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24- Static Analysis

Rick Adrion

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Approaches

ßStatic Analysis
ßInspections

ßSoftware metrics

ßSymbolic execution

ßDependence Analysis

ßData flow analysis

ßSoftware Verification

ßDynamic Analysis
ßAssertions

ßError seeding,
mutation testing

ßCoverage criteria

ßFault-based testing

ßSpecification-based
testing

ßObject-oriented testing

ßRegression testing

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Review methods

ßFagan inspections
ßformal, multi-stage process
ßsignificant background & preparation
ß led by moderator

ßActive design reviews
ßalso called "phased inspections"
ßseveral brief reviews rather than one large review
ßguided by questions from the author

ßCleanroom
ßmore than reviews, but reviews important component
ßwe’ll come back to this

ßN-fold
ßparallel reviews controlled by moderator
ßfocuses on user requirements
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Why are inspections effective

ßknowing the product will be scrutinized causes
developers to produce a better product

ßhaving others scrutinize a product increases the
probability that faults will be found

ßwalkthroughs and reviews are not as formal as
inspections, but appear to also be effective
ßhard to get empirical results
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What are the deficiencies?

ßfocus on error detection
ßwhat about other "ilities" --
maintenance, portability,
etc.

ßnot applied consistently
& rigorously
ß inspection shows statistical
improvement, but cannot
ensure quality
ß inspection should have the
same results without regard
to the product to which it is
applied or the inspection
team

ßrange of errors not
addressed
ßteam expertise limited
ßone property may have
many error modalities

ßhuman intensive and
often makes ineffective
use of human resources
ße.g., skilled software
engineer reviewing coding
standards, comments
spelling, etc.

ßno automated support
ßagain inefficient of human
resources

ßaspects of review not
used appropriately
ße.g., in Fagan process,
overview often covers what
should be described if
documentation is adequate
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Measures of Operational Performance

Quality Certification
Model

Customer 
RequirementsCustomer 
Requirements

Specification

Function Usage

Usage Modeling
Test Case Generation

Box Structure 
Specification & Design

Correctness Verification

Statistical Testing

Incremental
Development

Planning

Incremental
Development

Planning

Usage SpecificationFunctional Specification

Incremental
Development Plan

Source Code Test Cases

Failure Data

Improvement Feedback

Processes
Work Products

Cleanroom
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[f]
do
   [g]
   [h]
od

For all
inputs, does
[g] followed
by [h] do
[f]?

Cleanroom
ß Verification as Review Process
ß  team verification of correctness

takes the place of individual unit
testing; correctness is established
by  group consensus if it is
obvious
ß by formal proof techniques if it is

not.
ß benefits
ß intellectual control of the process
ßmotivates developers to deliver

error-free code
ß verification is a form of peer review
ß each person assumes

responsibility for and derives a
sense of ownership in the evolving
product

ß every person must agree that the
work is correct before it is
accepted -> successes are
ultimately team successes, and
failures are team failures.

ßMarkov Analysis
ß Factors
ß number of statistically typical (i.e.,

likely) usage paths through the
software

ß Steps
ß focus verification efforts,
ß identify the likelihood of given

events,
ß project the test schedule, and
ß ascertain the (affordable) upper

bound on inferences about
reliability

ß Stopping Criterion for Testing
ß goals (e.g., target level of

estimated reliability) are achieved
ß or quality standards (e.g.,

errors/KLOC) are violated

Invocation Main Menu Termination

Display
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Software Metrics

ßmeasures that predict qualities about software
ßcan be applied to any of the products (e.g., design, code,
test cases) or to the process (e.g., Capability Maturity
Model)
ßQualities measured by software metrics
ßperformance
ßuser-friendliness
ßresources
ßmemory/storage
ßdevelopment costs
ßmaintenance cost

ßquality
ßmaintainabity
ß reliability
ßcompleteness
ßconsistency
ßcomplexity
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Function Points

ßproposed by Albrecht in 1979
ßOriginally applied to code

ßUFP =
   number of inputs x w1   +
   number of outputs x w2  +
       number of user inquiries x w3  +
           number of files x w4  +
   number of external references x w5

ß function points = UFP* TCA = UFP* (.65 + 0.01 * SUM(Fi))
ßwhere  the degree of influence, DI= SUM(Fi) is the sum of
complexity adjustment values, Fi

ßmetrics:
ßproductivity:       FP/person-month
ßquality:               defects/FP
ßcost:                   $/FP

ß weights:
              Simple   Average   Complex
w1                3              4              6
w2                3              5              7
w3                3              4              6
w4                7             10            15
w5                5              7             10
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More Quality Metrics

ßModularity
ßcohesion metric

ßapplied to unit design

ßthe relationship among the elements of a module

ßbest cohesion level is functional, and the worst is
coincidental.

ßCruickshank and Gaffney Cohesion Strength
Strength = √(X2 + Y2)

ßwhere:
ßX = reciprocal of the number of assignment statements in
the module
ßY = number of unique function outputs divided by number of
unique function inputs
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More Quality Metrics

ßModularity
ßcoupling
ß applied to system and unit designs
ßmeasure of the degree to which modules share data
ß data coupling (the sharing of data via parameter lists)

is the best type of coupling, while common coupling
(the sharing of data via global or common areas) is
the worst.
ß a lower coupling value is better.

ßCruickshank and Gaffney Coupling:
ßMj = sum of the number of input and output items

shared between components i & j
ß Zi = average number of input and output items shared

over m components with component i
ß n = number of components in the software product
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McCabe’s cyclomatic complexity

ßComplexity measured by control flow information
ßbased on a control flow graph where e is number of
edges, n is number of nodes, p is number of
connected components

ßMcCabe’s Cyclomatic Complexity:
ßv = e - n + 2
ßwhere:
ßv = complexity of the graph
ße = number of edges (program flows between nodes)
ßn = number of nodes (sequential groups of program
statements)

ßif a strongly connected graph is constructed (one in
which there is an edge between the exit node and
entry node), the calculation is
ßv = e - n + 1
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n = 8
e = 10
p =  1

C = 10 - 8 +  2 = 4

Example

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Science

ßHalstead applied information theory to computer science
ßmetrics

 n1 number of distinct operators

 n2 number of distinct operands

N1  total number of occurrences of operators

N2 total number of occurrences of operands

ßprogram level estimator
   D = 1 /L = (n1 /2) (N2 / n2)

 L = 1/ D = (2/n1 )( n2 / N2 )
 difficulty increases as operators are introduced (n1 /2 increases) and as

operands are used repetitively (N2 / n2 increases)

ßprogramming time
  T = E /S
   where S is the “Stroud number”
 5 ≤ S ≤ 20, usually 18
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Software Science (continued)

ßlanguage level

  l = L x V* = L2V*
 lPL/1 = 1.53,         lAlgol = 1.21,

  lFortran  = 1.14,     lCDC assmblr  = 0.88

ßpredicted effort

 E =V*3/ l2
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Quality Metrics for Code

ßUnderstandability
ßsize metrics
ß lines of code

ßfunction points

ßfunction count

ßtraceability metrics
ßnumber of comment lines per total source lines of code

ßpercent comment lines of total lines

ßcorrectness of comments

ßPredicting quality
ßLOC X domain  seems to be the most reliable predictor
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Behavior

Comparison

model/
product

Intent

Analysis
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Basic Verification Strategy

ßanalyze a system for desired properties, i.e., compare
behavior to intent
ßintent
ßcan be expressed as properties of a model

ßcan be expressed as formulas in mathematical logic

ßbehavior
ßcan be observed as software executes

ßcan be inferred from a model

ßcan be expressed as formulas in mathematical logic

ßdifferent representations support different sorts of
inferences
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Compare behavior to intent

ßcomparison can be informal
ßdone by human eye, e.g., inspection

ßcan be done by computers
ß comparing text strings

ßcan be done by model-checkers
ßsuch as formal machines (e.g., fsa's)

ßcan be done by rigorous mathematical reasoning
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Example: Dataflow Analysis

ßintent:
ßstated as a property

ßcaptured as an event sequence

ßbehavior:
ßmodel represents some execution characteristics

ßinferred from a model: (e.g., annotated flow graph)

ßinferences based upon:
ßsemantics of flow graph

ßsemantics captured by annotations

ßcomparison:
ßdone by a fsa (e.g., a property automaton)
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Comparison

Intent

model

1 2

open

close
dfa defined by 
Cecil constraint

“property” = Cecil constraint

if dfa accepts all traces then the
constraint holds for all computations

1

6

5

43

2

trace = computation
along path in an annotated
dataflow graph

Data FlowAnalysis
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Data Flow Analysis (DFA)

ßUses an annotated control flow graph model of the program
ßCompute facts for each node
ßUse the flow in the graph to compute facts about the whole
program

ßDFA used extensively in program optimization, e.g.,
ßdetermine if a definition is dead (and can be removed)
ßdetermine if a variable always has a constant value
ßdetermine if an assertion is always true and can be removed

ßSome Dataflow systems
ßDAVE system demonstrated the ability to find def/ref
anomalies
ßCecil/Cesar system demonstrated the ability to prove general
user-specified properties
ßFLAVERS demonstrated applicability to concurrent system
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Data flow analysis

ß computes information that is true at each node in the
CFG, e.g.,
ß what variables are defined

ß what variables are referenced

ß usually stored in sets
ß ref(n) is the set of variables referenced at node n

ß uses this local information and the control flow graph to
compute global information about the whole program
ß done incrementally by looking at each node’s

successors or predecessors
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detect and
eliminate redundancy

code optimization
scalar

parallel vector

anomaly detection

program  
understanding

test data selection

 verification won’t talk about this

Data Flow Analysis



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

;
;

;
;

;
;

;
;

;
;

;
;
;

;
;

;

if ...  
  then ...

  else ...

endif;

;
;

;
;

;

;;

;

;
;

;
;

;

;;

;

;
;

;
;

;

;;

;

;
;

;
;

;

;;

;

;
;

;
;

;

;;

;

;
;

;
;

;

;;

;

single-entry,
single-exit

in-line code
blocks

ßcompute what is true
at each node
ßwhat variables are
defined
ßwhat variables are
referenced

ßstored in sets
ßref(n) is the set of
variables referenced
at node n

ßuse local information
and the control flow
graph to compute
global information
incrementally by
looking at each
node’s successors or
predecessors

def={y}

def={x}
ref={y}

DFA
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Def-ref path expressions

ßfor a path P and a variable a
can write a path expression
describing the sequence of
set memberships
encountered for a, where

ßa  Œ def (n) or

ßa Œ ref(n) or

ßa Œ null (n)

ßfor each node n on the path

ßwrite (and simplify) a path
expression

ßP(n1, n1, …, n1; a)

a  Œ  def(1) 

a Œ null(2)

a  Œ null(3)

a Œ ref(4) 4

3

2

P(1,2,3,4; a) = d11r = dr

1
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unreferenced
definition

Anomalous pairs of ref/defs

d - defined, r - referenced, u - undefined

 dd bug? du bug?

 dr normal ud normal

 uu harmless? rr normal

 rd normal ru normal

 ur bug undefined
reference
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Consider unreferenced definition

ßWant to know if a def is not going to be referenced
ßdd  or du

ßAt the point of a definition of a, want to know if there is
some path where a is defined or undefined before being
used
ßMay be indicative of a problem if the path is executable

ßUsually just a programming convenience and not a
problem

ßAt the point of a definition of a, want to know if on all
paths a is defined or undefined before being used
ßMay be indicative of a problem

ßOr could just be wasteful
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global dataflow analysis

ßclasses
ßforward flow problems (e.g., available expressions)
ßwhat definitions can affect computations at a given point in
a program

ßbackward flow problems (e.g., live variables)
ßwhat uses that follow a given point in the program can be
affected by computations up to that point

ßpaths
ßany path

ßall path
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x = 3

y = x + 2

if(x > 0)

x = x + y

y:= …

Forward flow,
all paths problem

( )int x,y;
...
x := 3;
y := x + 2;
if x > 0 then
  x := x + y;
end if;
y:= …

(unreferenced defs)

(x)

(x)

(y)

(y)

(y)

(y)

Need to look
at each node
where there
is a def

All( )

(x)

Some (x,y )

(y)

Unreferenced definitions
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top (n)

y:= …

bot(n)

In(n)

In(n)Out(n)

Out(n)

Forward
flow

Backward
flow

gen(n), kill(n),
 null(n)

Ini := Merge (Outj)

Ini := Merge (Outj)

General Approach

ßInitial values
ßfor each node define gen
and kill information

ßInput Equations
ßfor each node we have an
equation of the form:
    Ini := Merge (Outj)

ß“Merge” operation over
the “predecessors” of ni
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top (n)

y:= …

bot(n)

In(n)

In(n)Out(n)

Out(n)

Forward
flow

Backward
flow

gen(n), kill(n),
 null(n)

Outi := fi(Ini)

Outi := fi(Ini)

General Approach

ßTransfer Equations
ßfor each node we have
an equation of the form:
Outi := fi(Ini)
ßTransfer functions
usually depend on
Gen/Kill information that
is computed for each
node
ßUsually:
     Out := (In - kill)U gen

ßWe can view the set of
variables, transfer
functions, and flow graph
as a system of equations
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worklist algorithm
1. Start at initial node (entry for forward; exit for

reverse), label IN0 with pertinent “facts” (initial
values)

2. Compute OUT0 = F(IN0) (label OUT0 with the
computed facts)

3. Propagate OUT0 to INi (label edge NofiNi  with
OUT0) where Ni are successor nodes (forward)
or predecessor nodes (reverse) of N0

4. Compute OUTi  = F(INi), place all Ni on a
“worklist” W, and for all Ni label OUTi  with the
computed facts.

5. While W is not empty,
1. pick Ni from W and propagate OUTi to INk (label

edges NifiNk with OUTi) where Nk are successor
nodes (forward) or predecessor nodes (reverse)
for Ni ; delete Ni  from W

2. Compute OUTi = F(INk)  for all Nk where
INk=MERGE all input edge labels (MERGE = »
for “some paths” and « for “all paths”), label
OUTk with the computed facts); and if for Nk,
OUTk  changes put Nk, on W’

6. If W’ is not empty, then W=W’ and go to 5

x = 3

y = x + 2

if(x > 0)

x = x + y

initial values 
=  empty

0

2

3

4

W ={1,2 }

W ={3}

W ={4}

{ }

{x}

{x}
{x,y}
{x,y}

{ }

{ }

{x,y}}{ }
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Using Quantified Regular Expressions

ßAlphabet, quantification,
regular expression

ßFor the events {open,
close, move}

show that for all paths:
    ((close v move)*,

     (open+ v open+,close) )*

0

1

2

close

close
move

open

open

move

close
open
move
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Cecil: Olender and Osterweil

ß Instead of implicitly defined facts, let the user define application-
specific facts
ßRepresented as a Deterministic Finite State Automaton (DFSA) or as

a Quantified Regular Expression (QRE)
ßEvents
ßRecognizable events
ßMethod calls
ß Can reason about sequences of method calls
ß E.g.,Push must be called before Pop

ß Thread interactions
ß Join or Fork

ß Arbitrary operations
ß a+b

ßNeed to be able to treat events as indivisible actions
ß E.g., can treat pop and push as atomic as long as they do not contain any events of concern

ßPropagate the states in the DFSA that can reach each node in the
program
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State Propagation

ßStates of the property are propagated through the CFG

ßThe property is proved if only accepting (non-accepting)
states are contained in the final node of the CFG

•Cecil DFSA ->
 lattice (P(S), Ã, »)
 function space
  d : P(S) Æ P(S)

 facts at nodes are elements of P(S)
•propagate until convergence and check if terminal node
in an accepting state of DFSA
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Elevator Controller
void main()
{
…

1: if (elevatorStopped)
{...

3: openDoors();
}
...

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

1: if (elevatorStopped)
    {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

ßStates of the property are
propagated through the CFG
ßFor an all property: the
property is proved if only
accepting states are contained
in the final node of the CFG
ßFor a none property: the
property is proved if only non-
accepting states are contained
in the final node of the CFG
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1: if (elevatorStopped)
    {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

0

1

2

close

close
move

open

open

move

close
open
move

State propagation

Worklist:

initial state

<0>

3  5

<1> <0,1>

union
<0,1>

7  9

<0>

<0,2>

<0,1>
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1: if (elevatorStopped)
    {...

3: openDoors();
}

5: if (elevatorStopped)
{...

7: closeDoors();
}

9: moveToNextFloor();
}

0

1

2

close

close
move

open

open

move

close
open
move

State propagation

<0>

<0>

1: if (elevatorStopped)
    {...

3: openDoors();
}

<0,2>

<0,1>

9: moveToNextFloor();
}

<0,1>

<0,1>

5: if (elevatorStopped)
{...

<1>
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Verification

ßtwo well-established approaches
ß(Automated) mathematical reasoning
ßtheorem proving
ßproof checking
ßFinite-state verification
ßmodel checking

•Logic spec + FSA comp model fi symbolic model checking
•FSA spec + FSA comp model fi automata-theoretic model
checking

ßproperty checking
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Verification

ßHow are they different?
ß(Automated) mathematical reasoning
ßdifficult, error prone

ßdecidability vs. expressiveness
ßPropositional calculus is decidable

ßPredicate calculus is semi-decidable

ßFinite-state verification
ßReason about a finite model of the system

ßFast, yields counterexamples, manages partial
specifications, applies to concurrency

ßState explosion!
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Behavior
model/
product

Intent

Proof

typically inferred
by symbolic
execution of the
specifications

lemmas and theorems in
predicate logic

predicate logic
assertions
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Floyd Method of Inductive Assertions

ßShow that given the input assertions, after executing the program,
program satisfies output assertions
ßshow that each program fragment behaves as intended
ßuse induction to prove that all fragments, including loops, behave as

intended

ß show that the program must terminate
ß informal description
ßPlace assertions at the start, final, and  intermediate points in the

code.
ßAny path is composed of sequences of program fragments that start

with an assertion, are followed by some assertion free code, and end
with an assertion
ß As, C1, A2, C2, A3,…An-1, Cn-1, Af

ßShow that for every executable path, if As is assumed true and the
code is executed, then Af is true
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Why does this work?

ßsuppose P is an arbitrary path through the program

ßcan denote it by

P = A0 C1 A1 C2 A2...Cn An
ßwhere

A0 - Initial assertion
An - Final assertion
Ai   - Intermediate assertions
Ci - Loop free, uninterrupted,
     straight-line code

 If it has been shown that

  " i, 1 ≤ i < n: AiCi fi Ai+1
 Then, by transitivity

  A0 fi......fiAn
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Obvious problems

ßHow do we do this for a path?

ßHow do we do this for all paths?
ßInfinite number of paths
ßMust find a way to deal with loops
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A0

AI

Af

Find loop invariant (AI )

ßsubpaths to consider:
ßC1 Initial assertion A0 to final
assertion Af

ßC2 Initial assertion A0 to AI

ßC3 AI to AI

ßC4 AI to final assertion Af

ßBasically an inductive proof

The “Aha!” moment -
finding invariants is
hard!
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Procedure Wensley (P:input, Q:input, E:input, Y:output);
Declare P, Q, E, Y, A, B, D real;
A := 0.0;
B := Q/2.0;
D := 1.0;
Y := 0.0;
Do_While (D>=E)

If ~(P - A - B ≥ 0.0) then
{ Y := Y+(D/2.0);

     A := A+B};
B := B/2.0;
D := D/2.0;
End_do;

End Wensley;

Wensley's Algorithm

Input P, Q, E

A ¨ 0.0
B ¨ Q/2
D ¨ 1.0
Y ¨ 0.0

D ≥ E

P-A-B < 0.0 Y ¨ Y+(D/2.0)
A ¨ A+B

B ¨ B/2.0
D ¨ D/2.0

A1

A0

AF
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Input P, Q, E

A ¨ 0.0
B ¨ Q/2
D ¨ 1.0
Y ¨ 0.0

Y ¨ Y+(D/2.0)
A ¨ A+B

D ≥ E

B ¨ B/2.0
D ¨ D/2.0

P-A-B < 0.0

A0

AI

AF
F

T

T
F

Summary of Five Lemmas Needed

ßA0 to AI

ßAI, true branch, to AI

ßAI, false branch, to AI

ßAI, true branch, to AF

ßAI, false branch, to AF
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AI: {(A=Q*Y)L(B=Q*(D/2))
      Ÿ (k ≥ 0, k integer Ÿ D=2-k )
          Ÿ ((P/Q)-D)<Y≤(P/Q)}

D ≥ E [constraint]
P - A - B ≥ 0 [constraint]
Y ¨ Y+(D/2.0)
A ¨ A+B

 B ¨ B/2
 D  D/2
  A’I: {(A’=Q*Y’)L(B’=Q*(D’/2))
      Ÿ (k ≥ 0, k integer Ÿ D’=2-k )
             Ÿ ((P/Q)-D’)<Y’≤(P/Q)}

{code

Y ¨ Y+(D/2.0)
A ¨ A+B

D ≥ E

B ¨ B/2.0
D ¨ D/2.0

P-A-B < 0.0

AI

Lemma III: AI, false branch, to AI
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proof of lemma III

AI fi A’I: {(A’=Q*Y’) Ÿ (B’=Q*(D’/2))
      Ÿ (k ≥ 0, k integer Ÿ D’=2-k )
          Ÿ ((P/Q)-D’)<Y’≤(P/Q)}
we have

A’ = A + B;  B’ = B/2.0; D’ = D/2.0; Y’ = Y + D/2.0;

1)  A’ = A+B = Q*Y + Q*(D/2) = Q*(Y+(D/2));              
Y’= Y+(D/2); \A’ = Q * Y’

2) B’= B/2 =(Q *D/2)/2; D’=D/2 
\B’ = (Q * 2D’/2)/2 = Q* D’/2

and so on … basically using symbolic evaluation

Y ¨ Y+(D/2.0)
A ¨ A+B

D ≥ E

B ¨ B/2.0
D ¨ D/2.0

P-A-B < 0.0

AI

from AI
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Hoare axiomatic proof

ßassertions are preconditions and post conditions on
some statement or sequence of statements

P{S}Q

ßif  P is true before S is executed and S is executed then
Q is true

ßas in Floyd's inductive assertion method,  we construct a
sequence of assertions, each of which can be inferred
from previously proved assertions and the rules and
axioms about the statements and operations of the
program

ßto prove P{S}Q, we need some axioms and rules about
the programming language
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Hoare axioms and proof rules

ßtake a simple programming language that deals only
with integers and has  the following types of constructs:
ßassignment statement                           

x:= f

ßcomposition of a sequence of statements
S1, S2

ßconditional (alternative statements)
if B then S1 else S2

ßiteration                                              
while B do S
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Axioms and proof rules

ßaxiom of assignment
ßP {x:=f} Q,
ßwhere Q is obtained from P by substituting f for all occurrences of x in

P (symbolic execution)

ß rule of composition
ßP {S1, S2 } Q => $ P1 , P{S1}P1 Ÿ P1{S2}Q

ß rule for the alternative statement
ßP{if B then S1 else S2 }Q fi 

P{B Ÿ S1}Q  Ÿ P{ÿB Ÿ S2}Q

ß rules of consequence
ß [P {S} Q Ÿ Q fi R] fi P {S} R
ß [P {S} Q Ÿ R  fi P] fi R {S} Q

ß rule of iteration
ßP {while B do S }Q fiP{~B}Q Ÿ $ I ' P {B Ÿ S} I 

Ÿ I{B Ÿ S } I Ÿ I{~B }Q
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Proof

ßHoare-style and Floyd- style verification are essentially the
same
ß one is based on graphical representation and the other on a
textual representation.
ß In Floyd-style proof, we visualize the proof goal by annotating a

CFG
ß In the other, we define the proof goal as a Hoare triple

ßMechanism for applying proof
ß may work either direction on such a proof, but because it's
typically easier to work backwards, often use a technique
called backwards substitution
ß we work our way from the post-condition, using the proof
rules to "push formulas through" the program
ß at each point where a "pushed-through" predicate "runs into"
a supplied predicate, we have a verification condition (VC) that
must be proved.
ßAfter all VCs are proved, we need to be prove termination
ß  Without a termination proof, we achieve partial correctness
ßWith a termination proof, we achieve total correctness
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Straightforward Observations

ßProblems
ßformal proofs are long, tedious and are often hard; assertions
are hard to get right; invariants are difficult to get right (need to
be invariant, but also need to support overall proof strategy)

ßUnsuccessful proof attempt fi ???
ß incorrect software? assertions? placement of assertion? inept
prover? although failed proofs often indicate which of the
above is likely to be true (especially to an astute prover)

ßDeeper Issues
ßundecidability of predicate calculus fi no way to be sure when
you have a false theorem
ßthere is no sure way to know when you should quit trying to
prove a theorem (and change something)
ßproofs are generally much longer than the software being
verified fi errors in the proof are more likely than errors in the
software being verified
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Model Checking: Overview

ß properties usually expressed in
ß in a propositional logic (e.g.,

temporal logic)
ß as a FSA

ß system represented as a
(possibly “abstracted”)
reachability graph
ß reasoning engine
ß logic fi propagates valid sub-

formulas through the graph
ß FSA fi compares FSAs via

language inclusion;
reachability; or bisumulation

Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as
an FSA

exhaustive search
of state space

properties stated as
propositional logic assertions
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Conservative Analysis

ßIf property is verified, property holds for all possible
executions of the system

ßIf property is not verified:
ßan error found
       OR

ßa spurious result

ßSystem model abstracts information to be tractable
ßConservative abstractions usually over-approximate
behavior

ßIf inconsistency relies upon over-approximations, then a
spurious result

ße.g. all counter example correspond to infeasible paths
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Temporal logic

ßaugments the standard operators of propositional logic with “tense”
operators
ß "possible worlds semantics" fi Kripke model
ß relativize the truth of a statement to temporal stages or states
ßa statement is not simply true, but true at a particular state
ßstates are temporally ordered, with the type of temporal order

determined by the choice of axioms.

ßmodel of time
ßpartially ordered time
ß linearly ordered time
ß linear temporal logic is typically extended by two additional operators, “until”

and “since”

ßdiscrete time
ßbranching (nondeterministic) time
ß foundation for one of the principal approaches to verifying concurrent

systems = Computational Tree Logics.
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Computation Tree Logics

ß specification language
ßa propositional temporal logic.

ß verification procedure
ßexhaustive search of the state space of

the concurrent system to determine
truth of specification.

ß formulas constructed from path
quantifiers and temporal operators:
ßpath quantifier:
ß A “for every path”
ß E “there exists a path”

ß temporal operator:
ß Xp “p holds next time’
ß Fp “p holds sometime in the future”
ßGp “p holds globally in the future”
ß pUq “p holds until q holds”

AFp
AFp

AFp

p
Xp

AFp
EFp
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System
Translator

Property

System

Property 
Verified

Property
Representation

Counter Examples
for Model

Property
Translator

Reasoning 
EngineSystem

Model

Architecture of  FSV Systems
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mutual exclusion protocol

reachability graph

n1,n2,0

t1,n2,1

c1,n2,1 t1,t2,1

c1,t2,1

n1,t2,2

n1,c2,2t1,t2,2

t1,c2,2

*McMillan

process1  = n1,t1,c1
process2  = n2,t2,c2
turn           = 0,1,2

ßExample: processes can be null, trying to
obtain the lock, or in a critical region (n1, t1, c1)
or (n2, t2, c2)

ßTURN is a variable that indicates which
process can obtain the lock (0,1,2)

ßNeed a reachability graph that shows that
states (i.e., the values) of the variables
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Example: propagation

n1,n2,0

t1,n2,1

c1,n2,1 t1,t2,1

c1,t2,1

n1,t2, 2

n1,c2,2t1,t2,2

t1,c2,2

AG(t1fiAF c1)

AF c1

AF c1
AF c1

AF c1

AF c1
AF c1

AF c1

<process1, process2, turn>

AF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

t1fiAF c1

ßa fib means (b or ¬ a)

ß( t1 fi AF c1 ) means ( AF c1 ⁄ ¬ t1 )
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Model Checking: Overview

ß properties usually expressed in
ß in a propositional logic (e.g.,

temporal logic)
ß as a FSA

ß system represented as a
(possibly “abstracted”)
reachability graph
ß reasoning engine
ß logic fi propagates valid sub-

formulas through the graph
ß FSA fi compares FSAs via

language inclusion;
reachability; or bisumulation

Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as
an FSA

exhaustive search
of state space

properties stated as
propositional logic assertions
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Comparison

model/
product

Intent

language containment
reachability analysis

bisumulation

properties stated as an FSA

FSA

Automata-Theoretic Model Checking
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a, b a, b, c
c

aa

b

b

c

Accepted
by?

(ba)*(ac*+ bbc*)

Example

ßSpecification:
ß of the possible observable events (a, b, c), c must
happen at least once

ß                                             Implementation
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Some observations

ßModel Checking
ßworst case bound linear in size of the model
ßbut the model is  exponential
ßnot clear if model checking or symbolic model
checking is superior
ßdepends on the problem
ßexperimentally often very effective!
ßused selectively to verify hardware designs
ßtrying to develop appropriate abstractions to make
it applicable to software systems


