
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

22- Design: RUP

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Grading

ßHomework 45%
ßAverage of 4 assignments

ßProject 45%
ßProject #1 = report (50%) + presentation (50%)

ßProject #2 = report (80%) + questions (10%) + interviews (10%)

ßProject #3 = report (50%) + review (50%)

ßProject = average of #1-#3

ßClass participation 10%

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Element Interactions
(Register For Courses - Set-Up)

Give current user context
wide open access

No Conflict

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

serverclient

Design Classes Relationships

1

MainStudentForm

+ registerForCourses()

(from Student Interface)

<<boundary>>

ICourseCatalog

(from CourseCatalog)

<<Interface>>

RemoteRegistrationController

+ getOfferings(curriculum)
+ notifyOfferingSelection(offering : CourseOffering)
+ saveSchedule(theSchedule : Schedule)

(from Registration)

1

1

Naming

+ lookup()

(from java.rmi)

RegistrationController

getOfferings(curriculum)
notifyOfferingSelection(offering : CourseOffering)
new(context : SecureUser)
saveSchedule(sched : Schedule)
cancelSchedule(sched : Schedule)

<<control>>

1

1

Schedule
<<entity>>

1

0..1

MaintainScheduleForm

displayOfferings()
selectCurriculum() : Curriculum
selectOffering() : CourseOffering
save()
cancel()
update(changedItem : ISubject)
displaySchedule()

<<boundary>>

1 1

0..1

0..1

0..1

View of Participating Classes (VOPC) diagram.

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

Register for Courses

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Deployment

Works similar to Observer.
Cache will notify when Course
has been retrieved

Give current user context
wide open access

No Conflict

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

Subsystem Interface

Client Server

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More steps

ßAnnotate the sequence diagrams

ßUnify classes & subsystems
ßmerge similar model elements

ßuse inheritance to abstract model elements

 : Actor1 : ClassA : ClassB

1: Do Something

2: Do Something More
Scripts can be used to
describe the details
surrounding these
messages.

Notes can include
more information
about a particular
diagram element

Script

Note

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Subsystem Design Overview

Use-Case Realization

Design Subsystems and Interfaces

Subsystem
Design

Use Case Realization

Design Subsystems and Interfaces

Design Classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Subsystem design

ßwe have
ßdefined the subsystems, their interfaces, and their
dependencies

ßmade an initial cut at some design classes, which have been
allocated to subsystems

ß identified components or subsystems: “containers” of complex
behavior that, for simplicity, we treat as a ‘black box’.

ß in Subsystem Design, we look at
ßresponsibilities of the subsystems in detail

ßdefining and refining the classes that are needed to implement
those responsibilities

ßrefining subsystem dependencies, as needed

ß internal interactions are expressed as collaborations of
classes and possibly other components or subsystems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interface and Subsystem

ßWhat is an interface?
ßa model element which defines a set of behaviors (a set
of operations) offered by a classifier model element
(specifically, a class, subsystem or component)

ßWhat is a subsystem?
ßContains other model elements and has behavior

ßRealizes one or more interfaces

<<subsystem>>
Finance System

Financial
Transaction

FinancialTransaction
<<Interface>>

realizes
<<subsystem>>
Finance System

Recall: packages provide no behavior; they are simply containers of things which
provide behavior

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Distribute Subsystem Responsibilities

ßIdentify or reuse existing classes and/or subsystems

ßAllocate subsystem responsibilities to classes and/or
subsystems

ßIncorporate the applicable mechanisms (e.g.,
persistence, distribution, etc.)

ßDocument collaborations with “interface realization”
diagrams
ß1 or more sequence diagrams per interface operation

ßRevisit Architectural Design
ßAdjust subsystem boundaries and/or dependencies, as
needed

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Subsystem design

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

Subsystem Interface

Client Server

Flesh out

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Local Subsystem Interaction
:CourseOffering
List

Do until fetch
returns Not
Found status

The string represents
 some criteria.
Sometimes a more
robust solution with
a query object is
used.

Get attribute values
from raw data

 : Course
Offering

CourseCatalog
Client

 : CourseCatalog : DBCourse
Offering

 : RDBMSTransaction : sql

1: getCourseOfferings(string)

5: getCourseOfferings(string)

9: parseResults()

10: new(offeringId, number, startTime, endTime, days, courseId)

2: new

3: start()
4: startTrans()

6: bind()

7: execsql(String)

8: fetch()

11: add (CourseOffering)

12: commit()
13: entTrans()

6: new()

CourseCatalog Interaction
•“looks inside” the subsystem
•one or more per subsystem

RDBMS
Retrieve

untyped object because
we don’t care who the
client is.

See Maciaszek - no
time to discuss DB
design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Document Subsystem Elements

CourseCatalog

+ getOfferings()

<<subsystem>>

sql

+ bind()
+ execsql()
+ startTrans()
+ commit()
+ fetch()
+ endTrans()

(from RelationalDBMS)

<<utility>>

RDBMSTransaction

+ start()
+ commit()
+ rollback()
+ new()

(from RelationalDBMS)

DBCourseOffering

+ getCourseOfferings()
+ parseResults()11

CourseOffering

+ getCourseId()
+ addStudent()
+ new()
+ getNumber()
+ getStartTime()
+ getEndTime()
+ getDays()
+ getNumStudents()
+ removeStudent()
+ update()

(from University Artifacts)

<<entity>>
0..*

1

0..*

CourseOfferingList

+ new()
+ add()

(from University Artifacts)

List
(from Base Reuse)

<CourseOffering>
<<bind>>

ICourseCatalog

1

0..*

create one or more class
diagrams showing the
elements contained by the
subsystem, and their
associations with one
another

A state diagram may be
needed to document the
possible states the
subsystem can assume

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Client Support
<<subsystem>>

Server Support
<<subsystem>>

More
flexible

Server

Client Support
<<subsystem>>

Server Support
<<subsystem>>

Server
<<Interface>>Client

(from Client Support)

Describe Subsystem Dependencies

ßSubsystem layering using direct dependency

ßSubsystem layering using interface dependency

Not
recommended

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Subsystem Dependencies

ICourseCatalog
Registration CourseCatalog

<<subsystem>>

University
Artifacts

RelationalDBMS

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

So Where Are We?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Concurrency Overview

Supplementary
Specifications

Describe
Concurrency

Process Model

• the independent threads of control are
identified and the identified model elements
(subsystems and classes) are mapped to
these threads of control.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

ßProcesses may be modeled using
ßActive classes (Class Diagrams) and Objects
(Interaction Diagrams)
ß “owns” it’s own thread of execution and can initiate control activity
ß may execute in parallel (i.e., concurrently) with other active classes.

ßComponents (Component Diagrams)

ßRelationships

<<stereotype>>
Component Name

<<stereotype>>
Name Process1.exe

<<stereotype>>
Name

<<stereotype>>
Name

Modeling Processes

<<stereotype>> can be
 <<process>> or <<thread>>

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling Processes: Class Diagram

composition

dependency

<<process>>
CourseCatalogSystemAccess

<<thread>>
CourseCache

<<process>>
CourseRegistrationProcess

<<thread>>
OfferingCache

1

1

1

1

<<process>>
StudentApplication

CourseCache and OfferingCache
are used to asynchronously
retrieve items from the legacy
system. This will improve
response time.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Mapping Design Elements to
Processes

StudentApplication

<<process>>
MainStudentForm

(from Student Interface)

<<boundary>>

1 1

CourseRegistrationProcess

<<process>>
RegistrationController

(from Registration)

<<control>>

1 1

CourseCatalogSystemAccess

<<process>>
CourseCatalog

(from CourseCatalog)

<<subsystem>>
1 1

1

CourseCache

<<thread>>

1

Course

(from University Artifacts)

<<entity>>0..*1

OfferingCache

<<thread>>

1

1

CourseOffering

(from University Artifacts)

<<entity>> 0..*
1

ßThe classes associated
with the individual user
interfaces were mapped to
the application processes.
ßThe classes associated

with the individual
business services were
mapped to the controller
processes.
ßThe classes associated

with access to the external
systems were mapped to
the access processes
ßFor the threads,

composition is used to
show what design
elements have been
mapped to them.

Proxy
due to Rose

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

So Where Are We?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Distribution Overview

Describe
Distribution

Process Model

Implementation Model

Deployment Model

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why Distribute?

ßReduce processor load

ßSpecial processing requirements

ßScaling concerns

ßEconomic concerns

ßDistribution Patterns
ßClient/Server
ß3-tier

ßFat-Client

ßWeb Application

ßDistributed Client/Server

ßPeer-to-peer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Distribution patterns
ßCommon services
ßPresentation Services
ßUI including, the visual appearance of output and how user input is handled

ßBusiness Services
ß Business rules and logic

ßData Services
ßData relationships, efficiency of storage, and data integrity

ßPatterns
ßOne-Tier
ßTwo-Tier
ß Fat Client -- client has its presentation and business services; server has

the data services
ß Thin Client -- client has the presentation services; server has the business

and data services
ßThree-tier
ß client has presentation services; server has business services; separate

(logical) server has data services.
ßWeb-tier
ß client accesses a web server that at least handles presentation services;

web server may have its own business and data services or it may utilize
one or more servers that handle business and data services

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Node #1
<<Node>>

Processor #1

<<Processor>>

Device #1
<<Device>>

Connection

Deployment Model Modeling Elements

ßNode
ßPhysical run-time computational resource

ßProcessor
ßExecute system software

ßDevice
ßSupport devices

ßTypically controlled by a Processor

ßConnection
ßCommunication mechanisms

ßPhysical medium

ßSoftware protocol

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Deployment Diagrams

Component

Interface

Component

Node #1
<<Node>>

Node #2
<<Node>>

Object

<<connection type>>
Connection

Object

Process-1
Process-2
...

Process-1
Process-2
...

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Process-to-Node Allocation

External
Desktop PC

StudentApplication

Desktop PC

Registration
Server

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

Course
Catalog

<<legacy>>

Billing
System

<<legacy>>

<<Internet>>

<<Campus LAN>>

Dial up access
and behind
campus firewall

<<Campus LAN>>
<<Campus LAN>>

StudentApplication
ProfessorApplication
RegistrarApplication

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Distribution Pattern: Proxy

1

0..*

RemoteDistributedControllerProxyDistributedController

SecureUser
(from Secure Interfaces)

<<Interface>>1

0..*

+currentUser
+currentUser

RegistrationController
(from Student Activities)

<<controller>>
RemoteRegistrationController

(from Student Activities)

0..11

Naming
(from java.rmi)

<<utility>>

client server
secure user instance is created
on the client and passed to the
server when the remote
controller is created

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

 : RemoteTimecard

Lookup("RemoteTimecardController")

SomeForm
Controller

 : Naming : ProxyDistributed
Controller

3: new()

1: new(SecureUser)

2: lookup(String)

4: setSession(SecureUser)

5: DoSomething

6: DoSomething

All calls to the proxy controller are
forwarded to the remote controller

The connection between the
proxy and remote controller
is established when the
proxy controller is created

The current user context is
passed to the server for later
access checks

Design Distribution Pattern: Proxy

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

design
view

deployment
view

process
view

implementation
view

Use -Case
View

Use cases

Components

Classes, interfaces,
collaborations

Active classes Nodes

Organization
Package, subsystem

Dynamics
Interaction

State machine

The Rational 4+1 Views

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Affect on Process Model Associations

MainStudentForm
(from Student Interface)

MaintainScheduleForm
(from Student Interface)

<<boundary>>
0..1

1

StudentApplication
<<process>>

1

1

RegistrationController
(from Student Activities)

<<control>>

1

1

RegistrationControllerProcess
<<process>>

RemoteRegistrationController
(from Student Activities)

<<control>>

0..11

1

1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Design

• Architectural Design
• decide what the infrastructure is (the pieces/parts of the architecture,

if you will, and how they interact)
• Use Case Design

• define responsibilities of the system are allocated to the pieces/parts
• Subsystem and Class design

• detail the specifics of the pieces/parts.
ßClass Design

ß take into account the implementation and deployment environments

ß adjust the classes to the particular products in use, the programming
languages, distribution, adaptation to physical constraints (e.g.
limited memory), performance, use of component environments such
as COM or CORBA, and other implementation technologies

ßperformed for each class in the current iteration.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Design Overview

Supplementary
Specifications

Architecture
Document

Analysis Classes

Design Model

Design
Guidelines

Use-Case Model

Use-Case Realization

Class
Design

Design
Classes

• ensure that the classes provide
the behavior the use-case
realizations require

• ensure that it is straightforward
to implement the classes

• handle non-functional
requirements related to classes

• incorporate the design
mechanisms used by the
classes

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How Many Classes Are Needed?

ßMany, simple classes means that each class
ßencapsulates less of the overall system intelligence
ßis more reusable
ßis easier to implement
ßA few, complex classes means that each class
ßencapsulates a large portion of the overall system
intelligence
ßis less likely to be reusable
ßis more difficult to implement
ßA class should have a single well focused purpose
ßa class should do one thing and do it well!
ßhow does this relate to my earlier suggestion that
classes have multiple responsibilities?

•Class should have multiple
responsibilities

•Actions that object can perform
•Knowledge object maintains
•Non-functional requirements

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Designing Boundary Classes

ßUser interface (UI) boundary classes
ßWhat user interface development tools will be used?

ßHow much of the interface can be created by the
development tool?

ß“Reverse Engineering”

ßExternal system interface boundary classes
ßUsually model as subsystem

MainForm

SubWindow

DropDownListButton

MainWindow

See Maciaszek - no
time to discuss UI
design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design View
FatClass

- transientBookeeping

+ getCommonlyUsedAtt1()
+ getCommonlyUsedAtt2()
+ getRarelyUsedAtt3()
+ getRarelyUsedAtt4()

FatClassDataHelper
+ commonlyUsedAtt1
+ commonlyUsedAtt2

FatClassLazyDataHelper
+ rarelyUsedAtt3
+ rarelyUsedAtt4

1 1

Analysis View

FatClass
- transientBookeeping
+ commonlyUsedAtt1
+ commonlyUsedAtt2
+ rarelyUsedAtt3
+ rarelyUsedAtt4

<< entity >>

Designing Entity Classes

ßEntity objects are often passive and persistent

ßPerformance requirements may force some re-factoring

1

0..*

RemoteDistributedControllerProxyDistributedController

SecureUser

(from Secure Interfaces)

<<Interface>>1

0..*

+currentUser
+currentUser

RegistrationController

(from Student Activities)

<<controller>>
RemoteRegistrationController

(from Student Activities)

0..11

Naming
(from java.rmi)

<<utility>>

client server

External
Desktop PC

StudentApplication

Registration
Server

CourseCatalogSystemAccess
CourseRegistrationProcess
GradeSubmissionProcess
TeachingCoursesSelectionProcess
ProfessorMaintenanceProcess
StudentMaintenanceProcess
CloseRegistrationProcess
ReportCardProcess
FinanceSystemAccess

<<Internet>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Designing Control Classes

ßWhat Happens to Control Classes?
ßAre they really needed?
ß if just “pass-throughs” from the boundary classes to the
entity classes, they may be eliminated.

ßShould they be split?
ßmight depend on distribution, e.g., proxy-remote

ßControl classes may become true design classes for
any of the following reasons:
ßthey encapsulate significant control flow behavior,
ßthe behavior they encapsulate is likely to change
ßthe behavior must be distributed across multiple
processes and/or processors
ßthe behavior they encapsulate requires some transaction
management.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Operations

ßMessages displayed in interaction diagrams

ßImplement rules

ßOperations can lead to new class definitions

:ClassA

// Perform responsibility

:ClassB :ClassA

performResponsibility():result

:ClassB

Student
- name : String
- dateOfBirth : Date

+ canEnroll() : Boolean
hasTakenPrerequisites() : Boolean
hasScheduleConflict() : Boolean

every class should have:
•Manager functions
• Implementor functions
•Access functions
•Helping functions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Utility Classes

ßWhat is a Utility Class?
ßUtility is a class stereotype

ßUsed for a class that contains a collection of free
subprograms

ßWhy use it?
ßTo provide services that may be (re)useful in a variety of
contexts

ßTo wrap non object-oriented libraries or applications

 <<utility>>
 MathPack

-randomSeed randomSeed : long = 0: long = 0
-pi : double = 3.14159265358979-pi : double = 3.14159265358979

+sin (angle : double) : double
+cos (angle : double) : double
+random() : double

sql

+ bind()
+ execsql()
+ startTrans()
+ commit()
+ fetch()
+ getResults()

<<utility>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Identify and Define the States

ßSignificant, dynamic attributes

ßExistence and non-existence of certain links

ßexplicitly define what it means to be in a particular state.

numStudents < 10

Open

The maximum number of students per course offering is 10

numStudents > = 10

Closed

Teaching On Sabbatical

Link to CourseOffering
Exists

Link to CourseOffering
Doesn’t Exist

Professor

CourseOffering

0..*

0..1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Identify the Events & Transitions

ßEvents
ßOne event may trigger the
sending of another event
ßAn activity can also send
an event to another object

ßTransitions
ßFor each state, determine
what events cause
transitions to what states,
including guard conditions,
when needed
ßTransitions describe what
happens in response to
the receipt of an event

State B

do: ^TargetObject.event

State A

event ^TargetObject.event

State A

State B

do: activity

event[condition] / action

State C

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Add Activities and Actions

ßActivities
ßAssociated with a state
ßStart when the state is
entered
ßTake time to complete
ßInterruptible
ßActions
ßAssociated with a
transition
ßTake an insignificant
amount of time to
complete
ßNon-interruptible

activity

State A

State B
do: activity

event[condition] / action

State C
entry: action

action

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statechart

Initialize

do: Initialize course
 object

do: Assign professor
to course

Open

entry: Register a
 student

Closed

do: Report
course is full

Canceled

do: Send cancellation
notices

 addStudent/
 numStudents = 0

cancelCourse

RegistrationComplete

do: Generate class
 roster

cancelCourse
[numStudents = 10]

cancelCourse

registration closed[
numStudents > = 3]

registration closed[

numStudents < 3]

Unassigned

addStudent

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statechart with Nested States
superstate

substate
Initialize Register

Open
entry: Register a student

Unassigned
do: Assign professor to course

Open

Closed Canceled

RegistrationComplete
do: Generate class roster

 Add student / numStudents = 0

[numStudents = 10]

cancelCourse

registration closed[
numStudents > = 3]

registration closed[
numStudents < 3]

addStudent

do: Report course is closed

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Define Attributes

CourseOffering
- number : String = "100"
- startTime : Time
- endTime : Time
- days : Enum
/- numStudents : int: = 0

+ addStudent(studentSchedule : Schedule)

private to
support

encapsulation

derived attribute

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright © 1997 by Rational Software Corporation

Associations & Dependencies

ßassociation

ß visibility
ßattribute (field) visibility: B is an attribute of A
ß remains an association

ßparameter visibility: B is a parameter of a method A
ß becomes a dependency

ß local visibility: B is a (non-parameter) local object in a method of A
ß becomes a dependency

ßglobal visibility: B is in some way globally visible
ß becomes a dependency

A B

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Define Dependencies

+ notifyOfferingSelection(offering : CourseOffering)

Global visibility

Field visibility

 -> association

Local visibility
 -> dependency

MainStudentForm

+ registerForCourses()

(from Student Interface)

<<boundary>>

ICourseCatalog
(from CourseCatalog)

<<Interface>>

RemoteRegistrationController

+ getOfferings(curriculum)

+ saveSchedule(theSchedule : Schedule)

(from Registration)

Naming

+ lookup()

(from java.rmi)

RegistrationController

getOfferings(curriculum)
notifyOfferingSelection(offering : CourseOffering)
new(context : SecureUser)
saveSchedule(sched : Schedule)
cancelSchedule(sched : Schedule)

<<control>>

1

1

Schedule
<<entity>>

MaintainScheduleForm

displayOfferings()
selectCurriculum() : Curriculum
selectOffering() : CourseOffering
save()
cancel()
update(changedItem : ISubject)
displaySchedule()

<<boundary>>

1 1

0..1

1

0..1

0..1

Parameter visibility

 -> dependency

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Composition

notifyOfferingSelection(offering : CourseOffering)

RegistrationController

getOfferings(curriculum)

new(context : SecureUser)

saveSchedule(sched : Schedule)

cancelSchedule(sched : Schedule)

<<control>>MaintainScheduleForm

displayOfferings()

selectCurriculum() : Curriculum

selectOffering() : CourseOffering

save()

cancel()

update(changedItem : ISubject)

displaySchedule()

<<boundary>>

1 1

association relationship has
been refined into a composition
relationship.
MSF represents a session
RC never exists outside of session

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Truck

tonnage

GroundVehicle

weight
licenseNumber

Car

owner

register()

getTax()

Person

0..*

Trailer

1
ancestor

decendent

generalization

size

Generalization (Inheritance)

ßOne class inherits from another

ßnot just finding common attribute, operations and relationships
ßmore about the responsibilities and essence of the classes.
ßavoid “skyscrapers”; the hierarchies should look like small,

independent “forests

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Review: What is Polymorphism?

ßThe ability to hide many different implementations
behind a single interface

Tube

Pyramid

Cube

Shape

Draw
Move
Scale
Rotate

<<interface>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Generalization to Support
Polymorphism

Without Polymorphism With Polymorphism

Animal

talk ()

Lion Tiger

talk () talk ()

if animal = “Lion” then
do the Lion talk

else if animal = “Tiger” then
do the Tiger talk

end

do the Animal talk

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Define Generalizations

MaintainScheduleForm
(from Student Interface)

<<boundary>>
ReportCardForm

(from Student Interface)

<<boundary>>

MainStudentForm
(from Student Interface)

<<boundary>>

1

0..1

1

0..1

MaintainStudentForm
(from Registrar Interface)

<<boundary>>
MaintainProfessorForm

(from Registrar Interface)

<<boundary>>
CloseRegistrationForm

(from Registrar Interface)

<<boundary>>

MainRegistrarForm
(from Registrar Interface)

<<boundary>>

1

0..*

1

0..*

1

0..1 (from Professor Interface)
SubmitGradesForm

<<boundary>>
SelectCoursesForm

(from Professor Interface)

<<boundary>>

MainProfessorForm
(from Professor Interface)

<<boundary>>

11

0..1 0..1

MainApplicationForm

(from GUI Framework)

<<boundary>>
LogonForm

(from GUI Framework)
1 0..1

