CMPSCI520/620

COMPUTER
)SCIENCE

24- Static Analysis

Rick Adrion

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

CONPUTER Review methods

=Fagan inspections
=formal, multi-stage process
=significant background & preparation
=led by moderator
= Active design reviews
=also called "phased inspections"”
=several brief reviews rather than one large review
=guided by questions from the author
= Cleanroom

=we’ll come back to this

= N-fold
=parallel reviews controlled by moderator
=focuses on user requirements

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

=more than reviews, but reviews important component

COMPUTER

seience Approaches

=Static Analysis =Dynamic Analysis
=Inspections /-Assetii,qls
=Software metrics =Error seeding,
=Symbolic execution | mutation testing
=Dependence Analysis =Coverage criteria
=Data flow ana|ysis =Fault-based testing

’| »Software Verification =Specification-based

testing
=Object-oriented testing
=Regression testing

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPfA::,

CONPUTER Why are inspections effective

=knowing the product will be scrutinized causes
developers to produce a better product

=having others scrutinize a product increases the
probability that faults will be found
=walkthroughs and reviews are not as formal as
inspections, but appear to also be effective
=hard to get empirical results

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

=focus on error detection
=what about other "ilities" --
maintenance, portability,
etc.
=not applied consistently
& rigorously
=inspection shows statistical
improvement, but cannot
ensure quality
=inspection should have the
same results without regard
to the product to which it is
applied or the inspection
team
=range of errors not
addressed
=team expertise limited
=one property may have
many error modalities

UNIVERSITY. OF MASSACHUSETTS:AMHERST 4"

COMPUTER What are the deficiencies?

=human intensive and
often makes ineffective
use of human resources
=e.g., skilled software
engineer reviewing coding
standards, comments
spelling, etc.
=no automated support
=again inefficient of human
resources
=aspects of review not
used appropriately
=e.g., in Fagan process,
overview often covers what
should be described if
documentation is adequate

CONPUTER Cleanroom

= Verification as Review Process
= team verification of correctness
takes the place of individual unit

[£] testing; correctness is established
do 191 by group consensus if it is

i obvious
od = by formal proof techniques if it is
For all not.
inputs, does = benefits
Lgy][fh"]"g:’“ = intellectual control of the process
[f1? = motivates developers to deliver

error-free code
= verification is a form of peer review
= each person assumes
responsibility for and derives a
sense of ownership in the evolving
product
= every person must agree that the
work is correct before it is
accepted -> successes are
ultimately team successes, and
failures are team failures.

UNIVERSITY OF MASSACHUSETTS AVMHERST: '

= Markov Analysis
= Factors
= number of statistically typical (i.e.,
likely) usage paths through the
software
= Steps
= focus verification efforts,
= identify the likelihood of given
events,
= project the test schedule, and
= ascertain the (affordable) upper
bound on inferences about
reliability
= Stopping Criterion for Testing

= goals (e.g., target level of
estimated reliability) are achieved

= or quality standards (e.g.,
errors/KLOC) are violated

e
=

©Rick Adrion 2003 (except where noted)

CONPUTER Cleanroom
rements
P
Work Prodcts .

Specification

Function Usage
Functional Specification Usage Specification

Incremental

Development

, Planning s

b InlcrementaFl! y
evelopment Plan Usage Modeling
Test Case Generation

N
Source Code s

Improvement Feedback

_ , e
St

atistical Testing
-— Failure Data

Quality Certification
odel

Measures of Operational Performance

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

COMPUTER
SCIENCE

Software Metrics

=measures that predict qualities about software

=can be applied to any of the products (e.g., design, code,
test cases) or to the process (e.g., Capability Maturity
Model)

= Qualities measured by software metrics
=performance
=user-friendliness
=resources
=memory/storage
=development costs
=maintenance cost
=quality
=maintainabity
=reliability
=completeness
= consistency
= complexity

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

CMPSCI520/620

COMPUTER H H
seienee Function Points
= proposed by Albrecht in 1979 ' Weightssi mple Average Complex
= Originally applied to code wi 3 4 6
=UFP = w2 3 5 7
number of inputs x w1+ w3 3 4 6
number of outputs x w2 + w4 7 10 15
number of user inquiries x w3 w5 5 7 10

number of files x w4 +
number of external references x w5
=function points = UFP* TCA = UFP* (.65 + 0.01 * SUM(Fi))
=where the degree of influence, DI= SUM(Fi) is the sum of
complexity adjustment values, Fi

=metrics:
=productivity: FP/person-month
=quality: defects/FP
=cost: $/IFP

UNIVERSITY: OF MASSACHUSETTS AMHERST 41!

COMPUTER More Quality Metrics

= Modularity
=coupling
= applied to system and unit designs
= measure of the degree to which modules share data
= data coupling (the sharing of data via parameter lists)
is the best type of coupling, while common coupling
(the sharing of data via global or common areas) is
the worst.
= a lower coupling value is better. Z Z
= Cruickshank and Gaffney Coupling: Coupling = =1
= M; = sum of the number of input and output items)
shared between components i & j i
= Z; = average number of input and output items S%ﬁgdve: ZMr'
over m components with component i z =1
= n = number of components in the software product !

S

ke

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[A

©Rick Adrion 2003 (except where noted)

COMPUTER More Quality Metrics

=Modularity
=cohesion metric

=applied to unit design
=the relationship among the elements of a module

=best cohesion level is functional, and the worst is
coincidental.

=Cruickshank and Gaffney Cohesion Strength
Strength = V(X2 + Y?2)
=where:
=X = reciprocal of the number of assignment statements in
the module
=Y = number of unique function outputs divided by number of
unique function inputs

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DER‘;

COMPUTER McCabe’s cyclomatic complexity

=Complexity measured by control flow information
=based on a control flow graph where e is number of
edges, n is number of nodes, p is number of
connected components
=McCabe’s Cyclomatic Complexity:
sv=e-n+2
=where:
=v = complexity of the graph
=e = number of edges (program flows between nodes)
=n = number of nodes (sequential groups of program
statements)
=if a strongly connected graph is constructed (one in
which there is an edge between the exit node and
entry node), the calculation is
sv=e-n+1

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

CMPSCI520/620

480 Example

D

C=10-8+ 2=4

O

O

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

CONPUTER Software Science (continued)

=language level

A= Lx V= LV
Ap =153, g =121,
7‘F0rtran = 1‘14= ACDC assmblr 0.88

=predicted effort
&=V N2

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER
)SCIENCE

Software Science

= Halstead applied information theory to computer science
= metrics
n, number of distinct operators
n, number of distinct operands
N, total number of occurrences of operators
N, total number of occurrences of operands
= program level estimator
D =1L =0,12) (N, 0,)
L =1 D =@) 0y W)

difficulty increases as operators are introduced (n, 12 increases) and as
operands are used repetitively (N, I n, increases)

= programming time
T=EIS
where (§ is the “Stroud number”
5< . 6<20, usually 18

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPfA:

COMPUTER
)SCIENCE

Quality Metrics for Code

=Understandability
=size metrics
=lines of code
=function points
=function count
straceability metrics
=number of comment lines per total source lines of code
=percent comment lines of total lines
=correctness of comments
=Predicting quality
=LOC X domain seems to be the most reliable predictor

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

CMPSCI520/620

COMPUTER Analysis

B
\

Comparison

™~

ode

orodu

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPAF;‘:\E‘.

Behavior

COMPUTER Compare behavior to intent

=comparison can be informal
=done by human eye, e.g., inspection
=can be done by computers
= comparing text strings
=can be done by model-checkers
ssuch as formal machines (e.g., fsa's)

UNIVERSITY OF MASSACHUSETTS AMHERST--+-DER 5

©Rick Adrion 2003 (except where noted)

=can be done by rigorous mathematical reasoning

CONPUTER Basic Verification Strategy

=analyze a system for desired properties, i.e., compare
behavior to intent
sintent
=can be expressed as properties of a model
=can be expressed as formulas in mathematical logic
=behavior
=can be observed as software executes
=can be inferred from a model
=can be expressed as formulas in mathematical logic

=different representations support different sorts of
inferences

UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERARIM

COMPUTER Example: Dataflow Analysis

=intent:
sstated as a property
=captured as an event sequence
=behavior:
=model represents some execution characteristics
sinferred from a model: (e.g., annotated flow graph)
minferences based upon:
=semantics of flow graph
=semantics captured by annotations
=comparison:
=done by a fsa (e.g., a property automaton)

UNIVERSITY: OF MASSACHUSETTS AMHERST- /- DERA]

CMPSCI520/620

CONPUTER Data FlowAnalysis

“property” = Cecil constraint

if dfa accepts all traces then the
constraint holds for all computations

clo
dfa defined by
Cecil constraint

model

trace = computation
along path in an annotated
dataflow graph

UNIVERSITY. OF MASSACHUSETTS AMHERST - DEPARTHI

©Rick Adrion

COMPUTER

seinee Data flow analysis

= computes information that is true at each node in the
CFG, e.g.,

= what variables are defined
= what variables are referenced
= usually stored in sets
= ref(n) is the set of variables referenced at node n
= uses this local information and the control flow graph to
compute global information about the whole program

= done incrementally by looking at each node’s
successors or predecessors

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DERAR

2003 (except where noted)

COMPUTER Data Flow Analysis (DFA)

=Uses an annotated control flow graph model of the program
=Compute facts for each node

=Use the flow in the graph to compute facts about the whole
program

=DFA used extensively in program optimization, e.g.,
=determine if a definition is dead (and can be removed)
=determine if a variable always has a constant value

=determine if an assertion is always true and can be removed
=Some Dataflow systems

=DAVE system demonstrated the ability to find def/ref
anomalies

=Cecil/Cesar system demonstrated the ability to prove general
user-specified properties

=FLAVERS demonstrated applicability to concurrent system

UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERARIM

CONPUTER Data Flow Analysis

detect and
eliminate redundancy

T
et "
* e,

anomaly detection ~ code optimization %,
; scalar .
test data selection : P
program parallel vector
understanding
verification won’t 21K Hbout this

UNIVERSITY: OF MASSACHUSETTS AMHERST- /- DERA]

CMPSCI520/620

480 DFA

e =
then ...)

: single-entry,
. . single-exit
in-line code

- o

UNIVERSITY. OF MASSACHUSETTS: AMHERST. - DERPARTHEN

else ... ’ . g =use local information I

=compute what is true
at each node
=what variables are
defined
=what variables are
referenced def={y}
=stored in sets
=ref(n) is the set of
variables referenced
atnode n

graph to compute
global information
incrementally by
looking at each
node’s successors or
predecessors

COMPUTER Def-ref path expressions

=for a path P and a variable o
can write a path expression < gef(1)@)
describing the sequence of
set memberships
encountered for a, where

=o€ def (n)or
=a € ref(n) or
= € null (n)
=for each node n on the path
=write (and simplify) a path o e ref(4) (&
expression
*P(ny, Ny, ..., Ny)

o € null(2)€2,

a e null(3) (€3]

P(1,2,3,4; «) = d11r=dr

CONPUTER Anomalous pairs of ref/defs

d - defined, r - referenced, u - undefined

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ - DERART]

> Py unreferen
(o0 bwg? a bug?]
dr normal ud normal
uu harmless? rr normal
rd normal ru normal

undefine
urbug |

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘\TME—:

CONPUTER Consider unreferenced definition

=Want to know if a def is not going to be referenced
=dd or du
= At the point of a definition of a, want to know if there is
some path where a is defined or undefined before being
used
=May be indicative of a problem if the path is executable

=Usually just a programming convenience and not a
problem

= At the point of a definition of a, want to know if on all
paths a is defined or undefined before being used

=May be indicative of a problem
=Or could just be wasteful

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPAF‘\TM‘_E_

CMPSCI520/620

CONPUTER global dataflow analysis

=classes
=forward flow problems (e.g., available expressions)
=what definitions can affect computations at a given point in
a program
=backward flow problems (e.g., live variables)

=what uses that follow a given point in the program can be
affected by computations up to that point

=paths
=any path
=all path

UNIVERSITY: OF MASSACRUSETTS AMHERST. + DERARTMENTOF: COI“EP_‘F

COMPUTER General Approach

In; = Merge (Out))

=|nitial values
=for each node define gen Forwakd
and kill information
=|Input Equations
=for each node we have an
equation of the form:
In; := Merge (Out)
=“Merge” operation over
the “predecessors” of n;

flow

gen(n), kill(n),
null(n)

In(n)
A
Backward

Out(n)
A\ 4
flow

In;:= Merge (Out))

UNIVERSITY OF MASSACHUSETTS AMHERST: < DERARTMENT-OFE0

©Rick Adrion 2003 (except where noted)

COMPUTER Unreferenced definitions

(unreferenced defs)

int x,y; 0O

X = 3; (x)
yi=x+2;

if x > 0 then \

X =X+y) Need to look
end if ’ at each node
— ’ where there
Y= is a def

))
Forward flow,
all paths problem v *x)

Some (x,y)

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTMENT QR COl\.-

COMPUTER General Approach

= Transfer Equations
=for each node we have Out; := f,(In)
an equation of the form: Forward | //
Out; :=f(In) flow |/ a
=Transfer functions
usually depend on In(n)
Gen/Kill information that
is computed for each
node
=Usually:
Out := (In - kill)U gen
=We can view the set of
variables, transfer
functions, and flow graph \
as a system of equations

gen(n), kill(n),
null(n)

In(n)
Backward
flow

Out(n)
4

UNIVERSITY OF MASSACHUSETTS AMHERST- - DEPARTMENT OF-EX

CMPSCI520/620

PONINER worklist algorithm

1. Start at initial node (entry for forward; exit for

reverse), label IN, with pertinent “facts” (initial
values)

2. Compute OUT, = F(IN,) (label OUT,with the
computed facts)

3. Propagate OUT, to IN; (label edge N,=N; with 4
OUT,) where N, are successor nodes (forward)
or predecessor nodes (reverse) of N,

4. Compute OUT,; = F(IN)), place all N;on a
“worklist” W, and for all N; label OUT, with the
computed facts.

5. While W is not empty,

1. pick N; from W and propagate OUT; to IN, (label
edges N;=N, with OUT;) where N, are successor
nodes (forward) or predecessor nodes (reverse)
for N;; delete N; from W !

2. Compute OUT,; = F(IN,) for all N, where

for “some paths” and for “all paths”), label

IN,=MERGE all input edge labels (MERGE = U
OUT, with the computed fact’s); and if for N,

{

{xy
{xy}

(SRS ——

OUT, changes put N,, on W
6. If W is not empty, then W=W’and go to 5

UNIVERSITYV:-OF MASSACRUSETTS ANHERST - DERPART

COMPUTER Cecil: Olender and Osterweil

= Instead of implicitly defined facts, let the user define application-
specific facts
=Represented as a Deterministic Finite State Automaton (DFSA) or as
a Quantified Regular Expression (QRE)
=Events
= Recognizable events
= Method calls
= Can reason about sequences of method calls
= E.g.,Push must be called before Pop
= Thread interactions
= Join or Fork
= Arbitrary operations
= at+b
= Need to be able to treat events as indivisible actions
= E.g., can treat pop and push as atomic as long as they do not contain any events of concern
= Propagate the states in the DFSA that can reach each node in the
program

UNIVERSITY OF MASSACHUSETTS AMHERST--~-DERAI 3

©Rick Adrion 2003 (except where noted)

c%ﬂ'ﬁﬁ% Using Quantified Regular Expressions

= Alphabet, quantification,
regular expression

=For the events {open, close
close, move} move
show that for all paths: clos open

((close v move)*,

(open*v open*,close))* open

move

close
open
move

UNIVERSITY-OF MASSACRUSETTS AMHERST s ERAR]

COMPUTER State Propagation

= States of the property are propagated through the CFG

=The property is proved if only accepting (non-accepting)
states are contained in the final node of the CFG

e Cecil DFSA ->

lattice (P(S), <, L)
function space
8:P(S) > P(S)
facts at nodes are elements of P(S)

epropagate until convergence and check if terminal node
in an accepting state of DFSA

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPAR:

CMPSCI520/620

COMPUTER

seienee Elevator Controller

void main()

: if (elevatorStopped)

N

3 }... openDoors();

5: if (elevatorStopped)
7. closeDoors();

9: moveToNextFloor();

=States of the property are
propagated through the CFG

=For an all property: the
property is proved if only
accepting states are contained
in the final node of the CFG
=For a none property: the
property is proved if only non-
accepting states are contained
in the final node of the CFG

1: if (elevatorStopped)
{..

—]

3: openDoors():
}

5: if (elevatorStopped)
{..

/

7: closeDoors():

}

9: moveToNextFloor();

UNIVERSITY. OF MASSACHUSETTS: AMHERST - DEPARTHENTH

COMPUTER

<cienet State propagation

1: if (elevatorStopped)
(oo

<0>
3: openDoors():

}
<1> w0,1>

5: if (elevatorStopped)
{..

<P,1>
7: closeDoors():
}
<0> 0.1>
9: moveToNextFloor():
}
<0 2>

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPARTMT

©Rick Adrion 2003 (except where noted)

FUe: State propagation

initial state 1: if (elevatorStopped)

{

<0>
3: openDoors():

}
<0,1> 4\
5: if (elevatorStopped)

union

7: closeDoors():

// 9: moveToNextFloor():
}

<0 2>

Worklist: Z 3

UNIVERSITY-OF MASSACRUSETTS:AMHERST - DERARTIN

COMPUTER Verification

stwo well-established approaches
=(Automated) mathematical reasoning
stheorem proving
=proof checking
*Finite-state verification
=model checking

¢Logic spec + FSA comp model = symbolic model checking

*FSA spec + FSA comp model = automata-theoretic model
checking

=property checking

UNIVERSITY- OF MASSACHUSETTS AMHERST: # DEPARTM

CMPSCI520/620

COMPUTER Verification

=How are they different?
=(Automated) mathematical reasoning
=difficult, error prone

=decidability vs. expressiveness
=Propositional calculus is decidable
=Predicate calculus is semi-decidable

=Finite-state verification
=Reason about a finite model of the system

=Fast, yields counterexamples, manages partial
specifications, applies to concurrency

=State explosion!

UNIVERSITY. OF MASSACHUSETTS AMHERST - DERPARTH

c”{%ﬂ'ﬁﬁ% Floyd Method of Inductive Assertions

= Show that given the input assertions, after executing the program,
program satisfies output assertions
=show that each program fragment behaves as intended
=use induction to prove that all fragments, including loops, behave as
intended
= show that the program must terminate
= informal description
=Place assertions at the start, final, and intermediate points in the
code.
= Any path is composed of sequences of program fragments that start
with an assertion, are followed by some assertion free code, and end
with an assertion
"As, Cq, Ap Cp Ag, Ay, Cry, Ay
=Show that for every executable path, if A is assumed true and the
code is executed, then A;is true

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DERAR

©Rick Adrion 2003 (except where noted)

480 Proof

predicate logic

assertions @

“

lemmas and theorems in
predicate logic

™

typically inferred ode

by symbolic Behavior
execution of the SQREQdU

specifications

UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERARIM

COMPUTER Why does this work?

=suppose P is an arbitrary path through the program
=can denote it by

P= AO Cl Al CZ AZ"'Cn An
=where

A, - Initial assertion

A, - Final assertion

A, - Intermediate assertions

C;- Loop free, uninterrupted,
straight-line code

If it has been shown that
Vi, l<i<n AC, = A,
Then, by transitivity

UNIVERSITY- OF MASSACHUSETTS AMHERST - DERAR

11

CMPSCI520/620

FMENE: Obvious problems

=*How do we do this for a path?
=*How do we do this for all paths?

= |nfinite number of paths
=Must find a way to deal with loops

UNIVERSITY: OF MASSACRUSETTS AMHERST. + DERARTMENTOF: CGZMP

COMIER Wensley's Algorithm

Declare P, Q, E, Y, A, B, D real;

A := 0.0;

B := 0/2.0;

D := 1.0; .
Y := 0.0;

Do_While (D>=E)
If ~(P - A - B = 0.0) then
{ ¥ := Y+(D/2.0);
A := A+B};
B := B/2.0;
D := D/2.0;
End_do;
End Wensley;

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DERARTMENT-GF th’

©Rick Adrion 2003 (except where noted)

Procedure Wensley (P:input, Q:input, E:input, Y:output);

COMPUTER
@ SCIENCE

Find loop invariant (A,)

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTIMENT-OF Ci

=C, Initial assertion A, to final
assertion A

=C, Initial assertion A, to A, \ !

“C, A o A, N _k
=C, A to final assertion A;

=Basically an inductive proof

The “Aha!” moment -

finding invariants is

ssubpaths to consider: "

hard!

COMPUTER
@ SCIENCE

Summary of Five Lemmas Needed

UNIVERSITY OF MASSACHUSETTS AMHERST- - DEPARTMENT OF-EX

A, to A,

=A,, true branch, to A,
=A, false branch, to A,
=A,, true branch, to Ag
=A,, false branch, to A¢

12

CMPSCI520/620

COMPUTER Lemma lII: Al false branch, to Al

Ap {(A=Q*Y)A(B=Q*(D/2))
A (k= 0, k integer A D=2%)
A ((PIQ)-D)<Y=(P/Q)}

D = E [constraint]

P- A -B =0 [constraint]

Y Y+(D/2.0)
code A" A+B

B« B/2

D D2

A’ {(A’=Q*Y")A(B’=Q*(D’/2))
A (k= 0, k integer A D’=2%)
A ((PIQ-D)<Y’<(P/Q)}

UNIVERSITY: OF MASSACRUSETTS AMHERST. = DEPAF‘\TMEH&E‘G

CONPUTER Hoare axiomatic proof

=assertions are preconditions and post conditions on
some statement or sequence of statements
P{S}Q
=if P is true before S is executed and S is executed then
Qis true

=as in Floyd's inductive assertion method, we construct a
sequence of assertions, each of which can be inferred
from previously proved assertions and the rules and
axioms about the statements and operations of the
program

=to prove P{S}Q, we need some axioms and rules about
the programming language

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPAF‘\TM'_E;'

©Rick Adrion 2003 (except where noted)

COMPUTER broof of lemma 1l

—A
A= A {(A’=Q¥Y”) A (B’=Q*(D’/2)) '
A k=0, k integer AD’=2%)
A (PIQ)-D7)<Y’<(P/Q)}
we have
A'=A+B; B =B/2.0;D’'=D/2.0; Y =Y + D/2.0;
1) A’ = A+B = Q*Y + Q*(D/2) = Q*(Y+(D/2));
Y’'=Y+(D/2); . A'=Q*Y’
2) B’=B/2 =(Q *D/2)/2; D’=D/2

B =(Q*2D’/2) *D'/2
from A,

and so on ... basically using symbolic evaluation

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPAF‘\TM%F{‘T

COMPUTER Hoare axioms and proof rules

=take a simple programming language that deals only
with integers and has the following types of constructs:
=assignment statement
x:=f
=composition of a sequence of statements
S1, 82
=conditional (alternative statements)
if B then S1 else S2
siteration
while B do S

UNIVERSITY- OF MASSACHUSETTS AMHERST - DERARTM

13

CMPSCI520/620

COMPUTER Axioms and proof rules

= axiom of assignment
=P {x:=f} Q,
=where Q is obtained from P by substituting f for all occurrences of x in
P (symbolic execution)
= rule of composition
*P{S1,82}Q=>3P1, P{S1}P1 A P1{S2}Q
= rule for the alternative statement
=P{if B then S1 else S2 }Q fi
P{B A S1}Q A P{-B A S2}Q
=rules of consequence
"[P{S}QAQ=R]=P{S}R
"[P{S}QAR = P]=R{S}Q
=rule of iteration
=P {while Bdo S }Q =P{~B}Q A315P {B A S} |
ABAS}I AK~B}Q

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

COMPUTER Straightforward Observations

=Problems
=formal proofs are long, tedious and are often hard; assertions
are hard to get right; invariants are difficult to get right (need to
be invariant, but also need to support overall proof strategy)
= Unsuccessful proof attempt = ??7?
=incorrect software? assertions? placement of assertion? inept
prover? although failed proofs often indicate which of the
above is likely to be true (especially to an astute prover)
=Deeper Issues
=undecidability of predicate calculus = no way to be sure when
you have a false theorem
=there is no sure way to know when you should quit trying to
prove a theorem (and change something)
=proofs are generally much longer than the software being
verified = errors in the proof are more likely than errors in the
software being verified

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

480 Proof

=Hoare-style and Floyd- style verification are essentially the
same
= one is based on graphical representation and the other on a
textual representation.
-Icr;lFlz_Ijoyd—ster proof, we visualize the proof goal by annotating a

=In the other, we define the proof goal as a Hoare triple
= Mechanism for applying proof
= may work either direction on such a proof, but because it's
typically easier to work backwards, often use a technique
called backwards substitution
= we work our way from the post-condition, using the proof
rules to "push formulas through" the program
= at each point where a "pushed-through" predicate "runs into"
a supplied predicate, we have a verification condition (VC) that
must be proved.
=After all VCs are proved, we need to be prove termination
= Without a termination proof, we achieve partial correctness
=With a termination proof, we achieve total correctness

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPfA:

COMPUTER Model Checking: Overview

= properties usually expressed in

= in a propositional logic (e.g., propertips stated as
. i
temporal logic) pmppfépoerl}jssi %'I%ZZS; one
= asaFSA
= system represented as a @'
(possibly “abstracted”)
reachability graph \
= reasoning engine Comparison
= logic = propagates valid sub- exhaustive search A
formulas through the graph | ofstate space
. language containment
= FSA = compares FSAs via reachabity analysis
language inclusion; bisumulation odug

reachability; or bisumulation

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

14

CMPSCI520/620

CONPUTER Conservative Analysis

=|f property is verified, property holds for all possible
executions of the system

=|f property is not verified:

=an error found
OR

=a spurious result

=System model abstracts information to be tractable

=Conservative abstractions usually over-approximate
behavior

=If inconsistency relies upon over-approximations, then a
spurious result

=e.g. all counter example correspond to infeasible paths

UNIVERSITY: OF MASSACHUSETTS AMHERST. 4 DERPARTMENTS

CONPUTER Computation Tree Logics

= specification language
=a propositional temporal logic. Fp
= verification procedure AFp
= exhaustive search of the state space of
the concurrent system to determine AFp
truth of specification.
= formulas constructed from path
quantifiers and temporal operators:
=path quantifier: Fp
= A “for every path” EFp
= E “there exists a path”
=temporal operator:
= Xp “p holds next time’
= Fp “p holds sometime in the future”
= Gp “p holds globally in the future”

» @—@
= pUqg “p holds until g holds”

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DERARTMENTA

©Rick Adrion 2003 (except where noted)

COMPUTER Temporal logic

= augments the standard operators of propositional logic with “tense”
operators

= "possible worlds semantics" = Kripke model
=relativize the truth of a statement to temporal stages or states

=a statement is not simply true, but true at a particular state

= states are temporally ordered, with the type of temporal order
determined by the choice of axioms.

=model of time
=partially ordered time
=linearly ordered time
= linear temporal logic is typically extended by two additional operators, “until”
and “since”
=discrete time
=branching (nondeterministic) time

= foundation for one of the principal approaches to verifying concurrent
systems = Computational Tree Logics.

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTMEN:

COMPUTER Architecture of FSV Systems

Property

Property

Representation Property

Verified
System

Counter Examples
for Model

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DERARTMEN:

CMPSCI520/620

COMPUTER :
Secienee Mutual exclusion protocol
=Example: processes can be null, trying to process1 = n1,t1,c1
obtain the lock, or in a critical region (n1, t1, c1))
or (n2, 12, c2) process2 =n2,t2,c2
*TURN is a variable that indicates which turn =012

process can obtain the lock (0,1,2)
=Need a reachability graph that shows that
states (i.e., the values) of the variables “McMillan

UNIVERSITY: OF MASSACHUSETTS AMHERST 4 DERARTMENTHOR: CGZ

COMPUIER Model Checking: Overview

= properties usually expressed in
= in a propositional logic (e.g., roperties stated as
temporal |Og|C) propgsltFonaFFoglc assertions

properties stated as
an FSA

= as a FSA
= system represented as a '@‘
(possibly “abstracted”)

reachability graph \
= reasoning engine Comparison
= |logic = propagates valid sub- exhaustive search A
formulas through the graph | ofstate space
. language containment
= FSA = compares FSAs via reachability analysis
language inclusion; bisumulation odug

reachability; or bisumulation

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DERARTMENT-GF

©Rick Adrion 2003 (except where noted)

COMPUTER Example: propagation
AG(t1 —AF 01) =a =b means (b or " a)
=*(t1 = AF c1)means (AFcl v t1)
t1=AF c1

AF c1
t1=AF c1

A
t1=AF cl

AF c1
t1=AF c1
<process1, process2, turn>

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTMENT QR C

“"{‘{;‘;{'ﬁ'ﬁ Automata-Theoretic Model Checking

properties stated as an FSA

freent

language containment
reachability analysis
bisumulation

UNIVERSITY OF MASSACHUSETTS AMHERST- 7 DEPARTMENT, OF-EX

16

CMPSCI520/620

FHhHE Example

= Specification:

happen _at least once

C

a,

T

. Jmplementation
Ac

(ba)*(ac*+ bbc*)

UNIVERSITY: OF MASSACRUSETTS AMHERST. = DEPAF‘\TMEN%-?

©Rick Adrion 2003 (except where noted)

= of the possible observable events (a, b, c), ¢ must

a,)b, c

COMPUTER
»SCIENCE

Some observations

=Model Checking

=worst case bound linear in size of the model
=but the model is exponential

=not clear if model checking or symbolic model

checking is superior
=depends on the problem

=experimentally often very effective!
=used selectively to verify hardware designs

strying to develop appropriate abstractions to make
it applicable to software systems

UNIVERSITY-OF MASSACRUSETTS-AMHERST - DERARTNEN

17

