA::,

COMPUTER
)SCIENCE

CFG-Based Coverage

= Criteria
=Statement Coverage
=Path Coverage
=Cyclomatic-number
=Branch Coverage
=Hidden Paths
=Loop Guidelines
=Boundary - Interior
= Selecting paths that satisfy the criteria
=static selection
=some of the associated paths may be infeasible
=dynamic selection

=monitors coverage and displays areas that have not been
satisfactorily covered

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

COMPUTER «Simple” coverage measures

=Statement Coverage
=requires that each statement in a program be executed
at least once
=a set P of paths in the CFP satisfies the statement coverage
criterion iff V' n, e N, 3 p e P such that n; is on path p
=Path Coverage
=Requires that every path in the program be executed at
least once
= P satisfies the path coverage criterion iff P contains all execution
paths from the start node to the end node in the CFG
=In most programs, path coverage is impossible
=Multiple Condition Coverage
=T is adequate if for every condition C which consists of
atomic predicates (pq, Py, P) and all possible
combinations (b, by, ..., B) of their values, there is at
IEiIa'St one t e T such that the value of p; is equal to b, for
alli

UNIVERSITY: OF MASSACRUSETTS AMHERST - DEPA

CONPUTER Data Flow Path Selection

= Definitions
=d,(x) denotes that variable x is assigned a value at node n (defined)
=u,(y) denotes that variable y is used (referenced at node m)

= a definition clear path p with respect to (wrt) x is a subpath where x is not
defined at any of the nodes in p

= a definition d,(x) reaches a use u,(x) iff there is a subpath (m) p (n)
such that p is definition clear wrt x

= Rapps and Weyuker
= definition-clear subpaths from definitions to uses
= Ntafos

=chains of alternating definitions and uses linked by definition-clear
subpaths

= Laski and Korel
=combinations of definitions that reach uses at a node via a subpath

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER Branch & Loop Coverage

=Loop Coverage
=Path 1, 2, 1, 2, 3 executes all
branches (and all statements)
but does not execute the loop
well.

=Better

= fall through case

= minimum number of iterations

= minimum +1 number of iterations
= maximum number of iterations

= maximum -1 number of iterations

=Branch Coverage
=Requires that each
branch in a program
(each edge in a control
flow graph) be executed
at least once

= e.g., Each predicate must
evaluate to each of its
possible outcomes

=Branch coverage is
stronger than statement

coverage
hidden

branches 1,2,1,2,1,2,3
T (1’ 2)n-1’ 3

(1,23

UNIVERSITY-OF MASSACRUSETTS-AMHERST - ERA

COMPUTER Rapps’ and Weyuker’s DF Criteria

= All-Defs - Some definition-clear subpath from each
definition to some use reached by that definition

def-clear

= All-Uses- Some definition-clear subpath from each
definition to each use reached by that definition and
each successor node of the use

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEF?

CMPSCI520/620

CONPUTE Rapps’ and Weyuker’s DF Criteria

C-use is a “computation use”
*All-C-Uses, Some-P-Uses p-uyse is a “predicate use”
=either All-C-Uses for dm(x) or at least one P-Use
=All-P-Uses, Some-C-Uses
=either All-P-Uses for dm(x) or at least one C-Use
=All-Du-Paths

= All definition-clear subpaths that are cycle-free or simple-
cycles from each definition to each use reached by that
definition and each successor node of the use

cycle- frde% rslmple cycles

Xi=

/;-free or simple-cysles
Yef-tledr \ .
-

o \.

cycle-i free or slmple cycles

UNIVERSITY: OF MASSACHUSETTS AMHERST:

CONPUTER Ntafos k-dr Data Flow Criteria

= Chains of alternating definitions and uses linked by definition-
clear subpaths (k-dr interactions)

=jth definition reaches ith use,
=which defines (i+1)st definition
= Required K-tuples
=Some subpath propagating each k-dr interaction
+ if last use is a predicate, both branches

+ if first definition or last use is in a loop, minimal and some larger
number of loop iterations

Vign:=X
dorcnarinel O

,“/"'

b: def-clear
b: def-clear__Y. - =X de!clsa;,.

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

FHbie Examples

=1,2,4,6

=All-Uses $atisfactory Paths:

=1,2,4,5,6
U,(X)

1,3,4,6 Us(X)
s Satisfactory Paths: \@/
>®)

tisfactory Path: d1(x)

d,(x) to any use

d,(x) to u,(x)
d(x) to uy(x)
both paths for d,(x) to ug(x)

UNIVERSITY OF MASSACHUSETTS AMHERST - Dt

computeR 3-DR interactions
SCIENCE

d1(x), u4(x), d4(y), ué(y)
d1(x), u4(x), d4(y), u2(y) d,(x), d,(y)
d1(x), u4(x), d4(y), u3(y)

d1(y), u3(y), d3(x), u5(x)

di(y), u3(y), d3(x), ub(x) Uy(y)

d1(y), u3(y), d3(x), ud(x)

d3(x), u4(x), d4(y), ué(y) u,(y), da(x u,(x), d,(y)

d4(y), u3(y), d3(x), us(x)
d4(y), u3(y), d3(x), u6(x) 5(x)
Paths

= 2-DR paths

@usw Ug(X)

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

10

CMPSCI520/620

COMPUTER |_aski’s and Korel’s Criteria

= Context Coverage - Some subpath along which each set of
definitions reach uses at some node

VA

= Ordered Context Coverage -Some subpath along which each
ordering of each sequence of definitions reach uses at some

UNIVERSITY: OF MASSACRUSETTS AMHERST 5

CONPUTER Fault-based Techniques

apply test data
to distinguish (kill)

=Mutation Testing

introduce
simple errors

=Fault propagation

apply test data
to propagate fault
to output

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

seience Relationships among criteria
All-Paths
ORDERED CiNTEXT COVERAGE A||—D£—Paths Required k-Tuples
CONTEXT COVERAGE All-Uses
REAC}lCOVERAGE
All-C-Uses/Some-P-Uses AIIfP—Uses/i)me—C—Uses
\ A/AII—FLUSQ
All-Defs *
=All-Defs -- linear in assignment statements All-Edges
=All-Uses -- quadratic in assignment statements
=All-DU-paths -- exponential in assignment statements,
but empirically, all are linear in conditional statements All-Nodes
=Required 2-tuples -- quadratic in statements
=Reach -- linear in definitions that reach uses
=Context -- quadratic in definitions that reach uses

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

COMPUTER Mutation Testing

= Competent Programmer Hypothesis
= programmers write programs that are reasonably close to the
desired program
=e.g., sort program is not written as a hash table
= Coupling Effect
=detecting simple atomic faults will lead to the detection of
more complex faults
=considers all simple (atomic) faults that could occur
=introduces single faults one at a time to create “mutants” of
original program
=interactively(?) apply test data to complete (or partial) set of
mutants
=“test adequacy” is measured by “mutants killed”
operand mutations:
A:=X+1;, 2A:=X+20or=>A:=X+Y
binary operator replacement:
A:=X+1; 2A:=X-1orA:=X*1
statement replacement:
A:=X+1; = continue or = return

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

11

CMPSCI520/620

COMPUTER Mutation testing process CONPUTER Relay Model

=Execute program P on test set T Z:’S'::‘r";ﬁis;ﬁ?;ﬁ|;°by

=save results R to serve as an oracle comparing output with

=P is considered the “correct” program °racle”
=Each fault results in a new program

=Mutant programs = P1,...,Pk
=Execute each mutant Pion T and

compare results Ri to R
=1lf Ri R then mutant is killed
=if Ri =R then either

=Pi =P, thus itis an equivalent mutant or
the test cases do not reveal the error and
need to find a new test case that does

transfer fault

Y

> transfer

“observable”
failure

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPARET UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPAF‘\-:':F

CONPUTER Other Fault-Based techniques: COMPUTER Putting it all together

=mutating test data =unit testing
sinstead of mutating program, mutate input

=Bart Miller did an experiment where he demonstrated . .

that arbitrary strings caused UNIX to consistently fail =regression testing

=swanted to understand why storms caused his connection
to go down

sintegration & system testing

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPAR:T

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPAR}"F

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

COMPUTER Unit testing

stest scaffolding

=can be created for general
or for specific tests

=is composed of

=one or more drivers

=provide a prototype activation
environment

=drivers initialize non-local
variables and parameters and call
the unit
=one or more stubs
=provide a prototype of the units
used by the program to be tested

=one or more oracles

=identify the tests that cause
failures.

UNIVERSITY: OF MASSACHUSETTS AMHERST: = DERPARTMENTHORCON

|. Stubs

Scaffolding

COMPUTER

=big bang

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF MASSACHUSETTS AMHERST: - DEBARTMENT- GF-BOM

“seience Integration testing strategies

. =top down

L I =

[]

@

“"H;'HEE Unit vs. Integration vs. System T

= Integration testing
=focuses on communication and
interface problems
= tests derived from module
interfaces and detailed architecture
specifications
=some scaffolding is required
= System testing
=focuses on the behavior of the

esting

@
ils

system as a whole

=tests are derived from requiremen
specifications
=code is seen as a black box

L

]

= support of scaffoldings not usually

needed £ ; l

= exception is embedded code, where
some simulation of the embedding
environment may be required

L]

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTIMENTOF CON

CONPUTER Integration testing strategies

=

= bottom up

UNIVERSITY OF MASSACHUSETTS AMHERST- 7 DEPARTMENT, OF- LUl

13

CMPSCI520/620

FMTHE Relation to design

Big Bang

Top Down {——>| Traditional I
Bottom Up Incremental
Threads % Prototype (spiraI)I

Critical Modules

UNIVERSITY. OF MASSACHUSETTS: AMHERST:

FINE Testing OOA and OOD Models

= Correctness (of each model element)
= Syntactic (notation, conventions)
=review by modeling experts
= Semantic (conforms to real problem)
=review by domain experts
= Consistency (of each class)
=Revisit Class Diagram
=Trace delegated responsibilities
=Examine / adjust cohesion of responsibilities
= Evaluating the Design
=Compare behavioral model to class model
=Compare behavioral & class models to the use cases

=Inspect the detailed design for each class (algorithms & data
structures)

UNIVERSITY- OF MASSACHUSETTS AMHER!

©Rick Adrion 2003 (except where noted)

FMTHE 0-0 Programs are Different

=High Degree of Reuse

=Does this mean more, or less testing?
=Unit Testing vs. Class Testing

=What is the right “unit” in OO testing?
=Review of Analysis & Design

=Classes appear early, so defects can be recognized
early as well

UNIVERSITY-OF MASSACHUSETTS: AMHER:é

COMPUTER Unit Testing

*What is a “Unit"?
=Traditional: a “single operation”
=0O-0: encapsulated data & operations

=Smallest testable unit = class
many operations

=Inheritance
stesting “in isolation” is impossible
=operations must be tested every place they are used

UNIVERSITY- OF MASSACHUSETTS ANH| S

14

CMPSCI520/620

CONPUTER Issues in O-O testing

=Need to re-examine all testing techniques and
processes

=Primary Issues:
=implications of encapsulation
=implications of inheritance
=implications of genericity
=implications of polymorphism

=Changes concerns
=State of instance variables
=Sequences of methods calls
=Must test a class and its specializations

UNIVERSITY: OF MASSACHUSETTS AMHERST & DERARTMENTHOFCOM

CONPUTER White-box vs. Black-box Testing

=The distance between object-oriented
specification and implementation is typically small

=gap (and therefore usefulness) of the white-
box/black-box distinction is decreasing

=But object-oriented specification describes
functional behavior, while the implementation
describes how that is achieved
=These techniques can be adapted to method
testing, but are not sufficient for class testing
=Conventional flow-graph approaches
=may be inconsistent the object-oriented paradigm
=method-level control faults are not likely

UNIVERSITY OF MASSACHUSETTS AMHERST: - DEBARTMENT-OFEOM b

©Rick Adrion 2003 (except where noted)

COMPUTER
Sscienee Example Tests:
input, expected output
OK -1 Less
Change O Equal Zero Equalf
OK 1 More
Add 42 Jackpot

4 =

Tests:
input, expected output
-1 Less
0 Equd
1 More

UNIVERSITY-OF MASSACHUSETTS: AMHERST 3 A ERARTMENT OGO

COMEER Black-box O-O Testing

=Conventional black-box methods are useful for object-
oriented systems

=error-guessing strategies
=verification of ADTs can be adapted to object-
oriented systems

=Other approaches

=utilize specifications integrated with the
implementation as asserfions

sspecification integrated with the implementation
as dynamic assertions

=C++ assertions or Eiffel pre/post-conditions offer
similar self-checking

=Utilize method (event) sequence information

=usually don’t have history of method invocations
so can’t do this with assertions

UNIVERSITY OF MASSACHUSETTS AMHERST- - DEPARTMENT OF-EOI Y

15

CMPSCI520/620

CIEe Encapsulation

= not a source of errors but may be an obstacle to testing
= how to get at the concrete state of an object?
= use the abstraction
= state is inspected via access methods
= equivalence scenarios
= comparing sequences of events
= state is implicitly inspected by comparing related behavior
= examine sequences of events
. gteaetgsto be able to define what are equivalent sequences and need to determine equal
= use or provide hidden functions to examine the state
= useful for debugging throughout the life of the system
= but modified code, may alter the behavior
= especially true for languages that do not support strong typing
= proof-of-correctness techniques
=a p{ﬁvgd method could be excused from testing to bootstrap testing of other
methods
= state reporting methods tend to be small and simple, they should be relatively
easy to prove

UNIVERSITY: OF MASSACHUSETTS AMHERST: = DERARTMENT-OFC

CONPUIER Which fns must be tested

= derived::redefined has to be tested afresh
= does derived::inherited() have to be retested?

have to test
when x<0, could
divide by O

= derived::inherited() may not have to be completely tested

= if code in inherited() doesn’t depend on redefined(), doesn’t call it nor call any code
that indirectly calls it

UNIVERSITY OF MASSACHUSETTS AMHERST: < DEBARTMENT-OF- 6

©Rick Adrion 2003 (except where noted)

COMPUTER Implications of Inheritance

=rule rather than the exception?
=inherited features usually require re-testing
=because a new context of usage results when features
are inherited
=multiple inheritance increases the number of contexts to
test
=specialization relationships

=implementation specialization should correspond to problem
domain specialization

=reusability of superclass test cases depends on this

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARIMENTOF- GO

CONPUTE Inheritance Testing

=flattening inheritance
=each subclass is tested as if all inherited features were
newly defined

stests used in the super-classes can be reused
=many tests are redundant

=incremental testing
=reduce tests only to new/modified features

=determining what needs to be tested requires automated
support

UNIVERSITY OF MASSACHUSETTS AMRERST. - DEPARTMENT, OFE0I

16

CMPSCI520/620

T Polymorphism CONPUIER Testing under Inheritance
=in procedural programming, procedure calls are shape
Statlca”y bpund_ X) Q: What if implementation of resize()
=each possible binding of a polymorphic component for each subclass calls inherited
requires a separate set of test cases move() operation move() ?

=many server classes may need to be integrated

before a client class can be tested
=may be hard to determine all such bindings

=complicates integration planning and testing Circle Square Ellipse

resize() resize() resize()

A: Shape cannot be completely tested unless
we also test Circle, Square, & Ellipse!

UNIVERSITY: OF MASSACHUSETTS AMHERST. ~

UNIVERSITY-OF MASSACHUSETTS AMHERST: ~

CONPUTER Integration Testing CONPUTER 0-O Integration Testing
*0-0 Integration: Not Hierarchical " Thread-Based Testing
i . . i =Integrate set of classes required to respond to one input or
=Coupling is not via subroutine event
=“Top-down” and “Bottom-up” have little =Integrate one thread at a time ,
. =Example: Event-Dispatching Thread vs. Event Handlers in
meaning Java
*Integrating one operation at a time is difficult *Implement & test all GUI events first

= Add event handlers one at a time
=Use-Based Testing
=Implement & test independent classes first

=Then implement dependent classes (layer by layer, or cluster-
based)

=Simple driver classes or methods sometimes required to test
lower layers

=Indirect interactions among operations

UNIVERSITY OF MASSACHUSETTS AVMHERST: UNIVERSITY- OF MASSACHUSETTS AMHERS

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

COMPUTER Test Case Design

= Focus: “Designing sequences of operations to exercise the states of a class
instance”
= Challenges
= Observability - Do we have methods that allow us to inspect the inner state of
an object?
= Inheritance - Can test cases for a superclass be used to test a subclass?
= Test Case Checklist
= [dentify unique tests & associate with a particular class
= Describe purpose of the test
= Develop list of testing steps:
= Specified states to be tested
= Operations (methods) to be tested
= Exceptions that might occur
= External conditions & changes thereto
= Supplemental information (if needed)

UNIVERSITY: OF MASSACHUSETTS AMHERST:

©Rick Adrion 2003 (except where noted)

18

