CMPSCI520/620

COMPUTER
SCIENCE

22- Design: RUP

Rick Adrion

UNIVERSITY. OF MASSACHUSETTS:AMHERST 4"

CONPUTER So Where Are We?

[T sctiecira

Architect (oD

Architectural Describe

Designg, Concurrency ~ Distribution

Describe

Review the Architecture
Architecture ~ Reviewer

Subsystem
Design

Use-Case
Analysis

Designer

Class
Design

Use-Case
Design

o
»

Design Design
Reviewer

Database
Designer

O \
S TS

Database
Design

UNIVERSITY OF MASSACHUSETTS AVMHERST: '

©Rick Adrion 2003 (except where noted)

FHtie Grading

=*Homework 45%
= Average of 4 assignments
=Project 45%
=Project #1 = report (50%) + presentation (50%)
= Project #2 = report (80%) + questions (10%) + interviews (10%)
= Project #3 = report (50%) + review (50%)
= Project = average of #1-#3

=Class participation 10%

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

COMPUTER Design Element Interactions
scieNeE (Register For Courses - Set-Up)

1; registerForCours

2: open()

: new(SecureUser’

No Conflict™,

4: lgokup(’ i i antroller”)
5 i Jser)

6: selectClrriculum()

9: gett

; l\ : MainStuden| : Maintain : Registration |ClientSchedulg| : Naming | : RemoteRegistrati : ICourse
. Form ScheduleForr Controller : Schedule Controller Catalog
: Student —_— _— —_— _—

es()

10: displayOfferings()

1er)

12: displaySchedule()

Give current User conte:
wide open access

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

semester)

CMPSCI520/620

Register for Courses

<<boundary>>
MaintainScheduleForm

<control>>
ionController

0%';&%';‘ Design Classes Relationships

RemoteRegistrationController

(from

[displayOfferings()
selectCurriculum () : Curriculum
selectOffering() : CourseOffering
save()

lcancel()

lupdate(changeditem : ISubject)
ldisplaySchedule()

etsched T Sat
le(sched : Schedule)

UNIVERSITY: OF MASSACHUSETTS AMHERST 4 DERARTIA

+ getOfferings (curriculum)

+ notifyOfferingSelection offering : CourseOffering)

N

 Schedule)

<<Interface>>

COMPUTER More steps

=Annotate the sequence diagrams

: Actort

1: Do Something,

Scripts can be used to
. — describe the details
Script surrounding these
messages.

Notes can include
more informatior

Note—F|about a particular

diagram element
=Unify classes & subsystems
=*merge similar model elements

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ - DERARTI 3]

©Rick Adrion 2003 (except where noted)

2:Do Something Mg

=use inheritance to abstract model elements

st

o

MPUTER
‘smgm:i Deployment

Subsystem Interface

1

10: displayOfferings|():

11: new

: MainStuden| : Maintain : Registration| |ClientSchedule| : Namin { Course
. Form ScheduleForr Controller : Schedule Controller log
: Student
registerForCourses()
2: open()
: new(SecureUser)
4: lgokup(’ antroller")
5 Jser)
6: selectClirriculum()
7: getOf
8: getO!

((Student)

12: displaySchedule()

9: gett i i semester)

Cache will notify when Coul
has been retrieved

Works similar to Observer. ﬁ
se

~
Client

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTIN

COMPUTER
)SCIENCE

So Where Are We?

[T sctiecia

Architect (oD

Architectural _ Describe
Design

Concurrency

Review the Architecture
Architecture ~ Reviewer

Describe
Distribution

Use-Case
Analysis

Designer

Subsystem
Design

Use-

-Case
Design

IS 5

Review the
Design Design
Reviewer

Database
Designer

Database
Design

UNIVERSITY- OF MASSACHUSETTS AMHERST - DERARTM 3]

CMPSCI520/620

CONPUTER Subsystem Design Overview

Design Subsgystems and Inteffaces

Use-Case Realization \ Use Case Realization

Design Classes

UNIVERSITY: OF MASSACHUSETTS AMHERST. ~

CONPUTER Interface and Subsystem

=\What is an interface?

=a model element which defines a set of behaviors (a set
of operations) offered by a classifier model element
(specifically, a class, subsystem or component)

=What is a subsystem?
=Contains other model elements and has behavior
=Realizes one or more interfaces
1

) <<Ilnterfaoe>>l <<subsystem>>
FinancialTransaction Q-rgaﬂz@y' Finance System

1

<<subsystem>>

O_ Finance System

Financial
Transaction
Recall: packages provide no behavior; they are simply containers of things which
provide behavior

UNIVERSITY OF MASSACHUSETTS AVMHERST: 'él'

©Rick Adrion 2003 (except where noted)

COMPUTER Subsystem design

=we have

=defined the subsystems, their interfaces, and their
dependencies

=made an initial cut at some design classes, which have been
allocated to subsystems

=identified components or subsystems: “containers” of complex
behavior that, for simplicity, we treat as a ‘black box’.

=in Subsystem Design, we look at
=responsibilities of the subsystems in detail

=defining and refining the classes that are needed to implement
those responsibilities

=refining subsystem dependencies, as needed

=internal interactions are expressed as collaborations of
classes and possibly other components or subsystems

UNIVERSITY-OF MASSACHUSETTS AMHERST: ~

““ﬂ-ﬂ'ﬁﬁ'ﬁ Distribute Subsystem Responsibilities

=|dentify or reuse existing classes and/or subsystems
= Allocate subsystem responsibilities to classes and/or
subsystems
=Incorporate the applicable mechanisms (e.g.,
persistence, distribution, etc.)
=Document collaborations with “interface realization”
diagrams
=1 or more sequence diagrams per interface operation
=Revisit Architectural Design

=Adjust subsystem boundaries and/or dependencies, as
needed

UNIVERSITY- OF MASSACHUSETTS AMHERST: :

CMPSCI520/620

COMPUTER
SCIENCE

Subsystem design

Subsystem Interface

: ICourse
Catalog

COMPUTER
SCIENCE

Local Subsystem Interaction

; l\ : MainStuden| : Maintain : Registratiof CIientScheduIH :Namind \ - RemoteRegistratif
- Student Form ScheduleForr Controller : Schedule Controller
es()

UNIVERSITY: OF MASSACHUSETTS! AMHER:é.

1; registerForCours
2 open() Flesh out
: new(SecureUser)
4: lgokup(’ antroller”)
5 Jser)
6: selectClrriculum()
7: getOf
8: getO!
9: gett i i semester)
10: displayOfferings()
11: new(Student)
12: displaySchedule ()
— A
~ H—J
Client Server

CourseCatals : CourseCatalo : DBCours _Course ||: RDBMSTransaction| sql ‘ :CourseOfferjn
Client Offering Offering List
1: getCourseOfferi untyped object because See Maciaszek - n
we dont care who the time t6 discuss DB
. client ig. :
The string represepts //' 2 desig
some criteria. P ‘new
i .
Sometimes a more 3: start() \
robust solution witk 4 T
a query object is ~4o_ : startTrans(
used. == ~5: getCourseO! 6: new()
6: bind()

7: execsql(String)

P

10: i nunj

()

ber, startTime, endTime, days, coyrseld)

e 11: add (GourseOffering)

Do until fet = .
returns Not Get attribute values oo B fetoh() RDBMS
Found status from raw data Retrieve

CourseC:

12: commit()

13: entTrans(

%

*“looks insjde” the subsystem

COMPUTE Document Subsystem Elements

List
(from Base Reuse)

(from Universit

ifacts)

(from University

=

+ getCourseld()

+ getNumStudents
&

UNIVERSITY- OF MASSACHUSETTS AMHE!

+ update()

©Rick Adrion 2003 (except where noted)

create one or more class ROBMSTransaction
X X (fram DEM:
diagrams showing the
. + start()
elements contained by the 0.+ commit)
f |+ rollback()
subsy_ste_m, an(_j their + hew() _
associations with one 1 sl
another - N (from Relati)
DBCourseOfferin
O CourseCatalof + bind()
1 10+ getCourseOfferings() + execsql()
ICourseCatalog + getOfferings () + parseResults() + startTrans()
. 7 + commit()
~eo + fetch()
ol 0.* +endTrans()
<<entity>>
CourseOffering

N + addStudent() A state diagram may be
<<bihd>> + new()
<CourseOffering> + getNumber() need_ed to document the
A+ getStartTime () possible states the
17|+ getEndTime()
CourseOfferingList + getDays() subsystem can assume

*one or more per subsystem

UNIVERSITY-OF MASSACHUSETTS: AMHER:

<<subsystem>>
Client Support

]

UNIVERSITY- OF MASSACHUSETTS AMHERS

=Subsystem layering using direct dependency

<<subsystem>>
Server Support

]

=Subsystem layering using interface dependency

CONPUTER Describe Subsystem Dependencies

Not

recommended

<<subsystem>> <<subsystem>>
Client Support |-----------= (")—————| Server Support
Server More
flexible
Client <<Interface>>
(from Client Support) ~ f============= >| Server

CMPSCI520/620

COMPUTER P H COMPUTER
seieice Describe Subsystem Dependencies seieice SO Where Are We?
— — 5 0
<<subsystem>> '_'. E
. P Y D Architectural Architectural Describe Describe Review the ~ Architecture
Registration ICourseGatalog CourseCatalog T Analysis Design Concurrency Distribution || Architecture ~ Reviewer

L . o — i
N U Use-Case Subsystem e
AN Analysis Design Use-Case Design Design
i H A - Revi
University \ Designer Design eviewer
Artifacts AN
N
N Class
N N

Y Design

\
RelationalDBMS 5 \.

Database

Database E=m

Designer

UNIVERSITY: OF MASSACRUSETTS: AMHEF&: UNIVERSITY-OF MASSACRUSETTS:AMHERS

FIVE! Describe Concurrency Overview CNIVER Modeling Processes

=Processes may be modeled using

=Active classes (Class Diagrams) and Objects
(Interaction Diagrams)
= “owns” it's own thread of execution and can initiate control activity
= may execute in parallel (i.e., concurrently) with other active classes.

<<stereotype>>
— Name [Erocesst.oxe]
Process Model

SSuPpepcl;rE::;irsy =Components (Component Diagrams)
% <<stereotype>>‘4/ <<stereotype>> can be

« the independent threads of control are Component Name <<process>> or <<thread>>

identified and the identified model elements
(subsystems and classes) are mapped to . . .
these threads of control. Relationships

<<stereotype>> | _ _ N <<stereotype>>
Name Name

UNIVERSITY- OF MASSACHUSETTS. AMHEFt UNIVERSITY- OF MASSACHUSETTS, AMHEFL

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

CONIVER Modeling Processes:

Class Diagram

<<thread>>

COMPUTER Processes

= The classes associated
with the individual user

Mapping Design Elements to

<<process>>

MainStudentForm

ident Interface)

<<process>>
CourseCatalogSystemAccess,

T
dependency\

<<process>>
CourseRegistrationProcess
T

/
.
,

<<process>>
StudentApplication

CourseCache

> composition

<<thread>>
1 OfferingCache

CourseCache and OfferingCache
are used to asynchronously
retrieve items from the legacy
system. This will improve
response time.

UNIVERSITY: OF M ASSACHUSETTS: AMHER!

CONPUTER So Where Are We?

[T sctiecira

Architect (oD

Architectural Describe t
Design Concurrency Distribution | [Architecture ~ Reviewer

o
- [/

Review the Architecture

Describe

Use-Case
Analysis Design

Designer

Class
Design

Subsystem

o
»

Design Design
Reviewer

Use-Case
Design

Database
Designer

Database
Design

UNIVERSITY- OF MASSACHUSETTS AMHER!

©Rick Adrion 2003 (except where noted)

interfaces were mapped to
the application processes.

= The classes associated p— <<control>
with the individual RegttonContoler
business services were
mapped to the controller
processes.

= The classes associated <<process>>
with access to the external
systems were mapped to
the access processes

= For the threads,
composition is used to
show what design
elements have been
mapped to them.

(from Registration)

| c<subsystem>>
CourseCatalog

(trom Proxy
due to Rose

UNIVERSITY-OF M ASSACHUSETTS - AMHER!

COMPUTER Describe Distribution Overview

==
EE

==/g
Process Model \ D\D/D

=]

Implementation Model

Deployment Model

UNIVERSITY- OF MASSACHUSETTS AMHER!

CMPSCI520/620

CONPUTER Why Distribute?

=Reduce processor load

=Scaling concerns
=Economic concerns
=Distribution Patterns
=Client/Server

= 3-tier

=Fat-Client

=Web Application

=Distributed Client/Server

=Peer-to-peer

UNIVERSITY: OF MASSACRUSETTS AMHERST 5

=Special processing requirements

““ﬂ-ﬂ'ﬁﬁ'ﬁ Deployment Model Modeling Elements
=Node
=Physical run-time computational resource [<<Node>>
=Processor Node #1
=Execute system software
=Device
=Support devices <<Processor>>
=Typically controlled by a Processor Processor#1
=Connection
=Communication mechanisms c‘,kecﬁon
=Physical medium
=Software protocol <<Device>>
Device #1

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

CONPUTER Distribution patterns

= Common services
= Presentation Services
= Ul including, the visual appearance of output and how user input is handled
=Business Services
= Business rules and logic
=Data Services
= Data relationships, efficiency of storage, and data integrity
= Patterns
=One-Tier
=Two-Tier
= Fat Client -- client has its presentation and business services; server has
the data services
= Thin Client -- client has the presentation services; server has the business
and data services
=Three-tier
= client has presentation services; server has business services; separate
(logical) server has data services.
=\Web-tier
= client accesses a web server that at least handles presentation services;

web server may have its own business and data services or it may utilize
one or more servers that handle business and data services

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

COMPUTER .
seieice Deployment Diagrams
<<Node>>
Node #1
% Component J| Object
\\ Process-1
. Process-2
<<connection type>> .
Connection N
<<Node>> .
Node #2 kY
Component _C)
Interfade
Process-1
Process-2

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

CMPSCI520/620

FOENE! Process-to-Node Allocation

Dial up access
_|and behind
.7 |campus firewall

Desktop PC|

External
Desktop PC|

<<Campus LAN:

StudentApplication
ProfessorApplication
RegistrarApplication

StudentApplication

<<Internet: - -
Registration
erver

<<Campus LAN>;

<<legacy>>
Bill?ng
System

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

<<legacy>>
Course
Catalog

UNIVERSITY: OF MASSACRUSETTS AMHERST 5

COMPUTE Design Distribution Pattern: Proxy

SomeForm || : ProxyDistribute : Naming : RemoteTimecard
Controller Controller

Lookup("RemoteTime: ardComroIIer")ﬁ

1: new(SecureUser)
2: lookup(String

The connection between the!
proxy and remote controller
is established when the
proxy controller is created

3: new()

4: setSessian(SecureUser) The current user context is

————— -~} passed to the server for later
access checks

5: DoSomething

6: DoSomething

All calls to the proxy controller are
forwarded to the remote controller

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

COMPUTER Design Distribution Pattern: Proxy

<<{tility>>
Naming
(frorh java.mi)

RemoteDistributedController

ProxyDistributedController
 —

+currentUs
1 <dInterface>> 1
JecureUser
(from Secure Interf:
<<controller>>
RegistrationControlle! 1 k 0..1] RemoteRegistrationControllel
from Student Activities) from Student Activities'

«Iient serv

secure user instance is created
on the client and passed to the
server when the remote
controller is created

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

COMPUTE The Rational 4+1 Views

g8 ’/!
\.//. N //’
design implementation
view view

Classes, interfaces,
collaborations

i 7& Components

Dynamics
Interaction
State machine

3

Organization Use cases

Package, subsystem Use -Case

View

ey
a

AN //i
g

process

g deployment
view

view

Active classes

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

CMPSCI520/620

CONNINER Affect on Process Model Associations “Xiiiet So Where Are We?

e
CIENCE
<<process>> _ <<process>>
StudentApplication| 1 R ontrollerProcess O
— [T setiecira
1 “anaiyss

Architect

MainStudentForm
dent Interface) \ / (

Use-Case
Analysis

Designer

o
—» [/

Review the Architecture
Reviewer

Architectural Describe Describe
Design Concurrency Distribution | | Architecture

L
L. ﬁ

Review the

Design Design
Reviewer

Subsystem
Design

Use-Case
Design

0.
<<boundary>>
MgintainScheduleForm
(from Student Interface)
Design

Class
e ——
1
1
Database

<<control>> <<control>> Do Design
RemoteRegistrationContfoller Designer
{fmm Student Activities)

UNIVERSITY-OF MASSACHUSETTS AMHE! 5

UNIVERSITY: OF MASSACRUSETTS: AMHEF&:

COMPUTER Class Design COMPUTER Class Design Overview

N « ensure that the classes provide

=N the behavior the use-case
realizations require

« ensure that it is straightforward
to implement the classes

D « handle non-functional

Design ocument requirements related to classes

«incorporate the design

mechanisms used by the

classes

Architectural Design
decide what the infrastructure is (the pieces/parts of the architecture, =N @
if you will, and how they interact) |'O Q
Use Case Design
define responsibilities of the system are allocated to the pieces/parts
Subsystem and Class design
detail the specifics of the pieces/parts.
= Class Design

Architecture

Analysis Classes

Supplementary Guidelines

Specifications

=take into account the implementation and deployment environments _2>
= adjust the classes to the particular products in use, the programming {
languages, distribution, adaptation to physical constraints (e.g. Se--
limited memog), performance, use of component environments such Use-Case Realization
as COM or CORBA, and other implementation technologies

=performed for each class in the current iteration. Design
%é) Classes

Design Model Use-Case Model

UNIVERSITY- OF MASSACHUSETTS, AMHEFL__

UNIVERSITY- OF MASSACHUSETTS. AMHEFt

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

COMPUTER How Many Classes Are Needed?

=Many, simple classes means that each class
=encapsulates less of the overall system intelligence
=is more reusable
uis easier to implement

=A few, complex classes means that each class

=encapsulates a large portion of
intelligence

uis less likely to be reusable

=is more difficult to implement
=A class should have a single well

=a class should do one thin

=how does this relate to earlier suggestion that
classes have multiple responsibilities?

Class should have multiple
responsibilities

«Actions that object can perform
+Knowledge object maintains
<Non-functional requirements

UNIVERSITY: OF MASSACHUSETTS: AMHERST .

COMPUTER Designing Entity Classes

=Entity objects are often passive and persistent
= Performance requirements may force some re-factoring

Analysis View

<< entity >>
EaiCl

Design View

EalC)

1
1

- transientBookeeping ! -

& CommoniyUsedAtty ; getSommorUsedaut)

+ commonlyUsedAtt2 1 + getCommonlyUsedAtt2

+ rarelyUsedAlt3 . + gelRarelyUsedAlid()

i1 | + QiR
1
1
1

relyUsedAlid IyUsedAlta|

+ rarelyUsedAlt3
+ra edAlt4

+commonlyUsedAtt1
+ commonlyUsedAtt2
———

UNIVERSITY- OF MASSACHUSETTS AMHERST--+

©Rick Adrion 2003 (except where noted)

CONPUTE Designing Boundary Classes

See Maciaszek - no

=User interface (Ul) boundary classes— fime to disouss Ul
i X lesign
=What user interface development tools will be used?

=*How much of the interface can be created by the
development tool?

=“Reverse Engineering”
=External system interface boundary classes
=Usually model as subsystem

MainWindow SubWindow
MainForm T /_T_
Button DropDownList

UNIVERSITY-OF MASSACHUSETTS AMHERST 3"

CONPUTE Designing Control Classes

=\What Happens to Control Classes?
=Are they really needed?

=if just “pass-throughs” from the boundary classes to the
entity classes, they may be eliminated.

=Should they be split?
=*might depend on distribution, e.g., proxy-remote
=Control classes may become true design classes for
any of the following reasons:

sthey encapsulate significant control flow behavior,

sthe behavior they encapsulate is likely to change

sthe behavior must be distributed across multiple
processes and/or processors

sthe behavior they encapsulate requires some transaction
management.

UNIVERSITY- OF MASSACHUSETTS AMHERS

10

CMPSCI520/620

COMPUTER
SCIENCE

Operations

=Messages displayed in interaction diagrams

:ClassA :ClassB

|
|
/| Perform resgorismlllty - | performResponsibility(): result
I
|

classA m

" Implement rules every class should have:
__Student *Manager functions
- g:trgg f:BSirEtrr!n?Date « Implementor functions
*Access functions
*Helping functions

+ canEnroll() : Boolean
hasTakenPrerequisites() : Boolean
hasScheduleConflict() : Boolean

=Operations can lead to new class definitions

UNIVERSITY: OF MASSACHUSETTS! AMHER:

COMPUTER
SCIENCE

Identify and Define the States

Link to CourseOffering Link to CourseOffering Professor
Exists Doesn’t Exist
0.1
[Teaching] [On Sabbatical]
0.*
CourseOffering

= Significant, dynamic attributes
The maximum number of students per course offering is 10

numStudents < 10 numStudents >= 10

=Existence and non-existence of certain links

=explicitly define what it means to be in a particular state.

UNIVERSITY-OF- MASSACHUSETTS AMHERS

©Rick Adrion 2003 (except where noted)

COMPUTER Utility Classes

=What is a Utility Class?
=Utility is a class stereotype
=Used for a class that contains a collection of free

subprograms
=Why use it?
=To provide services that may be (re)useful in a variety of
contexts
=To wrap non object-oriented libraries or applications
<<utlty>> <<utility>>
MathPack sql
e s SecamenTo +bind()
+sin (angle : double) : double + execsql()
+cos (angle : double) : double + startTrans()
+random() : double + commit()
+ fetch()

+ getResults()

UNIVERSITY-OF MASSACHUSETTS: AMHER:

CONTENE! Identify the Events & Transitions

=Events

=One event may trigger the
sending of another event event "TayelObject event

=An activity can also send
an event to another object

=Transitions

=For each state, determine
what events cause
transitions to what states,
including guard conditions,
when needed

=Transitions describe what

happens in response to
the receipt of an event

State B

do: ATargetObject.event

event[cghdition] / action

State B
do: activity

UNIVERSITY- OF MASSACHUSETTS AMHERS

11

CMPSCI520/620

CONTENE! Add Activities and Actions

= Activities
=Associated with a state

sStart when the state is
entered

=Take time to complete
=Interruptible

event[cgndition]/ action

=Actions activity —
=Associated with a do: activit
transition

=Take an insignificant
amount of time to
complete

=Non-interruptible

UNIVERSITY: OF M ASSACHUSETTS: AMHER!

action

re

CONPUTER Statechart

addStudent

[]

Initialize Unassigned —o[__Open)
do: Initialize cours do: Assign professor entry: Register a J
object to course tudent
cancelCourse
cancelCourse
registration closed[Josed
registration close
Canceled numStudents <3 numStudents > = 3]
do: Send
notices
[numStudents = 10

cancelCourse Closed

=

RegistrationComplete]

do: Generate class
roster

CONTENE! Statechart with Nested States

superstate

»-

substate |

closed[
mStudents > = 3]
do: Assign professor to coyrse

Add student / numStudents =0

RegistrationCompletg
do: Generate class ro

er

Open

registration closed[
numStudents <

’—"entry: Register a student

[numStudents =10]

Closed

do: Report course is closed

cancelCourse

UNIVERSITY- OF MASSACHUSETTS AMHER!

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF MASSACHUSETTS:AMHERS' --

COENE! Example: Define Attributes

CourseOffering
- number : String = "100"
private to | |_ startTime : Time
support | |_ endTime : Time
encapsulation - days : Enum

/- numStudents : int: =0 derived attribute

+ addStudent(studentSchedule : Schedule)

UNIVERSITY- OF MASSACHUSETTS AMHERS

12

CMPSCI520/620

COMPUTER

seinee Associations & Dependencies

= association

=local visibility:

UNIVERSITY: OF MASSACHUSETTS: AMHERS

_—
A B >
—e
,,,,,,,,,,,,,,,,,, .

= visibility

= attribute (field) visibility: B is an attribute of A
= remains an association

=parameter visibility: B is a parameter of a method A
= becomes a dependency

B is a (non-parameter) local object in a method of A

= becomes a dependency
=global visibility: B is in some way globally visible
= becomes a dependency

Copyright © 1997 by Rational Software Corporation

COMPUTER

seinee Example: Composition

<<boundary>>
MaintainScheduleForm

<<control>>

RegistrationController

displayOfferings()
selectCurriculum() : Curriculum
selectOffering() : CourseOffering
save()

cancel()

update(changedItem : ISubject)
displaySchedule()

' getOfferings(curriculum)
'notifyOfferingSeIection(offering : CourseOffering
new(context : SecureUser)

saveSchedule(sched : Schedule)
cancelSchedule(sched : Schedule)

UNIVERSITY- OF MASSACHUSETTS AMHERS:

association relationship has

been refined into a composition
relationship.

MSF represents a session

RC never exists outside of session

©Rick Adrion 2003 (except where noted)

CONPUIER Define Dependencies

<<boundary>>
MainStudentForm
(from Student Interface)

+ registerForCourseg()

1

Global visibility -
Naming
o1 \ (from java fmi)
y - 7|+ lookup()
MaintainScheduleForm <<control>>
RegistrationController RemoteRegistrationController
displayOfferings () 1 1 |(from I i
selectCurriculum() : Curriculum getOfferings (curriculum)
selectOffering() : CourseOffer notifyOfferingSelection (offering : CourseO! rin“) getOfferings (curriculum)
save() new(context : SecureUser) + notifyOfferingSelection (offering : CourseOff
cancel() B + save B
update(+ ISubjgdt)
displaySchedule()

Field visibility /

-> association Schedule

=" Parameter visibility [<<interface>>
ICourseCatalog
-> dependency |(rom CourseCdtalog)

<<entity>>]

UNIVERSITY-OF MASSACHUSETTS AMHERST:

L I
/ 0.1 X X\ Local visibility

-> dependency

fering

COMPUIER Generalization (Inheritance)

= One class inherits from another

GroundVehicle Person
ancestor weight owner

licenseNumber |0..* 1

regisfer()

R{ generalization
Car Truck Trailer
decendent size tonnage [
getTax()

=not just finding common attribute, operations and relationships
= more about the responsibilities and essence of the classes.

= avoid “skyscrapers”; the hierarchies should look like small,
independent “forests

UNIVERSITY- OF MASSACHUSETTS AMHERST:

13

CMPSCI520/620

CONPUIER Review: What is Polymorphism?

=The ability to hide many different implementations
behind a single interface

Tube
<<interface>> - -
Shape W\--~
Pyramid

Draw Q """"""""
Move
Scale q~ ~<
Rotate Te-al - Cube

UNIVERSITYV: OF MASSACHUSETTS-AMHERS'

CONPUTER Define Generalizations

<<boundary>>
MainApplicationForm
(from GUI Framework)

7

LogonForm

rom GUI

<<boundary>>
MainStudentForm
from Student Interfacy

= 1
A 0.1

<<boundary>> <<boundary>>
MaintainScheduleForm ReportCardForm <<boundary>>
(from Student Interface) (from Student Interfacp)

l(from Professor Interfacd)

<<boundary>>

MainRegistrarForm 1 1
(from Registrar Interface)
1 0.1 0.1
1 1 <<boundary>> <<boundary>>
SelectCoursesForm SubmitGradesForm
0.0 0. 0.1 (from Professor Interface) |(from Professor Interfack)

» b I T
l(from Registrar Interface) | |from Registrar Interface) (from Registrar Interface)

UNIVERSITY- OF MASSACHUSETTS AMHE!

©Rick Adrion 2003 (except where noted)

Generalization to Support

CONPUTER Polymorphism

Animal

talk ()

Lion

talk ()

if animal = “Lion” then
do the Lion talk

else if animal = “Tiger” then
do the Tiger talk

end

UNIVERSITY-OF MASSACRUSETES: AMHER_é:

Tiger

talk ()

do the Animal talk

14

