CMPSCI520/620

COMPUTER
SCIENCE

23- Design & Analysis

Rick Adrion

UNIVERSITY: OF MASSACHUSETTS! AMHER:

COMPUTER How Many Classes Are Needed?
=Many, simple classes means that each class
=encapsulates less of the overall system intelligence

=is more reusable
uis easier to implement
= A few, complex classes means that each class
=encapsulates a large portion of
intelligence
uis less likely to be reusable
=is more difficult to implement

responsibilities
Actions that object can perform
+Knowledge object maintains
<Non-functional requirements

=how does this relate to earlier suggestion that
classes have multiple responsibilities?

N

N

Design
Guidelines

the behavior the use-case
to implement the classes
« incorporate the design

COMPUTER : H
seieice Class Design Overview
« ensure that the classes provide
realizations require
« ensure that it is straightforward
Analysis Classes ADrchltecturte « handle non-functional

ocumen requirements related to classes

mechanisms used by the

classes

Supplementary
Specifications

e h
\
S

Use-Case Realization

\ besin
ﬁ %é%)b Cisses

UNIVERSITY-OF- MASSACHUSETTS AMHERS

©Rick Adrion 2003 (except where noted)

Design Model Use-Case Model

UNIVERSITY-OF MASSACHUSETTS: AMHER:

FMTHE Designing Boundary Classes

SCIENCE
See Maciaszek - no

=User interface (Ul) boundary classes— Erensek;g discuss Ul
=What user interface development tools will be used?
=*How much of the interface can be created by the
development tool?
=“Reverse Engineering”
=External system interface boundary classes
=Usually model as subsystem

MainWindow SubWindow
MainForm T /_T_
Button DropDownList

UNIVERSITY- OF MASSACHUSETTS AMHERS

CMPSCI520/620

COMPUTER Designing Entity Classes

=Entity objects are often passive and persistent
= Performance requirements may force some re-factoring

Extornal
Deskiop P
Regstration

Teach

StudentApplication
<<lntemety

StudentMaintenanceProcess
CloseRegisirationProcess.
ReporiCardProcess
FinanceSystemAccess

Analysis View

Design View

<< entity >> EatCl:
- tBook -
& CommoniyUsedAtty ; getSommorsedau)
+ GommoniyUsedAlt2 + getCommonlyUsedAtt2
+ rarelyUsedAits + gelRarelyUsedAtty

1
1
1
1
. + gearalyUisedAti3
1
1
1
1

+ rarelyUsedAlt3
+ rarelyUsedAti4

+commonlyUsedAtt1
+ commonlyUsedAtt2
———

UNIVERSITY: OF MASSACHUSETTS AMHERST. ~D

CONPUTER Operations

=Messages displayed in interaction diagrams

:ClassA :ClassB :ClassA M

|
|
/| Perform resgorismlllty - | performResponsibility(): result
T
|

- Implement rUIeS every class should have:
Student «Manager functions

« Implementor functions
«Access functions

+ canEnroll() : Boolean *Helping functions

hasTakenPrerequisites() : Boolean
hasScheduleConflict() : Boolean

- name : String
- dateOfBirth : Date

=Operations can lead to new class definitions

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

CONPUTE Designing Control Classes

=\What Happens to Control Classes?
=Are they really needed?

=if just “pass-throughs” from the boundary classes to the
entity classes, they may be eliminated.

=Should they be split?
=*might depend on distribution, e.g., proxy-remote
=Control classes may become true design classes for
any of the following reasons:

sthey encapsulate significant control flow behavior,

sthe behavior they encapsulate is likely to change

sthe behavior must be distributed across multiple
processes and/or processors

sthe behavior they encapsulate requires some transaction
management.

UNIVERSITY-OF MASSACHUSETTS AMHERST:

COMPUTER Utility Classes

=What is a Utility Class?
=Utility is a class stereotype

=Used for a class that contains a collection of free
subprograms
=Why use it?
=To provide services that may be (re)useful in a variety of
contexts
=To wrap non object-oriented libraries or applications

<<utility>>
<<utility>> utility
MathPack sql
-randomSeed : long = .
-pi: double = 314159265358979 + bind()
+ execsql()
+sin (angle : double) : double + startT:
+c0s (angle : double) : double startTrans()
+random() : double + commit()
+ fetch()

+ getResults()

UNIVERSITY- OF MASSACHUSETTS AMHERST:

CMPSCI520/620

CONTENE! Identify and Define the States

= Significant, dynamic attributes
The maximum number of students per course offering is 10

numStudents < 10 numStudents >= 10

=Existence and non-existence of certain links

Link to CourseOffering Link to CourseOffering Professor
Exists Doesn’t Exist
0.1
[Teaching] [On Sabbatical]
0.*
CourseOffering

=explicitly define what it means to be in a particular state.

UNIVERSITY: OF MASSACHUSETTS! AMHER:

CONTENE! Add Activities and Actions

= Activities
=Associated with a state)
sStart when the state is action

entered e

sTake time to complete event[cgndition]/ action
=Interruptible

=Actions activity —
=Associated with a do: activit
transition

=Take an insignificant
amount of time to
complete

=Non-interruptible

UNIVERSITY-OF- MASSACHUSETTS AMHERS

©Rick Adrion 2003 (except where noted)

CONNENE! Identify the Events & Transitions

=Events

=One event may trigger the
sending of another event

=An activity can also send

event "TargetObject.event

an event to another object
i
=Transitions

=For each state, determine
what events cause
transitions to what states,
including guard conditions,
when needed

=Transitions describe what
happens in response to
the receipt of an event

State B
do: activity

UNIVERSITY-OF MASSACHUSETTS: AMHER:

CONPUTER Statechart

addStudent

Initialize Unassigned —o [Open)|
do: Initialize cour: do: Assign professor entry: Register a J
object to course tudent

cancelCourse

cancelCourse

registration closed[

L registration closed[
Canceled numStudents <3 numStudents > = 3]
do: Send

notices

[numStudents = 10

cancelCourse

Closed
do: Report RegistrationComplete]
ourse i ldo: Generate class O
roster

UNIVERSITY- OF MASSACHUSETTS AMHERS

CMPSCI520/620

CONPUTER Statechart with Nested States COMPUTER Example: Define Attributes

superstate
o

substa
o CourseOffering

closed[- - —
mStudents > = 3] _ - number : String = "100"
do: Assign professor to codrse private to - startTime : Time
support | |- ime - Ti
Add student / numStudents =0 encapsulation anTlmEe s Time
- days : enum
Open /- numStudents : int: =0 derived attribute

.———‘lentry: Register a student

[numStudents =10]

RegistrationCompletg
do: Generate class ro

Sr

registration closed[
numStudents <

+ addStudent(studentSchedule : Schedule)

Closed

do: Report course is closed

cancelCourse

UNIVERSITY-OF MASSACHUSETTS:AMHERS' --

UNIVERSITY: OF M ASSACHUSETTS: AMHER!

COMPUTER Associations & Dependencies CONPUTER Define Dependencies

P <<boundary>>
= association MainStudentForm
(from Student Interface)
E——
A B + registerForCourses()
1 TN
Global visibility Naming
o 0.1 (from java fmi)
= visibility J P
= attribute (field) visibility: B is an attribute of A MaintainScheduleForm <<control>>
= remains an association RegistrationController RemoteRegistrationController
P . displayOfferings() 1 1 |(from Ik il
=parameter visibility: B is a parameter of a method A selectCurriculum() : Curriculufn_+ | getOfferings (curriculum)
selectOffering() : CourseOffer notifyOfferingSelection(offering : CourseOffering} getOfferings(curriculum)
" bec‘?me_s_a dep?ndency . . save() new(context : SecureUser) “+ notifyOfferingSelection (offering : CourseOffering
=local visibility: B is a (non-parameter) local object in a method of A cancel() 1sunighty : + save :
pdate(: :
= becomes a dependency displaySchedule() / \
IR e . e L A TN
=global visibility: B is in some way globally visible / 0.1 X :\ Local visibility
= becomes a dependency Field visibility / o " -> dependency
<<entity>3) Parameter visibility| <<interface>>
_> association Schedula ICourseCatalog
-> dependency |rom CourseCdtalog)

Copyright © 1997 by Rational Software Corporation

UNIVERSITY- OF MASSACHUSETTS AMHER! UNIVERSITY- OF MASSACHUSETTS AMHERS

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

COMPUTER

<<boundary>>
MaintainScheduleForm

displayOfferings() 1 1
selectCurriculum() : Curriculum

selectOffering() : CourseOffering‘—
save()

cancel()

update(changedItem : ISubject)
displaySchedule()

association rela

relationship.

UNIVERSITY: OF MASSACHUSETTS! AMHER:

seience Example: Composition

been refined into a composition

MSF represents a session
RC never exists outside of session

<<control>>
RegistrationController

getOfferings(curriculum)
'notifyOfferingSeIection(offering : CourseOffering
new(context : SecureUser)
saveSchedule(sched : Schedule)
cancelSchedule(sched : Schedule)

tionship has

CONPUTER Polymorphism?

= The ability to hide many
different implementations
behind a single interface

Tube
<<interface>> -7
-
-
Shape Q
Pyramid
Draw q —————— e

Rotate ~

~< Joube

UNIVERSITY-OF- MASSACHUSETTS AMHERS

el]
Scale
~

= Generalization to support
polymorphism

talk ()
if animal = “Lion” then

do the Lion talk do the Animal talk
else if animal = “Tiger” then

do the Tiger talk
end

©Rick Adrion 2003 (except where noted)

PMITER Generalization (Inheritance)

= One class inherits from another

GroundVehicle

ancestor weight
licenseNumber __|0..* 1

owner | Person

generalization

C Truck Trailer
decendent —=ar |
size tonnage <]
getTax()

=not just finding common attribute, operations and relationships
= more about the responsibilities and essence of the classes.

= avoid “skyscrapers”; the hierarchies should look like small,
independent “forests

UNIVERSITY-OF MASSACHUSETTS AMHE!

COMPUTER Define Generalizations

<<boundary>>
MainApplicationForm
(from GUI Framework)

7

1
<<boundary>>
MainStudentForm
from Student Interfacy

= 1
A 0.1

<<boundary>> <<boundary>>
MaintainScheduleForm ReportCardForm <<boundary>>
(from Student Interface) (from Student Interface)

LogonForm

rom GUI

l(from Professor Interfacd)

1 1
0.1 0.1

<<boundary>> <<boundary>>
lectC: i

<<boundary>>
MainRegistrarForm
(from Registrar Interface)

» b I "
l(from Registrar Interface) | ~ |from Registrar Interface) (from Registrar Interface)

0.1 l(from Professor Interface) |(from Professor Interfack)

UNIVERSITY- OF MASSACHUSETTS AMHE!

CMPSCI520/620

CONPUTER Parameterized Class

= A parameterized class or
template defines a family of
potential elements.

be bound.
= A template is rendered by a

T

UNIVERSITY: OF MASSACHUSETTS AMHERST. 4 DERPARTMENTS

small dashed rectangle relationship.))
superimposed on the upper- =Here we create a linked-list of
right corner of the class
rectangle. The dashed
rectangle contains a list of

formal parameters_for_the
class.

'
1 <<bind=>(Name)

=Binding is done with the
<<bind>> stereotype and a
parameter to supply to the
=To use it, the parameter must template. These are

adornments to the dashed
arrow denoting the realization

names for the Dean’s List.

COMPUTER .
Sseipnce Analysis

T
x

Comparison

™~

ode

oroduc

UNIVERSITY- OF MASSACHUSETTS AMHERST----DERARTMENT:

©Rick Adrion 2003 (except where noted)

Behavior

CONPUTER 0-O System Development
=l
interviews " use case

dagram Project?

Requirements
analysis

- . Statecha
Tass analysis dyPamic diagram ™
diagram object model model ‘
T _sequencs
va .- diagram

Project 3

design goals

system design
object model

Object design

‘object design
model

Class]
T diagram

Gelverable
system

adapted from Bruegge/Dutoit O-O SW Engr

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘\TMENT;

CONPUTER Basic Definitions

=Failure-- result that deviates from the expected or
specified intent

=Fault/defect-- a flaw that could cause a failure

=Error -- erroneous belief that might have led to a flaw
that could result in a failure

et
w

Comparison

observed
failure

Behavior

UNIVERSITY: OF MASSACHUSETTS AMHERST- - DERARTMES

CMPSCI520/620

FHtie Approaches

= Static Analysis
=the static examination of a product or a representation of the
product for the purpose of inferring properties or
characteristics
=Dynamic Analysis
=the "interpretation” of a product or representation of a product
for the purpose of inferring properties or characteristics
= Testing
=the (systematic) selection and subsequent "execution" of
sample inputs from a product's input space in order to infer
information about the product's behavior.
=usually trying to uncover failures
=the most common form of dynamic analysis
=Debugging -- the search for the cause of a failure and
subsequent repair

UNIVERSITY. OF MASSACHUSETTS AMHERST - DERPARTH

COMPUTER Validation and Verification: V&V

=Validation -- techniques for assessing the quality of a
software product
=Verification -- the use of analytic inference to (formally) prove
that a product is consistent with a specification of its intent
=the specification could be a selected property of interest or it
could be a specification of all expected behaviors and qualities

=e.g., provide a user-friendly and efficient ATM system for remotely
depositing funds into and withdrawing funds from a checking or
saving account

=e.g., all deposit transactions for an individual will be completed
before any withdrawal transaction will be initiated

=a form of validation
=usually achieved via some form of static analysis

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPAT

©Rick Adrion 2003 (except where noted)

COMPUTER Analysis

=

Testing

Dynamic Analysis
Static Analysis
Comparison

\ observed

Behavior

inferred

UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERARIM

COMPUTER Correctness

=a product is functionally correct if it satisfies all the
functional requirement
specifications
=correctness is a mathematical property
srequires a specification of intent
sspecifications are rarely complete
=a product is behaviorally correct if it satisfies all the
specified behavioral requirements
sdifficult to prove poorly-quantified qualities such as user-
friendly

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPA.

CMPSCI520/620

EOMPUTER Reliability

=measures the dependability of a product
=the probability that a product will perform as expected

=sometimes stated as a property of time
e.g., mean time to failure

=Reliability vs. Correctness
=reliability is relative, while correctness is absolute

=given a "correct" specification, a correct product is
reliable, but not necessarily vice versa

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

CONPUTER Formal models

=Analysis is usually done on a model of an artifact
stextual representation of the artifact is translated into a
model that is more amenable to analysis then the
original representation
sthe translation may require syntactic and semantic
analysis so that the model is as accurate as possible
=e.g., x:=y + foo.bar
=model must be appropriate for the intended analysis
=graphs are the most common forms of models used
=e.g., abstract syntax graphs, control flow graphs, call
graphs, reachability graphs, Petri nets, program
dependence graphs

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER
)SCIENCE

Robustness

=behaves "reasonably" even in circumstances that were
not expected
=*making a system robust more then doubles development
costs
=a system that is correct may not be robust, and vice
versa

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPfA::,

COMPUTER
)SCIENCE

Modeling intent & artifacts

=natural language
= structured natural language
= pictorial notation
=Charts, Diagrams, Box-and-Arrow Charts
=Graphs
= Flowgraphs ‘
=Parse Trees @

=Call graphs ‘
= Dataflow graphs b .
=data models o observed

=formal language(s)
=state-oriented
=function-oriented
=object-oriented inferred

Behavior

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

COMPUTER |deally want general models

=different languages
" e.g.,, Ada, C++, Java
=different levels of abstraction/detail
= e.g., detailed design, arch. design
= different kinds of artifacts
=e.g., code, designs, requirements

translate textual representations

O,

O

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPAF;‘:_

©—> translator(s)

COMPUTER

= For all execution sequences, is P true?
=if P is true for all paths, then P is true
=if P is true for some paths, then P may
be true or false
= Paths where P is not true may not be
feasible
= For some execution sequence, is P
true?
=if P is true for some path, P may be true
or false
= the path where P is true may or may not
be feasible
= Conservative analysis would only say P
is true if is known to be true for all paths

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPAﬁ

©Rick Adrion 2003 (except where noted)

seievee Conservative analysis in CFG

COMPUTER Static analysis

stypically conservative
=never declare a property to be valid if it is not

=usually achieve this by using representations that over-
estimate actual behavior

sthe representation depends on the analysis
=AST is a conservative representation for
=determining all the operators in a program
=determining all the locations where X is defined
=CFG is a conservative representation for
=Determining how many loops are in the program
=determining how deeply nested each loop is

UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERARIM

CONPUTER Example with an infeasible path

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPA;_

CMPSCI520/620

CONPUTER Dynamic analysis techniques

=draw inferences from a sample
of the problem domain
*how do we choose that subset?
=Fault detection may depend
upon
=Specific combinations of
statements, not just coverage
of those statements
=Astutely selected test data that
reveals the fault, not just test
data that executes the path

UNIVERSITY: OF MASSACRUSETTS AMHERST. = DEPAF‘\TMENTE@

“"{‘.‘;‘i{'ﬂé‘;‘ Reviews, Inspections, and Walkthroughs

=Manual static analysis methods

=Most can be applied at any step in the
lifecycle

=Have been shown to improve reliability, but
=often the first thing dropped when time is tight
slabor intensive

=often done informally, no data/history, not
repeatable

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPAF‘\TMENTE:'

©Rick Adrion 2003 (except where noted)

FHtie Approaches

=Static Analysis =Dynamic Analysis
=Inspections =Assertions
=Software metrics =Error seeding,
=Symbolic execution mutation testing
=Dependence Analysis =Coverage criteria
=Data flow analysis =Fault-based testing

=Software Verification =Specification-based
testing

=Object-oriented testing
=Regression testing

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘\TMENTE@E

COMER Reviews in the RUP

Architectural Describe Describe
Design Concurrency ~ Distribution

[T setecia

Architect (oD

D Use-Case
Analysi
BDEED Use-Case

Designer Design

Subsystem
Design

_ g
S -

Database E=m
Designer

UNIVERSITY- OF MASSACHUSETTS AMHERST. - DEPABIMENT,

10

CMPSCI520/620

“"E‘!;'i%'.}&'é Reviews, Inspections, and Walkthroughs

=Formal reviews

=author or one reviewer leads a presentation of the
product

=review is driven by presentation, issues raised
=Walkthroughs
=usually informal reviews of source code
sstep-by-step, line-by-line review
=|nspections
ulist of criteria drive review
=properties not limited to error correction
=historical context

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

“"ﬂg'iﬂﬁ'é Fagan Inspections (3-5 participants)

= Moderator
=Responsible for organizing, scheduling, distributing materials,

and leading the session
5
= Author Q:
=Responsible for explaining the product

&
= =/)
SN
= Scribe /K >
=Responsible for recording bugs found _’\\\‘ i
S~ X

=Planner or designer
= Author from a previous step in the software lifecycle
= User representative
=To relate the product to what the user wants
= Peers of the author
=Perhaps more experienced, perhaps less
= Apprentice
= An observer who is there mostly to learn

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER
)SCIENCE

Review methods

=Fagan inspections
=formal, multi-stage process
=significant background & preparation
=led by moderator
= Active design reviews
=also called "phased inspections"”
=several brief reviews rather than one large review
=guided by questions from the author
=Cleanroom
=more than reviews, but reviews important component
=we’ll come back to this
= N-fold
=parallel reviews controlled by moderator
=focuses on user requirements

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPfA:

COMPUTER
)SCIENCE

Fagan Inspection Process (5 steps)

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

11

CMPSCI520/620

COHNE! Fagan Inspection Process

=Planning A—M =Preparation

=Gather materials and insure = Participants study material
that they meet entry criteria Inspection
-Arrange for participants, =Find/Report faults (Do not
* assign them roles, discuss alternative
= insure their training solutions)
=Arrange meeting =Rework
*Overview = Author fixes all faults
=explain corNgnt to the g
inspectors =Follow-Up

=Team certifies faults fixed

author(s) and no new faults

introduced

UNIVERSITY. OF MASSACHUSETTS: AMHERST +-DEP

CONPUTER Experimental Results
=using software =|BM study
inspections has =doubled number of
repeatedly been lines of code produced
shown to be cost per person
effective =some of this due to
. inspection process
"increases front-end sreduced faults by 2/3
costs sfound 60-90% of the
=~15% increase to faults
development cost =found faults close to
=decreases overall cost when they are

introduced
= helps reduce cost

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER Fagan Inspection

=General guidelines
=Distribute material ahead of time

=Use a written checklist of what should be
considered

=e.g., functional testing guidelines
=Criticize product, not the author

UNIVERSITY-OF MASSACRUSETTS:AMHERST 3Dt

COMPUTER
e People Resource vs. Schedule
PEOPLE .
‘ INSPECTIONS
o _
|5 / WITH
oG / INSPECTIONS
L g e
Al |U| A ;4 2
Ny RI I3 | \\\
NoE! Z
M " / \
(NBI El [: .
I NI) / / ~
I Tl P | ~
'S , |
, , /
| | | | |
DESIGN CODING TESTING ———— SHIPl
SCHEDULE

UNIVERSITY- OF MASSACHUSETTS AMHERST- - D.g

12

CMPSCI520/620

CONPUTER Why are inspections effective

=knowing the product will be scrutinized causes
developers to produce a better product

=having others scrutinize a product increases the
probability that faults will be found
=walkthroughs and reviews are not as formal as
inspections, but appear to also be effective
=hard to get empirical results

UNIVERSITV: OF MASSACHUSETTS- AMHERST. % -DER/

CONPUTER Cleanroom

Processes
Work Products

Specification
Function Usage

Functional Specification

Incremental
Development

, Planning s

Incremental

Development Plan Usage Modeling
Test Case Generation
— COdes _ , e
St

atistical Testing
-— Failure Data

Usage Specification

Improvement Feedback

Measures of Operational Performance

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DER)

©Rick Adrion 2003 (except where noted)

COMPUTER

<eieice What are the deficiencies?

=focus on error detection

=what about other "ilities" --
mtalntenance, portability,
etc.

=not applied consistently
& rigorously
=inspection shows statistical
improvement, but cannot
ensure quality
=inspection should have the
same results without regard
to the product to which it is
applied or the inspection
team
=range of errors not
addressed
=team expertise limited
=one property may have
many error modalities

UNIVERSITY-OF MASSACHUSETTS AMHERST 3-DE

=human intensive and
often makes ineffective
use of human resources
=e.g., skilled software
engineer reviewing coding
standards, comments
spelling, etc.
=no automated support
=again inefficient of human
resources
=aspects of review not
used appropriately
=e.g., in Fagan process,
overview often covers what
should be described if
documentation is adequate

COMPUTER

seieNeE Incremental development of a small system

Regquirements

Top Level Specs

Incremental

Development Plan Customer/User
I Feedback ’

I |

Increment
-~ Sign on/off
- setup

Increment 2
-~ Sign on/off

T New i —
Bl Reused
B Stubbed

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

Complete system

Incremen

« Panel navigation Increment 4
« Primary functions

« Panel navigation
« Primary functions
+ Secondary functions

13

CMPSCI520/620

COMPUTER

black box

SSS...S
state box
S
clear box
State Data
S +
Procedure

UNIVERSITY: OF MASSACHUSETTS: AMHERST .

seience Box structure method

r FUNCTION

PROGRAM

CONPUTER Markov Analysis

= number of statistically typical (i.e.,
likely) usage paths through the
software

= long-run occupancy (i.e.,
percentage of total usage time) in
each state

= expected number of events in a
test case

= expected number of test cases
before a given usage state occurs

= expected number events between
any two states

= expected minimum number of test
cases required to cover all states
in the model

= expected minimum number of test
cases required to cover all
transitions in the model

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

= Factors =Steps

=prune the specification,
=gauge complexity,
=focus verification efforts,

= identify the likelihood of given
events,

=project the test schedule, and

= ascertain the (affordable)
upper bound on inferences
about reliabilit

COMPUTER Verification as Review Process

=team verification of correctness takes the

place of individual unit testing [£]
=team applies a set of correctness do
questions (91
=correctness is established by [h]
group consensus if it is obvious od
=by formal proof techniques if it is not. .
= benefits For all inputs, does [g]
followed by [h] do [f]?

=intellectual control of the process
=motivates developers to deliver error-free
code
=verification is a form of peer review
=each person assumes responsibility for and
derives a sense of ownership in the evolving
product
=every person must agree that the work is
correct before it is accepted -> successes are
ultimately team successes, and failures are
team failures.

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEP--

CONPUTER Generation of Test Cases

= usage model->test cases
= may be automatically generated.

= each test case is a random walk through the usage model
= invocation->termination

= test cases constitute a "script" for use in testing

= may be applied by human testers, or used as input to an automated test tool.

= Stopping Criterion for Testing
= goals (e.g., target level of estimated reliability) are achieved
= or quality standards (e.g., errors/KLOC) are violated

= Statistical Hypothesis Testing

Confidence level (%)

90 95 99 99.9

0.9 2 29 44 66

Reliability 095 45 59 90 135
level (r) 0.99 230 299 459 688
0.999 2302 2993 4603 6905

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

14

CMPSCI520/620

COMPUTER

seienice Software Metrics

=measures that predict qualities about software

=can be applied to any of the products (e.g., design, code,
test cases) or to the process (e.g., Capability Maturity
Model)

= Qualities measured by software metrics
=performance
=user-friendliness
=resources
=memory/storage
=development costs
=maintenance cost
=quality
=maintainabity
=reliability
=completeness
= consistency
= complexity

UNIVERSITY: OF MASSACRUSETTS AMHERST - DEPA

COMPUTER

seience More Quality Metrics

=Modularity
=cohesion metric

=applied to unit design
=the relationship among the elements of a module
=best cohesion level is functional, and the worst is
coincidental.

=Cruickshank and Gaffney Cohesion Strength
Strength = V(X2 + Y?2)
=where:
=X = reciprocal of the number of assignment statements in
the module
=Y = number of unique function outputs divided by number of
unique function inputs

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER H H
seienee Function Points
= proposed by Albrecht in 1979 ' Weightssi mple Average Complex
= Originally applied to code wi 3 4 6
=UFP = w2 3 5 7
number of inputs x w1+ w3 3 4 6
number of outputs x w2 + w4 7 10 15
number of user inquiries x w3 w5 5 7 10

number of files x w4 +
number of external references x w5
=function points = UFP* TCA = UFP* (.65 + 0.01 * SUM(Fi))
=where the degree of influence, DI= SUM(Fi) is the sum of
complexity adjustment values, Fi

=metrics:
=productivity: FP/person-month
=quality: defects/FP
=cost: $/IFP

UNIVERSITY-OF MASSACRUSETTS-AMHERST - ERA

COMPUTER More Quality Metrics

= Modularity
=coupling
= applied to system and unit designs
= measure of the degree to which modules share data
= data coupling (the sharing of data via parameter lists)

is the best type of coupling, while common coupling
(the sharing of data via global or common areas) is

the worst. =
= a lower coupling value is better. E Z
= Cruickshank and Gaffney Coupling: Coupling = =L

= M; = sum of the number of input and output items)
shared between components i & j i

= Z; = average number of input and output items S%%gdve. E Mr.
over m components with component i =z =1

= n = number of components in the software product !

ke

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEF?

15

CMPSCI520/620

COMPUTER McCabe’s cyclomatic complexity

=Complexity measured by control flow information
=based on a control flow graph where e is number of
edges, n is number of nodes, p is number of
connected components
=McCabe’s Cyclomatic Complexity:
sv=e-n+2
=where:
=v = complexity of the graph
=e = number of edges (program flows between nodes)
=n = number of nodes (sequential groups of program
statements)
=if a strongly connected graph is constructed (one in
which there is an edge between the exit node and
entry node), the calculation is
sv=e-n+1

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER Software Science

= Halstead applied information theory to computer science
= metrics
n, number of distinct operators
», number of distinct operands
N, total number of occurrences of operators
N, total number of occurrences of operands
= program level estimator
D =1L =0,12) (N, 0,)
L =1 D =@) 0y W)

difficulty increases as operators are introduced (n, 12 increases) and as
operands are used repetitively (N, I n, increases)

= programming time
T=EIS
where (§ is the “Stroud number”
5< .6 <20, usually 18

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

480 Example

‘ —
O o

C=10-8+ 2=4

O

<,

UNIVERSITY-OF MASSACRUSETTS AMHERST: DERA

CONPUTER Software Science (continued)

=language level

7\4 = J x V* = J’V*
Ap =153, g =121,
7‘F0rtran = 1‘14= ACDC assmblr 0.88

=predicted effort
&=V N2

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

16

CMPSCI520/620

CONPUTER Quality Metrics for Code

=Understandability
=size metrics
=lines of code
=function points
=function count
straceability metrics

=percent comment lines of total lines
=correctness of comments

=Predicting quality

UNIVERSITY: OF MASSACHUSETTS AMHERST:

©Rick Adrion 2003 (except where noted)

=number of comment lines per total source lines of code

=LOC X domain seems to be the most reliable predictor

17

