
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

23- Design & Analysis

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Design Overview

Supplementary
Specifications

Architecture
Document

Analysis Classes

Design Model

Design
Guidelines

Use-Case Model

Use-Case Realization

Class
Design

Design
Classes

• ensure that the classes provide
the behavior the use-case
realizations require

• ensure that it is straightforward
to implement the classes

• handle non-functional
requirements related to classes

• incorporate the design
mechanisms used by the
classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How Many Classes Are Needed?

ßMany, simple classes means that each class
ßencapsulates less of the overall system intelligence
ßis more reusable
ßis easier to implement
ßA few, complex classes means that each class
ßencapsulates a large portion of the overall system
intelligence
ßis less likely to be reusable
ßis more difficult to implement
ßA class should have a single well focused purpose
ßa class should do one thing and do it well!
ßhow does this relate to my earlier suggestion that
classes have multiple responsibilities?

•Class should have multiple
responsibilities

•Actions that object can perform
•Knowledge object maintains
•Non-functional requirements

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Designing Boundary Classes

ßUser interface (UI) boundary classes
ßWhat user interface development tools will be used?

ßHow much of the interface can be created by the
development tool?

ß“Reverse Engineering”

ßExternal system interface boundary classes
ßUsually model as subsystem

MainForm

SubWindow

DropDownListButton

MainWindow

See Maciaszek - no
time to discuss UI
design

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design View
FatClass

- transientBookeeping

+ getCommonlyUsedAtt1()
+ getCommonlyUsedAtt2()
+ getRarelyUsedAtt3()
+ getRarelyUsedAtt4()

FatClassDataHelper
+ commonlyUsedAtt1
+ commonlyUsedAtt2

FatClassLazyDataHelper
+ rarelyUsedAtt3
+ rarelyUsedAtt4

1 1

Analysis View

FatClass
- transientBookeeping
+ commonlyUsedAtt1
+ commonlyUsedAtt2
+ rarelyUsedAtt3
+ rarelyUsedAtt4

<< entity >>

Designing Entity Classes

ßEntity objects are often passive and persistent

ßPerformance requirements may force some re-factoring

1

0..*

RemoteDistributedControllerProxyDistributedController

SecureUser

(from Secure Interfaces)

<<Interface>>1

0..*

+currentUser
+currentUser

RegistrationController

(from Student Activities)

<<controller>>
RemoteRegistrationController

(from Student Activities)

0..11

Naming
(from java.rmi)

<<utility>>

client server

External
Desktop PC

StudentApplication

Registration
Server

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

<<Internet>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Designing Control Classes

ßWhat Happens to Control Classes?
ßAre they really needed?
ß if just “pass-throughs” from the boundary classes to the
entity classes, they may be eliminated.

ßShould they be split?
ßmight depend on distribution, e.g., proxy-remote

ßControl classes may become true design classes for
any of the following reasons:
ßthey encapsulate significant control flow behavior,
ßthe behavior they encapsulate is likely to change
ßthe behavior must be distributed across multiple
processes and/or processors
ßthe behavior they encapsulate requires some transaction
management.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Operations

ßMessages displayed in interaction diagrams

ßImplement rules

ßOperations can lead to new class definitions

:ClassA

// Perform responsibility

:ClassB :ClassA

performResponsibility():result

:ClassB

Student
- name : String
- dateOfBirth : Date

+ canEnroll() : Boolean
hasTakenPrerequisites() : Boolean
hasScheduleConflict() : Boolean

every class should have:
•Manager functions
• Implementor functions
•Access functions
•Helping functions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Utility Classes

ßWhat is a Utility Class?
ßUtility is a class stereotype

ßUsed for a class that contains a collection of free
subprograms

ßWhy use it?
ßTo provide services that may be (re)useful in a variety of
contexts

ßTo wrap non object-oriented libraries or applications

 <<utility>>
 MathPack

-randomSeed randomSeed : long = 0: long = 0
-pi : double = 3.14159265358979-pi : double = 3.14159265358979

+sin (angle : double) : double
+cos (angle : double) : double
+random() : double

sql

+ bind()
+ execsql()
+ startTrans()
+ commit()
+ fetch()
+ getResults()

<<utility>>

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Identify and Define the States

ßSignificant, dynamic attributes

ßExistence and non-existence of certain links

ßexplicitly define what it means to be in a particular state.

numStudents < 10

Open

The maximum number of students per course offering is 10

numStudents > = 10

Closed

Teaching On Sabbatical

Link to CourseOffering
Exists

Link to CourseOffering
Doesn’t Exist

Professor

CourseOffering

0..*

0..1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Identify the Events & Transitions

ßEvents
ßOne event may trigger the
sending of another event
ßAn activity can also send
an event to another object

ßTransitions
ßFor each state, determine
what events cause
transitions to what states,
including guard conditions,
when needed
ßTransitions describe what
happens in response to
the receipt of an event

State B

do: ^TargetObject.event

State A

event ^TargetObject.event

State A

State B

do: activity

event[condition] / action

State C

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Add Activities and Actions

ßActivities
ßAssociated with a state
ßStart when the state is
entered
ßTake time to complete
ßInterruptible
ßActions
ßAssociated with a
transition
ßTake an insignificant
amount of time to
complete
ßNon-interruptible

activity

State A

State B
do: activity

event[condition] / action

State C
entry: action

action

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statechart

Initialize

do: Initialize course
 object

do: Assign professor
to course

Open

entry: Register a
 student

Closed

do: Report
course is full

Canceled

do: Send cancellation
notices

 addStudent/
 numStudents = 0

cancelCourse

RegistrationComplete

do: Generate class
 roster

cancelCourse
[numStudents = 10]

cancelCourse

registration closed[
numStudents > = 3]

registration closed[

numStudents < 3]

Unassigned

addStudent

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statechart with Nested States
superstate

substate
Initialize Register

Open
entry: Register a student

Unassigned
do: Assign professor to course

Open

Closed Canceled

RegistrationComplete
do: Generate class roster

 Add student / numStudents = 0

[numStudents = 10]

cancelCourse

registration closed[
numStudents > = 3]

registration closed[
numStudents < 3]

addStudent

do: Report course is closed

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Define Attributes

CourseOffering
- number : String = "100"
- startTime : Time
- endTime : Time
- days : Enum
/- numStudents : int: = 0

+ addStudent(studentSchedule : Schedule)

private to
support

encapsulation

derived attribute

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Associations & Dependencies

ßassociation

ß visibility
ßattribute (field) visibility: B is an attribute of A
ß remains an association

ßparameter visibility: B is a parameter of a method A
ß becomes a dependency

ß local visibility: B is a (non-parameter) local object in a method of A
ß becomes a dependency

ßglobal visibility: B is in some way globally visible
ß becomes a dependency

A B

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Define Dependencies

+ notifyOfferingSelection(offering : CourseOffering)

Global visibility

Field visibility

 -> association

Local visibility
 -> dependency

MainStudentForm

+ registerForCourses()

(from Student Interface)

<<boundary>>

ICourseCatalog
(from CourseCatalog)

<<Interface>>

RemoteRegistrationController

+ getOfferings(curriculum)

+ saveSchedule(theSchedule : Schedule)

(from Registration)

Naming

+ lookup()

(from java.rmi)

RegistrationController

getOfferings(curriculum)
notifyOfferingSelection(offering : CourseOffering)
new(context : SecureUser)
saveSchedule(sched : Schedule)
cancelSchedule(sched : Schedule)

<<control>>

1

1

Schedule
<<entity>>

MaintainScheduleForm

displayOfferings()
selectCurriculum() : Curriculum
selectOffering() : CourseOffering
save()
cancel()
update(changedItem : ISubject)
displaySchedule()

<<boundary>>

1 1

0..1

1

0..1

0..1

Parameter visibility

 -> dependency

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Composition

notifyOfferingSelection(offering : CourseOffering)

RegistrationController

getOfferings(curriculum)

new(context : SecureUser)

saveSchedule(sched : Schedule)

cancelSchedule(sched : Schedule)

<<control>>MaintainScheduleForm

displayOfferings()

selectCurriculum() : Curriculum

selectOffering() : CourseOffering

save()

cancel()

update(changedItem : ISubject)

displaySchedule()

<<boundary>>

1 1

association relationship has
been refined into a composition
relationship.
MSF represents a session
RC never exists outside of session

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Truck

tonnage

GroundVehicle

weight
licenseNumber

Car

owner

register()

getTax()

Person

0..*

Trailer

1
ancestor

decendent

generalization

size

Generalization (Inheritance)

ßOne class inherits from another

ßnot just finding common attribute, operations and relationships
ßmore about the responsibilities and essence of the classes.
ßavoid “skyscrapers”; the hierarchies should look like small,

independent “forests

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Polymorphism?

ßThe ability to hide many
different implementations
behind a single interface

Tube

Pyramid

Cube

Shape

Draw
Move
Scale
Rotate

<<interface>>

ßGeneralization to support
polymorphism

Without Polymorphism With Polymorphism

Animal

talk ()

Lion Tiger

talk () talk ()

if animal = “Lion” then
do the Lion talk

else if animal = “Tiger” then
do the Tiger talk

end

do the Animal talk

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Define Generalizations

MaintainScheduleForm
(from Student Interface)

<<boundary>>
ReportCardForm

(from Student Interface)

<<boundary>>

MainStudentForm
(from Student Interface)

<<boundary>>

1

0..1

1

0..1

MaintainStudentForm
(from Registrar Interface)

<<boundary>>
MaintainProfessorForm

(from Registrar Interface)

<<boundary>>
CloseRegistrationForm

(from Registrar Interface)

<<boundary>>

MainRegistrarForm
(from Registrar Interface)

<<boundary>>

1

0..*

1

0..*

1

0..1 (from Professor Interface)
SubmitGradesForm

<<boundary>>
SelectCoursesForm

(from Professor Interface)

<<boundary>>

MainProfessorForm
(from Professor Interface)

<<boundary>>

11

0..1 0..1

MainApplicationForm

(from GUI Framework)

<<boundary>>
LogonForm

(from GUI Framework)
1 0..1

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

LinkedList
T

T
1 .. *

Parameterized Class

ßA parameterized class or
template defines a family of
potential elements.
ßTo use it, the parameter must

be bound.
ßA template is rendered by a

small dashed rectangle
superimposed on the upper-
right corner of the class
rectangle. The dashed
rectangle contains a list of
formal parameters for the
class.

ßBinding is done with the
<<bind>> stereotype and a
parameter to supply to the
template. These are
adornments to the dashed
arrow denoting the realization
relationship.
ßHere we create a linked-list of

names for the Dean’s List.

LinkedList
T

T
1..
*

DeansList

<<bind>>(Name)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Project 3

O-O System Development

adapted from Bruegge/Dutoit O-O SW Engr

problem
statement

Requirements
elicitation

Requirements
analysis

System design

system design
object model

design goals subsystem
decomposition

functional
model

nonfunctional
requirements

use case
diagram

analysis
object model

class
diagram

dynamic
model

statechart
diagram

sequence
diagram

Implementation

source
code

Test

deliverable
system

Object design

object design
model

class
diagram

RFP

interviews Project2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Behavior

Comparison

model/
product

Intent

Analysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Basic Definitions

ßFailure-- result that deviates from the expected or
specified intent

ßFault/defect-- a flaw that could cause a failure

ßError -- erroneous belief that might have led to a flaw
that could result in a failure

Behavior

Comparison

model/
product

Intent observed
failure

fault

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Approaches

ßStatic Analysis
ßthe static examination of a product or a representation of the
product for the purpose of inferring properties or
characteristics

ßDynamic Analysis
ßthe "interpretation" of a product or representation of a product
for the purpose of inferring properties or characteristics

ßTesting
ßthe (systematic) selection and subsequent "execution" of
sample inputs from a product's input space in order to infer
information about the product's behavior.
ßusually trying to uncover failures
ß the most common form of dynamic analysis

ßDebugging -- the search for the cause of a failure and
subsequent repair

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Behavior

Comparison

model/
product

Intent

Analysis

inferred

Static Analysis

observed

Dynamic Analysis

inferred

Testing

observed

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Validation and Verification: V&V

ßValidation -- techniques for assessing the quality of a
software product

ßVerification -- the use of analytic inference to (formally) prove
that a product is consistent with a specification of its intent
ßthe specification could be a selected property of interest or it
could be a specification of all expected behaviors and qualities
ße.g., provide a user-friendly and efficient ATM system for remotely

depositing funds into and withdrawing funds from a checking or
saving account

ße.g., all deposit transactions for an individual will be completed
before any withdrawal transaction will be initiated

ßa form of validation

ßusually achieved via some form of static analysis

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Correctness

ßa product is functionally correct if it satisfies all the
functional requirement
specifications
ßcorrectness is a mathematical property

ßrequires a specification of intent

ßspecifications are rarely complete

ßa product is behaviorally correct if it satisfies all the
specified behavioral requirements
ßdifficult to prove poorly-quantified qualities such as user-
friendly

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Reliability

ßmeasures the dependability of a product
ßthe probability that a product will perform as expected

ßsometimes stated as a property of time
e.g., mean time to failure

ßReliability vs. Correctness
ßreliability is relative, while correctness is absolute

ßgiven a "correct" specification, a correct product is
reliable, but not necessarily vice versa

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Robustness

ßbehaves "reasonably" even in circumstances that were
not expected
ßmaking a system robust more then doubles development
costs

ßa system that is correct may not be robust, and vice
versa

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Formal models

ßAnalysis is usually done on a model of an artifact
ßtextual representation of the artifact is translated into a
model that is more amenable to analysis then the
original representation

ßthe translation may require syntactic and semantic
analysis so that the model is as accurate as possible
ße.g., x:= y + foo.bar

ßmodel must be appropriate for the intended analysis

ßgraphs are the most common forms of models used
ße.g., abstract syntax graphs, control flow graphs, call
graphs, reachability graphs, Petri nets, program
dependence graphs

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling intent & artifacts

ßnatural language
ßstructured natural language
ßpictorial notation
ßCharts, Diagrams, Box-and-Arrow Charts
ßGraphs
ßFlowgraphs
ßParse Trees
ßCall graphs
ßDataflow graphs

ßdata models
ß formal language(s)
ßstate-oriented
ßfunction-oriented
ßobject-oriented

Comparison

model/
product

Intent

observed

inferred

Behavior

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Ideally want general models

ßdifferent languages
ß e.g., Ada, C++, Java

ßdifferent levels of abstraction/detail
ß e.g., detailed design, arch. design

ßdifferent kinds of artifacts
ße.g., code, designs, requirements

translate textual representations

translator(s) model

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Static analysis

ßtypically conservative
ßnever declare a property to be valid if it is not

ßusually achieve this by using representations that over-
estimate actual behavior

ßthe representation depends on the analysis

ßAST is a conservative representation for
ßdetermining all the operators in a program

ßdetermining all the locations where X is defined

ßCFG is a conservative representation for
ßDetermining how many loops are in the program

ßdetermining how deeply nested each loop is

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

2 3

65

4

7

1

Conservative analysis in CFG

ßFor all execution sequences, is P true?
ß if P is true for all paths, then P is true
ß if P is true for some paths, then P may

be true or false
ß Paths where P is not true may not be

feasible

ßFor some execution sequence, is P
true?
ß if P is true for some path, P may be true

or false
ß the path where P is true may or may not

be feasible

ßConservative analysis would only say P
is true if is known to be true for all paths

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example with an infeasible path

X ≥ 0

Y > 0

P ?

P trueP false

1
X ≥ 0

Y := 5

X * Y ≥ 0

2 3

4

5 6

7

Y := X

X < 0

Y < 0

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

x

x
x

x

Dynamic analysis techniques

ßdraw inferences from a sample
of the problem domain

ßhow do we choose that subset?

ßFault detection may depend
upon
ßSpecific combinations of
statements, not just coverage
of those statements

ßAstutely selected test data that
reveals the fault, not just test
data that executes the path

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Approaches

ßStatic Analysis
ßInspections

ßSoftware metrics

ßSymbolic execution

ßDependence Analysis

ßData flow analysis

ßSoftware Verification

ßDynamic Analysis
ßAssertions

ßError seeding,
mutation testing

ßCoverage criteria

ßFault-based testing

ßSpecification-based
testing

ßObject-oriented testing

ßRegression testing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Reviews, Inspections, and Walkthroughs

ßManual static analysis methods

ßMost can be applied at any step in the
lifecycle

ßHave been shown to improve reliability, but
ßoften the first thing dropped when time is tight

ßlabor intensive

ßoften done informally, no data/history, not
repeatable

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Reviews in the RUP

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Reviews, Inspections, and Walkthroughs

ßFormal reviews
ßauthor or one reviewer leads a presentation of the
product

ßreview is driven by presentation, issues raised

ßWalkthroughs
ßusually informal reviews of source code

ßstep-by-step, line-by-line review

ßInspections
ßlist of criteria drive review

ßproperties not limited to error correction

ßhistorical context

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Review methods

ßFagan inspections
ßformal, multi-stage process
ßsignificant background & preparation
ß led by moderator

ßActive design reviews
ßalso called "phased inspections"
ßseveral brief reviews rather than one large review
ßguided by questions from the author

ßCleanroom
ßmore than reviews, but reviews important component
ßwe’ll come back to this

ßN-fold
ßparallel reviews controlled by moderator
ßfocuses on user requirements

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Fagan Inspections (3-5 participants)

ßModerator
ßResponsible for organizing, scheduling, distributing materials,

and leading the session

ßAuthor
ßResponsible for explaining the product

ßScribe
ßResponsible for recording bugs found

ßPlanner or designer
ßAuthor from a previous step in the software lifecycle

ßUser representative
ßTo relate the product to what the user wants

ßPeers of the author
ßPerhaps more experienced, perhaps less

ßApprentice
ßAn observer who is there mostly to learn

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Planning

Overview

Preparation

Inspection

Rework &
 Follow-Up

Fagan Inspection Process (5 steps)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Fagan Inspection Process

ßPlanning
ßGather materials and insure
that they meet entry criteria

ßArrange for participants,
ß assign them roles,

ß insure their training

ßArrange meeting

ßOverview
ßexplain content to the
inspectors

ßPreparation
ß Participants study material

ß Inspection
ßFind/Report faults (Do not
discuss alternative
solutions)

ßRework
ßAuthor fixes all faults

ßFollow-Up
ßTeam certifies faults fixed
and no new faults
introduced

moderator

author(s)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Fagan Inspection

ßGeneral guidelines
ßDistribute material ahead of time

ßUse a written checklist of what should be
considered
ße.g., functional testing guidelines

ßCriticize product, not the author

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Experimental Results

ßusing software
inspections has
repeatedly been
shown to be cost
effective

ßincreases front-end
costs
ß~15% increase to
development cost

ßdecreases overall cost

ßIBM study
ßdoubled number of
lines of code produced
per person
ßsome of this due to

inspection process

ßreduced faults by 2/3

ßfound 60-90% of the
faults

ßfound faults close to
when they are
introduced
ßhelps reduce cost

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

P
L
A
N
N
I
N
G

R
E
Q
U
I
R
E
M
E
N
T
S

DESIGN CODING TESTING SHIP

WITHOUT
INSPECTIONS

WITH
INSPECTIONS

SCHEDULE

PEOPLE

 People Resource vs. Schedule

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why are inspections effective

ßknowing the product will be scrutinized causes
developers to produce a better product

ßhaving others scrutinize a product increases the
probability that faults will be found

ßwalkthroughs and reviews are not as formal as
inspections, but appear to also be effective
ßhard to get empirical results

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What are the deficiencies?

ßfocus on error detection
ßwhat about other "ilities" --
maintenance, portability,
etc.

ßnot applied consistently
& rigorously
ß inspection shows statistical
improvement, but cannot
ensure quality
ß inspection should have the
same results without regard
to the product to which it is
applied or the inspection
team

ßrange of errors not
addressed
ßteam expertise limited
ßone property may have
many error modalities

ßhuman intensive and
often makes ineffective
use of human resources
ße.g., skilled software
engineer reviewing coding
standards, comments
spelling, etc.

ßno automated support
ßagain inefficient of human
resources

ßaspects of review not
used appropriately
ße.g., in Fagan process,
overview often covers what
should be described if
documentation is adequate

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Measures of Operational Performance

Quality Certification
Model

Customer
RequirementsCustomer
Requirements

Specification

Function Usage

Usage Modeling
Test Case Generation

Box Structure
Specification & Design

Correctness Verification

Statistical Testing

Incremental
Development

Planning

Incremental
Development

Planning

Usage SpecificationFunctional Specification

Incremental
Development Plan

Source Code Test Cases

Failure Data

Improvement Feedback

Processes
Work Products

Cleanroom

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Incremental development of a small system

Customer/User
Feedback

Customer

Complete system

Increment 1
• Sign on/off
• setup

Increment 2
• Sign on/off
• Setup
• Panel navigation

Increment 3
• Sign on/off
• Setup
• Panel navigation
• Primary functions Increment 4

• Sign on/off
• Setup
• Panel navigation
• Primary functions
• Secondary functions

Requirements

Top Level Specs

Incremental
Development Plan

New
Reused
Stubbed

Customer

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Box structure method

RSSS…S

State Data RS

State Data
+

Procedure
RS

FUNCTION

PROGRAM

black box

state box

clear box

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Verification as Review Process

ß team verification of correctness takes the
place of individual unit testing
ßteam applies a set of correctness
questions
ßcorrectness is established by
group consensus if it is obvious
ßby formal proof techniques if it is not.

ßbenefits
ß intellectual control of the process
ßmotivates developers to deliver error-free
code
ßverification is a form of peer review
ßeach person assumes responsibility for and
derives a sense of ownership in the evolving
product

ßevery person must agree that the work is
correct before it is accepted -> successes are
ultimately team successes, and failures are
team failures.

[f]
do
 [g]
 [h]
od

For all inputs, does [g]
followed by [h] do [f]?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Markov Analysis

ß Factors
ß number of statistically typical (i.e.,

likely) usage paths through the
software
ß long-run occupancy (i.e.,

percentage of total usage time) in
each state
ß expected number of events in a

test case
ß expected number of test cases

before a given usage state occurs
ß expected number events between

any two states
ß expected minimum number of test

cases required to cover all states
in the model
ß expected minimum number of test

cases required to cover all
transitions in the model

ßSteps
ßprune the specification,
ßgauge complexity,
ß focus verification efforts,
ß identify the likelihood of given

events,
ßproject the test schedule, and
ßascertain the (affordable)

upper bound on inferences
about reliability

Invocation Main Menu Termination

Display

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Generation of Test Cases

ß usage model->test cases
ßmay be automatically generated.

ß each test case is a random walk through the usage model
ß invocation->termination

ß test cases constitute a "script" for use in testing
ßmay be applied by human testers, or used as input to an automated test tool.

ß Stopping Criterion for Testing
ß goals (e.g., target level of estimated reliability) are achieved
ß or quality standards (e.g., errors/KLOC) are violated

ß Statistical Hypothesis Testing

69054603299323020.999

6884592992300.99

1359059450.95

664429220.9

99.9999590
Confidence level (%)

Reliability
level (r)

%r

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Metrics

ßmeasures that predict qualities about software
ßcan be applied to any of the products (e.g., design, code,
test cases) or to the process (e.g., Capability Maturity
Model)
ßQualities measured by software metrics
ßperformance
ßuser-friendliness
ßresources
ßmemory/storage
ßdevelopment costs
ßmaintenance cost

ßquality
ßmaintainabity
ß reliability
ßcompleteness
ßconsistency
ßcomplexity

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Function Points

ßproposed by Albrecht in 1979
ßOriginally applied to code

ßUFP =
 number of inputs x w1 +
 number of outputs x w2 +
 number of user inquiries x w3 +
 number of files x w4 +
 number of external references x w5

ß function points = UFP* TCA = UFP* (.65 + 0.01 * SUM(Fi))
ßwhere the degree of influence, DI= SUM(Fi) is the sum of
complexity adjustment values, Fi

ßmetrics:
ßproductivity: FP/person-month
ßquality: defects/FP
ßcost: $/FP

ß weights:
 Simple Average Complex
w1 3 4 6
w2 3 5 7
w3 3 4 6
w4 7 10 15
w5 5 7 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More Quality Metrics

ßModularity
ßcohesion metric

ßapplied to unit design

ßthe relationship among the elements of a module

ßbest cohesion level is functional, and the worst is
coincidental.

ßCruickshank and Gaffney Cohesion Strength
Strength = √(X2 + Y2)

ßwhere:
ßX = reciprocal of the number of assignment statements in
the module
ßY = number of unique function outputs divided by number of
unique function inputs

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More Quality Metrics

ßModularity
ßcoupling
ß applied to system and unit designs
ßmeasure of the degree to which modules share data
ß data coupling (the sharing of data via parameter lists)

is the best type of coupling, while common coupling
(the sharing of data via global or common areas) is
the worst.
ß a lower coupling value is better.

ßCruickshank and Gaffney Coupling:
ßMj = sum of the number of input and output items

shared between components i & j
ß Zi = average number of input and output items shared

over m components with component i
ß n = number of components in the software product

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

McCabe’s cyclomatic complexity

ßComplexity measured by control flow information
ßbased on a control flow graph where e is number of
edges, n is number of nodes, p is number of
connected components

ßMcCabe’s Cyclomatic Complexity:
ßv = e - n + 2
ßwhere:
ßv = complexity of the graph
ße = number of edges (program flows between nodes)
ßn = number of nodes (sequential groups of program
statements)

ßif a strongly connected graph is constructed (one in
which there is an edge between the exit node and
entry node), the calculation is
ßv = e - n + 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

n = 8
e = 10
p = 1

C = 10 - 8 + 2 = 4

Example

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Science

ßHalstead applied information theory to computer science
ßmetrics

 n1 number of distinct operators

 n2 number of distinct operands

N1 total number of occurrences of operators

N2 total number of occurrences of operands

ßprogram level estimator
 D = 1 /L = (n1 /2) (N2 / n2)

 L = 1/ D = (2/n1)(n2 / N2)
 difficulty increases as operators are introduced (n1 /2 increases) and as

operands are used repetitively (N2 / n2 increases)

ßprogramming time
 T = E /S
 where S is the “Stroud number”
 5 ≤ S ≤ 20, usually 18

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Science (continued)

ßlanguage level

 l = L x V* = L2V*
 lPL/1 = 1.53, lAlgol = 1.21,

 lFortran = 1.14, lCDC assmblr = 0.88

ßpredicted effort

 E =V*3/ l2

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Quality Metrics for Code

ßUnderstandability
ßsize metrics
ß lines of code

ßfunction points

ßfunction count

ßtraceability metrics
ßnumber of comment lines per total source lines of code

ßpercent comment lines of total lines

ßcorrectness of comments

ßPredicting quality
ßLOC X domain seems to be the most reliable predictor

