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25- Static & Dynamic Analysis

Rick Adrion
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Approaches

ßStatic Analysis
ßInspections

ßSoftware metrics

ßSymbolic execution

ßDependence Analysis

ßData flow analysis

ßSoftware Verification

ßDynamic Analysis
ßAssertions

ßError seeding,
mutation testing

ßCoverage criteria

ßFault-based testing

ßSpecification-based
testing

ßObject-oriented testing

ßRegression testing
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Verification

ßHow are they different?
ß(Automated) mathematical reasoning
ßdifficult, error prone

ßdecidability vs. expressiveness
ßPropositional calculus is decidable

ßPredicate calculus is semi-decidable

ßFinite-state verification
ßReason about a finite model of the system

ßFast, yields counterexamples, manages partial
specifications, applies to concurrency

ßState explosion!
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Behavior
model/
product

Intent

Proof

typically inferred
by symbolic
execution of the
specifications

lemmas and theorems in
predicate logic

predicate logic
assertions
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Symbolic Evaluation/Execution

ßCreates a functional
representation of a path
of an executable
component

ßP is composed of partial
functions corresponding
to the  executable paths
   P = {P1,...,Pr }

       Pi : Xi Æ  Y

ßFor a path Pi

ßD[Pi]  is
the domain for path Pi

ßC[Pi]  is the
computation for path Pi

Range:Y
P: X Æ Y

Domain:X

Pj

Pl

Pi

Pk

Xi

Xk
Xl

Xj
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1

2

3

PC: true, PV: X: a, Y: -

PC: true

54

PC: a<0 PC: a≥0

Execution tree (Hantler-King)
ABSOLUTE

1 procedure(X);

2 declare X,Y integer

3 if X<0

4 then Y¨ -X;

5 else Y¨ X;

6 return (Y);

7 end;

assume (true)

prove((Y = X’|Y = -X’) & Y≥0 & X = X’)

77
((a = a) ⁄ (a= -a)

  Ÿ a≥0 Ÿ a = a)
verified 

66

PC: a≥0 
PV: X: a, Y: a

PC: a<0 
PV: X: a, Y: -a

((-a = a) ⁄ (a= a)

  Ÿ(-a)≥0 Ÿ a = a)
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                input asssertion

n do_while predicate1

n+1     if predicate2

n+2        then code ;

n+3        else code ;

n+4           end;

n+5  output assertion ;

n 

n+1 

n+2 n+3 

n+5 

n+4

input assertion

output assertion

n 

n+5 

output assertion

output assertion

n+1 

n+2 n+3 

n+4

n 

n+1 

n+2 n+3 

n+5 

n+4

better: find a
loop invariant

Loops -- unroll them?
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Procedure Wensley (P:input, Q:input, E:input, Y:output);
Declare P, Q, E, Y, A, B, D real;
A := 0.0;
B := Q/2.0;
D := 1.0;
Y := 0.0;
Do_While (D>=E)

If ~(P - A - B ≥ 0.0) then
{ Y := Y+(D/2.0);

     A := A+B};
B := B/2.0;
D := D/2.0;
End_do;

End Wensley;

Floyd Proof: Wensley's Algorithm

Input P, Q, E

A ¨ 0.0
B ¨ Q/2
D ¨ 1.0
Y ¨ 0.0

D ≥ E

P-A-B < 0.0 Y ¨ Y+(D/2.0)
A ¨ A+B

B ¨ B/2.0
D ¨ D/2.0

A1

A0

AF
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Input P, Q, E

A ¨ 0.0
B ¨ Q/2
D ¨ 1.0
Y ¨ 0.0

Y ¨ Y+(D/2.0)
A ¨ A+B

D ≥ E

B ¨ B/2.0
D ¨ D/2.0

P-A-B < 0.0

A0

AI

AF
F

T

T
F

Floyd Proof: Wensley's Algorithm

ßSummary of Five Lemmas Needed
ßA0 to AI

ßAI, true branch, to AI

ßAI, false branch, to AI

ßAI, true branch, to AF

ßAI, false branch, to AF
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Hoare axiomatic proof

ßassertions are preconditions and post conditions on
some statement or sequence of statements

P{S}Q

ßif  P is true before S is executed and S is executed then
Q is true

ßas in Floyd's inductive assertion method,  we construct a
sequence of assertions, each of which can be inferred
from previously proved assertions and the rules and
axioms about the statements and operations of the
program

ßto prove P{S}Q, we need some axioms and rules about
the programming language
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Hoare axioms and proof rules

ßaxiom of assignment
ßP {x:=f} Q,
ßwhere Q is obtained from P by substituting f for all

occurrences of x in P (symbolic execution)

ß rule of composition
ßP {S1, S2 } Q => $ P1 , P{S1}P1 Ÿ P1{S2}Q

ß rule for the alternative statement
ßP{if B then S1 else S2 }Q fi 

P{B Ÿ S1}Q  Ÿ P{ÿB Ÿ S2}Q
ß rules of consequence
ß [P {S} Q Ÿ Q fi R] fi P {S} R
ß [P {S} Q Ÿ R  fi P] fi R {S} Q

ß rule of iteration
ßP {while B do S }Q fi

P{~B}Q Ÿ $ I ' P {B Ÿ S} I Ÿ I{B Ÿ S } I Ÿ I{~B }Q

Si x:= f

Sj

B

Sk Sn

B

Sm

loop invariant
backwards substitution
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Proof

ßHoare-style and Floyd- style verification are essentially the
same
ß one is based on graphical representation and the other on a
textual representation.
ß In Floyd-style proof, we visualize the proof goal by annotating a

CFG
ß In the other, we define the proof goal as a Hoare triple

ßMechanism for applying proof
ß may work either direction on such a proof, but because it's
typically easier to work backwards, often use a technique
called backwards substitution
ß we work our way from the post-condition, using the proof
rules to "push formulas through" the program
ß at each point where a "pushed-through" predicate "runs into"
a supplied predicate, we have a verification condition (VC) that
must be proved.
ßAfter all VCs are proved, we need to be prove termination
ß  Without a termination proof, we achieve partial correctness
ßWith a termination proof, we achieve total correctness
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Straightforward Observations

ßProblems
ßformal proofs are long, tedious and are often hard; assertions
are hard to get right; invariants are difficult to get right (need to
be invariant, but also need to support overall proof strategy)

ßUnsuccessful proof attempt fi ???
ß incorrect software? assertions? placement of assertion? inept
prover? although failed proofs often indicate which of the
above is likely to be true (especially to an astute prover)

ßDeeper Issues
ßundecidability of predicate calculus fi no way to be sure when
you have a false theorem
ßthere is no sure way to know when you should quit trying to
prove a theorem (and change something)
ßproofs are generally much longer than the software being
verified fi errors in the proof are more likely than errors in the
software being verified
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Model Checking: Overview

ß properties usually expressed in
ß in a propositional logic (e.g.,

temporal logic)
ß as a FSA

ß system represented as a
(possibly “abstracted”)
reachability graph
ß reasoning engine
ß logic fi propagates valid sub-

formulas through the graph
ß FSA fi compares FSAs via

language inclusion;
reachability; or bisumulation

Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as
an FSA

exhaustive search
of state space

properties stated as
propositional logic assertions
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Conservative Analysis

ßIf property is verified, property holds for all possible
executions of the system

ßIf property is not verified:
ßan error found
       OR

ßa spurious result

ßSystem model abstracts information to be tractable
ßConservative abstractions usually over-approximate
behavior

ßIf inconsistency relies upon over-approximations, then a
spurious result

ße.g. all counter example correspond to infeasible paths
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Temporal logic

ßaugments the standard operators of propositional logic with “tense”
operators
ß "possible worlds semantics" fi Kripke model
ß relativize the truth of a statement to temporal stages or states
ßa statement is not simply true, but true at a particular state
ßstates are temporally ordered, with the type of temporal order

determined by the choice of axioms.

ßmodel of time
ßpartially ordered time
ß linearly ordered time
ß linear temporal logic is typically extended by two additional operators, “until”

and “since”

ßdiscrete time
ßbranching (nondeterministic) time
ß foundation for one of the principal approaches to verifying concurrent

systems = Computational Tree Logics.
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Computation Tree Logics

ß specification language
ßa propositional temporal logic.

ß verification procedure
ßexhaustive search of the state space of

the concurrent system to determine
truth of specification.

ß formulas constructed from path
quantifiers and temporal operators:
ßpath quantifier:
ß A “for every path”
ß E “there exists a path”

ß temporal operator:
ß Xp “p holds next time’
ß Fp “p holds sometime in the future”
ßGp “p holds globally in the future”
ß pUq “p holds until q holds”

AFp
AFp

AFp

p
Xp

AFp
EFp
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mutual exclusion protocol

reachability graph

n1,n2,0

t1,n2,1

c1,n2,1 t1,t2,1

c1,t2,1

n1,t2,2

n1,c2,2t1,t2,2

t1,c2,2

*McMillan

process1  = n1,t1,c1
process2  = n2,t2,c2
turn           = 0,1,2

ßExample: processes can be null, trying to
obtain the lock, or in a critical region (n1, t1, c1)
or (n2, t2, c2)

ßTURN is a variable that indicates which
process can obtain the lock (0,1,2)

ßNeed a reachability graph that shows that
states (i.e., the values) of the variables
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Example: propagation

n1,n2,0

t1,n2,1

c1,n2,1 t1,t2,1

c1,t2,1

n1,t2, 2

n1,c2,2t1,t2,2

t1,c2,2

AG(t1fiAF c1)

AF c1

AF c1
AF c1

AF c1

AF c1
AF c1

AF c1

<process1, process2, turn>

AF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

ßa fib means (b or ¬ a)

ß( t1 fi AF c1 ) means ( AF c1 ⁄ ¬ t1 )
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Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as an FSA

FSA

Automata-Theoretic Model Checking
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a, b a, b, c
c

aa

b

b

c

Accepted
by?

(ba)*(ac*+ bbc*)

Example

ßSpecification:
ß of the possible observable events (a, b, c), c must
happen at least once

ß                                             Implementation
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Some observations

ßModel Checking
ßworst case bound linear in size of the model
ßbut the model is  exponential
ßnot clear if model checking or symbolic model
checking is superior
ßdepends on the problem
ßexperimentally often very effective!
ßused selectively to verify hardware designs
ßtrying to develop appropriate abstractions to make
it applicable to software systems
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Approaches

ßStatic Analysis
ßInspections

ßSoftware metrics

ßSymbolic execution

ßDependence Analysis

ßData flow analysis

ßSoftware Verification

ßDynamic Analysis
ßAssertions

ßError seeding,
mutation testing

ßCoverage criteria

ßFault-based testing

ßSpecification-based
testing

ßObject-oriented testing

ßRegression testing
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Types of Testing--what is tested

ßUnit testing
ßexercise a single simple (procedure) component
ßIntegration testing
ßexercise a collection of inter-dependent components
ßfocus on interfaces between components
ßSystem testing
ßexercise a complete, stand-alone system
ßAcceptance testing
ßcustomer’s evaluation of a system
ßusually a form of system testing
ßRegression testing
ßexercise a changed system
ßFocus on modifications or their impact
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Testing approaches

ß“black box”

ß“white box” or “glass box”
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White & Black box testing processes

executable
component

test cases
analysis

execution results

oraclespecifications testing report

test data selection

criteria

executable
component

test cases

analysis
execution results

oraclespecifications testing report

test data selection

criteria

Specs 
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DS=X1, X2, ..., Xn=precondition P RS=Y1, Y2, ..., Yn=postcondition Q

D=X1, X2, ..., Xn R =Y1, Y2, ..., Yn

DE=X1, X2, ..., Xn

RE=Y1, Y2, ..., Yn

E

T

specification S

executable component E; show P{E}Q

test data set(s) T

test data adequacy criterion C

Testing Theory
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Testing Theory

ßCriterion C for Test Adequacy
ßC:SxE ->2T

ßspecification-based C (s)

ßinterface-based C (x1, x2, ..., xn,  y1, y2, ..., yn)

ßprogram-based C (e)

ßcombined C (s,e)

ßTypes
ßstructural

ßfault-based

ßerror-based

“black box”

“white box”

ßif specification S defines a function F,
such that P{F}Q, then C is reliable if
T1, T2, ... , Tm; C(Ti ,E); and D (E) … Ti

ß"Ti ("t ŒTi, E(t)= F(t)) v "Ti

($t Œ Ti  E(t) ≠ F(t))

ß"t Œ  Ti, E(t)= F(t) fi
" t Œ Ti OK(Ti ) fi E ≡ F
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Ideal Test Criterion

ß test criterion C is ideal  if for any executable component E
and every test set Ti Õ D( E ) such that C(Ti ,E ), Ti is
successful
ß of course we want Ti << D( E )
ß but in general, T= D(P) is the only ideal test

criterion
ß In general, there is no ideal test criterion

“Testing shows the presence, not the absence of bugs”    
E. Dijkstra

ß Dijkstra was arguing that verification was better than testing
ß but, verification has similar problems
ß can’t prove an arbitrary program is correct

ß can’t solve the halting problem
ß can’t determine if the specification is complete

ß need to use these techniques so that they compliment one
another
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Black Box Testing

ßFunctional/Interface Test Data Selection
ßtypical cases
ßboundary conditions/values
ß illegal conditions (if robust)
ßfault-revealing cases
ßbased on intuition about what is likely to break the system

ßother special cases
ßstress testing
ß large amounts of data
ßworse case operating conditions

ßcombinations of events
ßselect those cases that appear to be more error-prone

ßcommon representations for selecting sequences of events
ßdecision tables
ßcause and effect graphs
ßusage scenarios
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“White Box” Test Data Selection

ßstructural
ßcoverage based

ßfault-based
ße.g., mutation testing, RELAY

ßerror-based
ßdomain and computation based

ßuse representations created by symbolic
execution
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CFG-Based Coverage

ßCriteria
ßStatement Coverage

ßPath Coverage

ßCyclomatic-number

ßBranch Coverage

ßHidden Paths

ßLoop Guidelines

ßBoundary - Interior
ßSelecting paths that satisfy the criteria

ßstatic selection
ßsome of the associated paths may be infeasible

ßdynamic selection
ßmonitors coverage and displays areas that have not been

satisfactorily covered
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“Simple” coverage measures

ßStatement Coverage
ßrequires that each statement in a program be executed
at least once
ßa set P of paths in the CFP satisfies the statement coverage

criterion iff  " ni Œ N,    $ p Œ P such that ni is on path p
ßPath Coverage
ßRequires that every path in the program be executed at
least once
ßP satisfies the path coverage criterion iff P contains all execution

paths from the start node to the end node in the CFG
ßIn most programs, path coverage is impossible
ßMultiple Condition Coverage
ßT is adequate if for every condition C which consists of
atomic predicates  (p1, p2, ..., pn) and all possible
combinations (b1, b2, ..., bn) of their values, there is at
least one t Œ T such that the value of pi is equal to bi for
all i
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1

2

3

X > 1

Y < 2

T

F

F

T T

hidden
branches

Branch & Loop Coverage

ßBranch Coverage
ßRequires that each
branch in a program
(each edge in a control
flow graph) be executed
at least once
ß e.g., Each predicate must

evaluate to each of its
possible outcomes

ßBranch coverage is
stronger than statement
coverage

ßLoop Coverage
ßPath 1, 2, 1, 2, 3  executes all

branches (and all statements)
but does not execute the loop
well.

ßBetter
ß fall through case
ßminimum number of iterations
ßminimum +1 number of iterations
ßmaximum number of iterations
ßmaximum -1 number of iterations

1, 2, 1, 2, 1, 2, 3

(1, 2)n-1, 3

(1, 2)n, 3
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Data Flow Path Selection

ßDefinitions
ßdn(x) denotes that variable x  is assigned  a value at node n (defined)
ßum(y) denotes that variable y is used (referenced at node m)
ß a definition clear path p with respect to (wrt) x is a subpath where x  is not

defined at any of the nodes in p
ß a definition dm(x) reaches a use un(x) iff there is a subpath (m) • p • (n)

such that p is definition clear wrt x

ßRapps and Weyuker
ßdefinition-clear subpaths from definitions to uses

ßNtafos
ßchains of alternating definitions and uses linked by definition-clear

subpaths

ßLaski and Korel
ßcombinations of definitions that reach uses at a node via a subpath
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x:= := x. . .
def-clear

:= x. . .
:= x

x:= . . .
. . .

:= xdef-clear

def-clear

def-clear

Rapps’ and Weyuker’s DF Criteria

ßAll-Defs - Some definition-clear subpath from each
definition to some use reached by that definition

ßAll-Uses- Some definition-clear subpath from each
definition to each use reached by that definition and
each successor node of the use



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

. . .x:= . . .

. . .

def-clear

def-clear

def-clear

cycle-free or simple-cycles

cycle-free or simple-cycles

cycle-free or simple-cycles

C-use is a “computation use”
P-use is a “predicate use”

Rapps’ and Weyuker’s DF Criteria

ßAll-C-Uses, Some-P-Uses
ßeither All-C-Uses  for dm(x) or at least one P-Use

ßAll-P-Uses, Some-C-Uses
ßeither All-P-Uses for dm(x) or at least one C-Use

ßAll-Du-Paths
ßAll definition-clear subpaths that are cycle-free or simple-
cycles from each definition to each use reached by that
definition and each successor node of the use
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1

2 3

4

5

6

d1(x)

u3(x)

u5(x)

u2(x)

Examples

ßAll-Defs Satisfactory Path:
ß1, 2, 4, 6

ßAll-Uses Satisfactory Paths:
ß1, 2, 4, 5, 6

ß1, 3, 4, 6

ßAll-Du-Paths Satisfactory Paths:
ß1, 2, 4, 5, 6

ß1, 3, 4, 5, 6 d1(x) to any use 

d1(x) to u2(x)

d1(x) to u3(x)

d1(x) to u5(x)

d1(x) to u2(x)

d1(x) to u3(x)

both paths for d1(x) to u5(x)
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Ntafos k-dr Data Flow Criteria

ßChains of alternating definitions and uses linked by definition-
clear subpaths (k-dr interactions)
ß ith definition reaches ith use,
ßwhich defines (i+1)st definition

ßRequired K-tuples
ßSome subpath propagating each k-dr interaction

+ if last use is a predicate, both branches
+ if first definition or last use is in a loop, minimal and some larger

number of loop iterations

y:=, := x

. . .x:= . . .
. . .

:= x

def-clear def-clear

def-clear

z:=, :=y

x:=

x:= := yy:=, := x

2-dr

3-dr

. . .
w:=, :=z

. . .def-clear

. . .def-clear. . .def-clear
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3-DR interactions

d1(x),  u4(x), d4(y), u6(y)

d1(x),  u4(x), d4(y), u2(y)

d1(x),  u4(x), d4(y), u3(y)

d1(y),  u3(y), d3(x), u5(x)

d1(y),  u3(y), d3(x), u6(x)

d1(y),  u3(y), d3(x), u4(x)

d3(x),  u4(x), d4(y), u6(y)

d4(y),  u3(y), d3(x), u5(x)

d4(y),  u3(y), d3(x), u6(x)

Paths
ß 2-DR paths

u4(x), d4(y)

 d1(x), d1(y) 1

2

3 4

5

6

u2(y)

u5(x)

u6(y), u6(x)

u3(y), d3(x)
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y:=. . .
x:=

. . .def-clear
def-clear

z:=

. . .def-clear
:=x, :=y, :=z

y:=. . .
x:= . . .def-clear

def-clear

z:= . . .
def-clear

def-clear

. . .
:=x, :=y, :=z. . .

def-clear

Laski’s and Korel’s Criteria
ßContext Coverage - Some subpath along which each set of

definitions reach uses at some node

ßOrdered Context Coverage -Some subpath along which each
ordering of each sequence of definitions reach uses at some
node
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All-Paths

All-DU-Paths

All-Uses

All-Defs

Required k-Tuples

All-P-Uses

All-Edges

All-Nodes

All-P-Uses/Some-C-Uses

ORDERED CONTEXT COVERAGE

CONTEXT COVERAGE

REACH COVERAGE

All-C-Uses/Some-P-Uses

ßAll-Defs -- linear in assignment statements
ßAll-Uses -- quadratic in assignment statements
ßAll-DU-paths -- exponential in assignment statements,
but empirically, all are linear in conditional statements
ßRequired 2-tuples -- quadratic in statements
ßReach -- linear in definitions that reach uses
ßContext -- quadratic in definitions that reach uses

Relationships among criteria
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... ...

Mutants 

introduce 
simple errors

apply test data
to distinguish (kill)

apply test data
to propagate fault
to output

Fault-based Techniques

ßMutation Testing

ßFault propagation
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Mutation Testing

ßCompetent Programmer Hypothesis
ß programmers write programs that are reasonably close to the
desired program
ße.g., sort program is not written as a hash table

ßCoupling Effect
ßdetecting simple atomic faults will lead to the detection of
more complex faults

ßconsiders all simple (atomic) faults that could occur
ß introduces single faults one at a time to create “mutants” of
original program
ß interactively(?) apply test data to complete (or partial) set of
mutants
ß“test adequacy” is measured by “mutants killed”

operand mutations:

A : = X + 1;  fi A : = X + 2 or fi A : = X + Y

binary operator replacement:
A : = X + 1;  fi A : = X - 1 or fi A : = X * 1
statement replacement:
A : = X + 1;  fi continue or  fi return
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Mutation testing process

ßExecute program P on test set T
ßsave results R to serve as an oracle

ßP is considered the “correct” program

ßEach fault results in a new program
ßMutant programs = P1,...,Pk

ßExecute each mutant Pi on T and
compare results Ri  to R

ßIf Ri  ≠ R then mutant is killed

ßif  Ri = R then either
ßPi  = P,  thus it is an equivalent mutant or
the test cases do not reveal the error and
need to find a new test case that does

apply test data to
distinguish (kill) by
comparing output with
“oracle”

... ...

Mutants 

P1

        P2

            Pk
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Relay Model

:= <op>

fault

:=

:=

“observable”
failure

transfer

transfer
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Other Fault-Based techniques:

ßmutating test data
ßinstead of mutating program, mutate input

ßBart Miller did an experiment where he demonstrated
that arbitrary strings caused UNIX to consistently fail
ßwanted to understand why storms caused his connection
to go down
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Putting it all together

ßunit testing

ßintegration & system testing

ßregression testing
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Scaffolding

Stubs

Unit testing

ßtest scaffolding
ßcan be created for general
or for specific tests

ßis composed of
ßone or more drivers
ßprovide a prototype activation
environment

ßdrivers initialize non-local
variables and parameters and call
the unit

ßone or more stubs
ßprovide a prototype of the units
used by the program to be tested

ßone or more oracles
ßidentify the tests that cause
failures.

Driver

Instrument

Oracle
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Instrument

Oracle

Unit vs. Integration vs. System Testing

ß Integration testing
ß focuses on communication and

interface problems
ß tests derived from module

interfaces and detailed architecture
specifications
ßsome scaffolding is required

ßSystem testing
ß focuses on the behavior of the

system as a whole
ß tests are derived from requirements

specifications
ßcode is seen as a black box
ßsupport of scaffoldings not usually

needed
ß exception is embedded code, where

some simulation of the embedding
environment may be required
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Integration testing strategies

ßbig bang

Outputs

Oracle
ß top down

Stub

Stub

Outputs

Oracle
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Driver

Integration testing strategies

ß bottom up

Outputs

Oracle
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Relation to design

Traditional

Incremental

Prototype (spiral)

Critical Modules

Top Down

Bottom Up

Threads

Big Bang
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O-O Programs are Different

ßHigh Degree of Reuse
ßDoes this mean more, or less testing?

ßUnit Testing vs. Class Testing
ßWhat is the right “unit” in OO testing?

ßReview of Analysis & Design
ßClasses appear early, so defects can be recognized
early as well
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Testing OOA and OOD Models

ßCorrectness (of each model element)
ßSyntactic (notation, conventions)
ß review by modeling experts

ßSemantic (conforms to real problem)
ß review by domain experts

ßConsistency (of each class)
ßRevisit Class Diagram
ßTrace delegated responsibilities
ßExamine / adjust cohesion of responsibilities

ßEvaluating the Design
ßCompare behavioral model to class model
ßCompare behavioral & class models to the use cases
ßInspect the detailed design for each class (algorithms & data
structures)
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Unit Testing

ßWhat is a “Unit”?
ßTraditional: a “single operation”

ßO-O: encapsulated data & operations

ßSmallest testable unit = class
many operations

ßInheritance
ßtesting “in isolation” is impossible

ßoperations must be tested every place they are used
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Issues in O-O testing

ßNeed to re-examine all testing techniques and
processes
ßPrimary Issues:
ß implications of encapsulation

ß implications of inheritance

ß implications of genericity

ß implications of polymorphism

ßChanges concerns
ßState of instance variables

ßSequences of methods calls

ßMust test a class and its specializations
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Tests:
  input, expected output
    -1 Less
     0 Equal
     1 More

Tests:
  input, expected output
    -1 Less
     0 Equal
     1 More

Example

Base::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)

Base::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Equal”)
else message(“More”)

Derived::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{
    message(“More”)

    if(val==42) message(“Jackpot”)
}

Derived::describedSelf() is this code
if (val < 0) message(“Less”)
else if(val==0) message(“Zero Equal”)
else
{
    message(“More”)

    if(val==42) message(“Jackpot”)
}

Tests:
  input, expected output
    -1 Less
     0 Equal
     1 More

OK
Change                 ------ Zero Equal
OK
Add      42        Jackpot
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ßThe distance between object-oriented
specification and implementation is typically small
ßgap (and therefore usefulness) of the white-
box/black-box distinction is decreasing

ßBut object-oriented specification describes
functional behavior, while the implementation
describes how that is achieved
ßThese techniques can be adapted to method
testing, but are not sufficient for class testing
ßConventional flow-graph approaches
ßmay be inconsistent the object-oriented paradigm
ßmethod-level control faults are not likely

White-box vs. Black-box Testing
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Black-box O-O Testing
ßConventional black-box methods are useful for object-
oriented systems
ßerror-guessing strategies
ßverification of ADTs can be adapted to object-
oriented systems

ßOther approaches
ßutilize specifications integrated with the
implementation as assertions
ßspecification integrated with the implementation
as dynamic assertions
ßC++ assertions or Eiffel pre/post-conditions offer
similar self-checking

ßUtilize method (event) sequence information
ßusually don’t have history of method invocations
so can’t do this with assertions
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Encapsulation
ß not a source of errors but may be an obstacle to testing
ß how to get at the concrete state of an object?
ß use the abstraction
ß state is inspected via access methods
ß equivalence scenarios
ß comparing sequences of events
ß state is implicitly inspected by comparing related behavior

ß examine sequences of events
ß need to be able to define what are equivalent sequences and need to determine equal

states
ß use or provide hidden functions to examine the state
ß useful for debugging throughout the life of the system
ß but modified code, may alter the behavior
ß especially true for languages that do not support strong typing

ß proof-of-correctness techniques
ß a proved method could be excused from testing to bootstrap testing of other

methods
ß state reporting methods tend to be small and simple, they should be relatively

easy to prove
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Implications of Inheritance

ßrule rather than the exception?

ßinherited features usually require re-testing
ßbecause a new context of usage results when features
are inherited

ßmultiple inheritance increases the number of contexts to
test

ßspecialization relationships
ß implementation specialization should correspond to problem
domain specialization

ßreusability of superclass test cases depends on this
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Base class contains:
inherited(int x)
redefined() - returns a number in range 1 to 10 inclusive

Base class contains:
inherited(int x)
redefined() - returns a number in range 1 to 10 inclusive

Derived class contains:
redefined() - returns a number in range 0 to20 inclusive
//inherited() is inherited

Derived class contains:
redefined() - returns a number in range 0 to20 inclusive
//inherited() is inherited

inherited contains the code:
if (x<0)
    x = x/redefined()
return x

inherited contains the code:
if (x<0)
    x = x/redefined()
return x

have to test
when x<0, could
divide by 0

Which fns must be tested

ß derived::redefined has to be tested afresh
ß does derived::inherited() have to be retested?

ß derived::inherited() may not have to be completely tested
ß if code in inherited() doesn’t depend on redefined(), doesn’t call it nor call any code

that indirectly calls it
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Inheritance Testing

ßflattening inheritance
ßeach subclass is tested as if all inherited features were
newly defined

ßtests used in the super-classes can be reused

ßmany tests are redundant

ßincremental testing
ßreduce tests only to new/modified features

ßdetermining what needs to be tested requires automated
support
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Polymorphism

ßin procedural programming, procedure calls are
statically bound
ßeach possible binding of a polymorphic component
requires a separate set of test cases
ßmany server classes may need to be integrated
before a client class can be tested

ßmay be hard to determine all such bindings
ßcomplicates integration planning and testing
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Shape

move()

Circle

resize()

Square

resize()

Ellipse

resize()

Q: What if implementation of resize() 
for each subclass calls inherited 
operation move() ?

A: Shape cannot be completely tested unless
we also test Circle, Square, & Ellipse!

Testing under Inheritance
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Integration Testing

ßO-O Integration: Not Hierarchical
ßCoupling is not via subroutine

ß“Top-down” and “Bottom-up” have little
meaning

ßIntegrating one operation at a time is difficult
ßIndirect interactions among operations
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O-O Integration Testing

ßThread-Based Testing
ßIntegrate set of classes required to respond to one input or
event
ßIntegrate one thread at a time
ßExample: Event-Dispatching Thread vs. Event Handlers in
Java
ß Implement  & test all GUI events first
ßAdd event handlers one at a time

ßUse-Based Testing
ßImplement & test independent classes first
ßThen implement dependent classes (layer by layer, or cluster-
based)
ßSimple driver classes or methods sometimes required to test
lower layers
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Test Case Design

ß Focus: “Designing sequences of operations to exercise the states of a class
instance”
ß Challenges
ßObservability - Do we have methods that allow us to inspect the inner state of

an object?
ß Inheritance - Can test cases for a superclass be used to test a subclass?

ß Test Case Checklist
ß Identify unique tests & associate with a particular class
ßDescribe purpose of the test
ßDevelop list of testing steps:
ß Specified states to be tested
ß Operations (methods) to be tested
ß Exceptions that might occur
ß External conditions & changes thereto
ß Supplemental information (if needed)


