

COMPUTER Exam Science	ole: Define Attributes	
private to support encapsulation	CourseOffering - number : String = "100" - startTime : Time - endTime : Time - days : Enum /- numStudents : int: = 0 derived attribute + addStudent(studentSchedule : Schedule)	
UNIVERSITY OF MASSACHUS	ETTS AMMERST DEPARTMENT OF COMPTON SUBJOC OPT	

UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMP

Correctness a product is functionally correct if it satisfies all the functional requirement specifications -correctness is a mathematical property -requires a specification of intent

-requires a specification of intern

JNIVERSITY OF MASSACHUSETTS AMH

- specifications are rarely complete
- a product is behaviorally correct if it satisfies all the specified behavioral requirements
- •difficult to prove poorly-quantified qualities such as userfriendly

SCIENCE Reliability

measures the dependability of a product
the probability that a product will perform as expected

- sometimes stated as a property of time
- e.g., mean time to failure

UNIVERSITY OF MASSACHUSETTS AMHERST · DEPARTMENT OF COMPUTER SCIENCE CMPSC

- Reliability vs. Correctness
 - reliability is relative, while correctness is absolute
 given a "correct" specification, a correct product is reliable, but not necessarily vice versa

© SCIENCE Robustness

- •behaves "reasonably" even in circumstances that were not expected
- making a system robust more then doubles development costs
- a system that is correct may not be robust, and vice versa

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SCIENCE. COMPSCI 520/62075ALL

©SCIENCE Formal models

- Analysis is usually done on a model of an artifact
- textual representation of the artifact is translated into a model that is more amenable to analysis then the original representation
- the translation may require syntactic and semantic analysis so that the model is as accurate as possible e.g., x:= y + foo.bar
- model must be appropriate for the intended analysis
- •graphs are the most common forms of models used
- e.g., abstract syntax graphs, control flow graphs, call graphs, reachability graphs, Petri nets, program dependence graphs

COMPUTER Modeling intent & artifacts natural language structured natural language pictorial notation Charts, Diagrams, Box-and-Arrow Charts Graphs Flowgraphs Parse Trees Call graphs Dataflow graphs Comparison data models observed formal language(s) state-oriented havio function-oriented object-oriented INIVERSITY OF MASSACHUSETTS AM

UNIVERSITY OF MASSACHUSETTS AMHER

CMPSCI520/620

COMPUTER Review methods Fagan inspections formal, multi-stage process significant background & preparation led by moderator Active design reviews also called "phased inspections" several brief reviews rather than one large review

guided by questions from the author

Cleanroom

- more than reviews, but reviews important component
- •we'll come back to this
- N-fold
- parallel reviews controlled by moderator

UNIVERSITY OF MASSACHUSETTS AMHERST · DEPARTMENT OF COMPUTER SCIENCE COMPGCI 2006.

focuses on user requirements

UNIVERSITY OF MASSACHUSETTS AMHERST + DEPARTMENT OF COMPUTER SCIENCE CMPS

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SCIENCE CONSIGN

IPUTER Quality Metrics for Code		
Understandability	/	
size metrics		
Ines of code		
function points		
function count		
traceability metric	rics	
number of com	ment lines per total source lines of code	
percent comme	ent lines of total lines	
correctness of	comments	
Predicting quality	/	
LOC X domain	seems to be the most reliable predictor	

UNIVERSITY OF MASSACHUSETTS AMHERST - DEPARTMENT OF COMPUTER SciENCE COPSCIE and a PALLS