
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

21- Design: RUP

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD and JSP

ß In JSD, the principles of JSP are extended into the areas of
systems analysis, specification, design and implementation
ß In JSP, a simple program describes a sequential process that

communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream
ß In JSD, the real world is modeled as a set of sequential model

processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.
ßThe JSD implementation step embodies the JSP implementation

technique, program inversion, in which a program is transformed
into a procedure
ßOther JSP techniques, such as the single read-ahead rule and

backtracking, and principles, such as implementation through
transformation, are used in JSD

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comments/Evaluation

ßFocus on conceptual design
ßBut difficult to build a system this way

ßBased upon model of real world

ßCareful (and experienced) analysis of the model
generally points suggested implementation tactics,
though
ßParnas notions of module not perceptible here

ßNot an iterative refinement approach either

ßTreatment of data is very much subordinated/secondary

ßDoes a good job of suggesting possible parallelism

ßContrasts strongly with Objected Oriented notions (eg.
Booch, UML)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003
Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

A Minimal Iterative Process

Getting Started: (do this once)
1. Capture the major functional and non-functional requirements for

the system.
ß Express the functional requirements as use cases, scenarios, or

stories.
ß Capture non-functional requirements in a standard paragraph-style

document.
2. Identify the classes which are part of the domain being modeled.
3. Define the responsibilities and relationships for each class in the

domain.
4. Construct the domain class diagram.
ß This diagram and the responsibility definitions lay a foundation for

a common vocabulary in the project.
5. Capture use case and class definitions in an OO CASE tool (e.g.,

Rose) only when they have stablilized.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

A Minimal Iterative Process
Getting Started: (do this once)
6. Identify the major risk factors and prioritize the most

architecturally significant use cases and scenarios.
ß It is absolutely imperative that the highest risk items and the most

architecturally significant functionality be addressed in the early
iterations. You must not pick the “low hanging fruit” and leave the
risks for later.

7. Partition the use cases/scenarios across the planned iterations.
8. Develop an Iteration plan describing each “mini-project” to be

completed in each iteration.
ß Describe the goals of each iteration, plus the staffing, the schedule,

the risks, inputs and deliverables.
ß Keep the iterations focused and limited (2-3 weeks per iteration).

In each iteration, conduct all of the software activities in the
process: requirements, analysis, design, implementation and test.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

A Minimal Iterative Process

For each iteration: (repeat until done)
1. Merge the functional flow in the use cases/scenarios with the

classes in the domain class diagram
ß Produce sequence (and collaboration) diagrams at the analysis level.

2. Test and challenge the sequence diagrams on paper, or whiteboard
ß Discover additional operations and data to be assigned to classes
ß Validate the business process captured in the flow of the sequence

diagram
3. Develop statechart diagrams for classes with “significant” state
ß Statechart events, actions, and most activities will become operations

on the corresponding class
4. Enhance sequence diagrams and statechart diagrams with design

level content
ß Identify and add to the class diagram and sequence diagrams any

required support or design classes (e.g. collection classes, GUI and
other technology classes, etc.)

5. Challenge the sequence diagrams on paper/whiteboard, discovering
additional operations and data assigned to classes.

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

A Minimal Iterative Process

For each iteration: (repeat until done)
6. Update the OO CASE tool information as models stabilize, and if

the there is a good reason to save them.
ß Update class diagrams: add in discovered datatypes, message

names, actual functions and arguments, actual return types. These
are discovered especially in the design level sequence and
statechart diagrams.

ß Add or modify classes as necessary
ß Republish system reports for team members

7. Develop the code for the use cases/scenarios in the current
iteration from the current diagrams

8. Test the code in the current iteration. !(In a test-then-code
approach this step precedes #7.)

9. Conduct an Iteration review:
ß What went wrong? What went right? Re-evaluate the iteration plan,

and content of next iteration
ß Revise the next iteration plan if necessary
ß Revise the Project Plan if necessary

10. Conduct the next iteration, adding in the next set of use
cases/scenarios, until the system is completely built.

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Rational Unified Process

adapted from
OOAD Using the UML

Copyright ” 1994-1998 Rational Software, all rights reserved

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So where do we start?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Analysis Overview

Use Case Realization

Supplementary
Specifications

Glossary

Use-Case Model

Use-Case
Modeling Guidelines

Use-Case Realization

Architecture Document

Use-Case
Analysis

Analysis Classes

Design ModelAnalysis Model

OR

Per iteration per use-case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Analysis Steps

ßSupplement the Descriptions of the Use Case

ßFor each use case realization
ßFind Classes from Use-Case Behavior

ßDistribute Use-Case Behavior to Classes

ßFor each resulting analysis class
ßDescribe Responsibilities

ßDescribe Attributes and Associations

ßQualify Analysis Mechanisms

ßUnify Analysis Classes

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is an Analysis Class?

<<entity>>

<<boundary>>

<<control>>

<<control>>

<<boundary>>

<<entity>>

System
boundary

Use-case
behavior
coordination

System
information

• Early conceptual model
•Functional requirements
•Model problem domain

• Likely to change
•Boundary
• Information used
•Control logic

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Roles

Customer

Boundary Class -- Model
interaction between the
system and its environment

Entity Class -- Store and
manage information in the
system

Control Class -- Coordinate
the use case behavior

Collaboration Diagram

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Entity & Control Classes

Course
(from University Artifacts)

CourseOffering
(from University Artifacts)

Grade
(from University Artifacts)

Student
(from University Artifacts)

Professor
(from University Artifacts)

Schedule
(from University Artifacts)

RegistrationController
(from Registration)

SubmitGradesController
(from Student Evaluation)

SelectCoursesToTeachController
(from Registration)

MaintainProfessorController
(from Registration)

MaintainStudentController
(from Registration)

ReportCardController
(from Student Evaluation)

CloseRegistrationController
(from Registration)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Responsibilities

ßWhat are responsibilities?

ßHow do we find them?

Class Name

Responsibility 1

Responsibility 2

Responsibility N

•First cut at class operations
•Actions that object can perform
•Knowledge object maintains
•Non-functional requirements

•Class should have multiple responsibilities

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities from a
Collaboration Diagram

 : Student

 : Maintain
ScheduleForm

 : Registration
Controller

:Schedule

 : CourseCatalog
System

 : Main
Form

5: // select 4 primary and 2 alternate offerings()

1: // select maintain schedule()

3: // get course offerings()
6: // add courses to schedule()

7: // create with offerings()

2: // open schedule form()

4: // get course offerings()

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

RegistrationController

// add courses to schedule()

<<control>>

Schedule

// create with offerings()

<<entity>>

Register for Courses use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities from a
Sequence Diagram

 : Student : Maintain
ScheduleForm

 : Registration
Controller

 : Schedule : MainForm : CourseCatalog
System

5: // select 4 primary and 2 alternate offerings()

6: // add courses to schedule()

7: // create with offerings()

1: // select maintain schedule()

2: // open schedule form()

3: // get course offerings()

4: // get course offerings()

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

RegistrationController

// add courses to schedule()

<<control>>

Schedule

// create with offerings()

<<entity>>

Register for Courses use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What are Roles?

ßThe “face” that a class plays in the association

Pre-requisites

Instructor

Course

CourseOffering Professor Department

Department head

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Finding Relationships

MainForm

// select maintain schedule()

<<boundary>> MaintainScheduleForm

+ // open()
+ // select 4 primary and 2 alternate offerings()

<<boundary>>

1 0..11

CourseCatalogSystem

// get course offerings()

<<boundary>>
1 0..*

RegistrationController

// add courses to schedule()
// get course offerings ()

<<control>>

1

1

Schedule

// create with offerings()

<<entity>>

1

0..1

 : Student

 : Maintain
ScheduleForm

 : Registration
Controller

:Schedule

 : CourseCatalog
System

 : Main
Form

5: // select 4 primary and 2 alternate offerings()

1: // select maintain schedule()

3: // get course offerings()
6: // add courses to schedule()

7: // create with offerings()

2: // open schedule form()

4: // get course offerings()

• MaintainScheduleForm does not
make any sense outside of the
context of a particular use
session.

• Only one MaintainScheduleForm
can be active at any one time, or
none may be active

• one controller for each Schedule
being created (e.g., each Student
registration session).

• only one CourseCatalogSystem
instance for possibly many
MaintainScheduleForms

• serializes access

• Many MaintainScheduleForms
can be active at one time (for
different sessions/students).

legacy system.

View of Participating Classes (VOPC) diagram.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architectural Design Overview

Supplementary
Specifications

Architecture Document

Analysis Classes

Design Model

Design
Guidelines

Glossary

Architectural
Design

Design Model

Design
Guidelines

Classes and
Subsystems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Classes

In analysis, we had one
application with many

different forms …

LogonForm
<<boundary>>

CloseRegistrationForm
(from Registrar Interface)

<<boundary>>MaintainScheduleForm
(from Student Interface)

<<boundary>>

MaintainProfessorForm
(from Registrar Interface)

<<boundary>>

MaintainStudentForm
(from Registrar Interface)

<<boundary>>

ReportCardForm
(from Student Interface)

<<boundary>>

SelectCoursesForm
(from Professor Interface)

<<boundary>> SubmitGradesForm
(from Professor Interface)

<<boundary>>

MainForm
<<boundary>>

1

0..1
0..1

1

1 0..1

1

0..1

0..1

1

0..1

1

0..1

1

0..1

1

0..10..1

During design, some
analysis classes may

be split, joined,
removed, etc.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Classes (cont.)

In design, the one
application becomes

three applications, each
with it’s own forms ...

MaintainScheduleForm

(from Student Interface)

<<boundary>>

ReportCardForm

(from Student Interface)

<<boundary>>

MainStudentForm

(from Student Interface)

<<boundary>>

1

0..1

1

0..1

MaintainStudentForm

(from Registrar Interface)

<<boundary>>
MaintainProfessorForm

(from Registrar Interface)

<<boundary>>
CloseRegistrationForm

(from Registrar Interface)

<<boundary>>

MainRegistrarForm

(from Registrar Interface)

<<boundary>>

1

0..*

1

0..*

1

0..1

(from Professor Interface)

SubmitGradesForm
<<boundary>>

SelectCoursesForm

(from Professor Interface)

<<boundary>>

MainProfessorForm

(from Professor Interface)

<<boundary>>

11

0..1 0..1

LogonForm
<<boundary>>

CloseRegistrationForm
(from Registrar Interface)

<<boundary>>MaintainScheduleForm
(from Student Interface)

<<boundary>>

MaintainProfessorForm
(from Registrar Interface)

<<boundary>>

MaintainStudentForm
(from Registrar Interface)

<<boundary>>

ReportCardForm
(from Student Interface)

<<boundary>>

SelectCoursesForm
(from Professor Interface)

<<boundary>> SubmitGradesForm
(from Professor Interface)

<<boundary>>

MainForm
<<boundary>>

1

0..1
0..1

1

1 0..1

1

0..1

0..1

1

0..1

1

0..1

1

0..1

1

0..10..1

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Name

Package Name

Classes & packages

ßWhat is a class?
ßA description of a set of objects that share the same
responsibilities, relationships, operations, attributes, and
semantics.

ßWhat is a package?
ßA general purpose mechanism for organizing elements
into groups

ßA model element which can contain other model
elements

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

A

<<subsystem>>

PackageB

Class B1

Class B2

Client Class

Encapsulation is the key! But note for packages
dependencies should be on public classes

Packages Vs. Subsystems

ßPackages provide no
behavior
ßPackages are simply

containers of things
which provide
behavior
ßPackages help

organize and control
sets of classes that
are needed in
common, but which
aren’t really
subsystems
ßDependencies are on

specific elements
within the Package

ßSubsystems provide
behavior, packages
do not

ßSubsystems
completely
encapsulate
their contents

ßDependencies are
on the interface of
the subsystem

ßSubsystems are
easily replaceable

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling Design Subsystems

CourseCatalog
<<subsystem>>

(from Business Objects)ICourseCatalog

(from CourseCatalog)

FinanceSystem
<<subsystem>>

(from Business Services)
IFinance
System

(from FinanceSystem)

ICourseCatalog

CourseCatalog
<<subsystem>>

CourseCatalog
<<subsystem>>

<<subsystem>> package =
package with a stereotype
of <<subsystem>>

<<subsystem>> proxy class =
class with a stereotype of
<<subsystem>>

Note: Rose does not fully
support subsystems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

DesignClass

Subsystem
<<subsystem>>

DesignClass

DesignClass

DesignClass

Subsystem
<<subsystem>>

Subsystem
<<subsystem>>

Design Classes and Subsystems

ß Identifying Design Classes
ßanalysis class is simple and already represents a single
logical abstraction-> design class
ßentity classes survive relatively intact into design.

ß Identifying Subsystems
ßanalysis class is complex, such that it appears to embody
behaviors that cannot be the responsibility of a single class
acting alone, or the responsibilities may need to be reused,
the analysis class should be mapped to a subsystem
ßmay take a few iterations to stabilize.

ßAnalysis classes which evolve into
subsystems might include:
ßcomplex services and/or utilities
ßuser interfaces and external
system interfaces.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design goals

ßProperties of a system which make it flexible,
maintainable
ßAbstraction

ßModularity
ßCohesion
ßhow clearly-defined a particular module or procedure is
ßa module with high cohesion does one or a few things exceedingly well.

ßCoupling
ßstrength of connections between modules

ßwhat information needs to be communicated between modules

ßGoal: High cohesion, low coupling

ßInformation hiding

ßComplexity

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Partitioning Considerations
ß Coupling and cohesion
ß design elements with tight coupling/cohesion (e.g., lots of relationships and

communication) should be should be placed in the same partition
ß design elements with loose coupling/cohesion should be placed in separate

partitions.
ß User organization
ß not a good long-term strategy because the organizational structure may change
ß you want the software and the business organization to be independent

ß System distribution
ß partitioning to reflect distribution can help to visualize the network communication

which will occur as the system executes., but can make the system more difficult to
change if the Deployment Model changes significantly.

ß Secrecy & access control
ß functionality requiring special clearance must be partitioned into subsystems that

will be developed independently, with the interfaces to the secrecy areas the only
visible aspect of these subsystems.

ß Variability
ß partition “optional” functionality

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Typical Layering Approach

General
functionality

Specific
functionality

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Goal is to reduce coupling and to ease maintenance effort

Layering Guidelines

ßVisibility
ßDependencies only within current
layer and below

ßVolatility
ßUpper layers affected by
requirements changes
ßLower layers affected by
environment changes

ßGenerality
ßMore abstract model elements in
lower layers

ßNumber of layers
ßSmall system: 3 layers
ßComplex system: 5-7 layers

User Interface
<<layer>>

Business Services
<<layer>>

Business Objects
<<layer>>

System
<<layer>>

Middleware
<<layer>>

java

global

Base Reuse

global

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Layers & Visibility

User Interface
<<layer>>

Business Services
<<layer>>

Business Objects
<<layer>>

System
<<layer>>

Middleware
<<layer>>

java

global

Base Reuse

global

PackageB

Class B1

Class B2

PackageA

Class A1

Class A3

Class A2
A

B

Public visibility

Private visibility

Only public
classes can be

referenced outside
of the owning

package

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Layering

ßConcentrate on encapsulating change

ßPackage dependencies are not transitive, thus one layer
can shield another from change

ßUpward dependencies should be resolved in design
ße.g., call backs can be replaced with the “subscribes to”
association whose source is a class (called the
subscriber) and whose target is a class (called the
publisher)
ßsubscriber specifies a set of events and is notified when one
of those events occurs in the target

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Back to layers

Registrar
Interface

GUI Framework

Student
Interface

Secure
Interfaces

(from Security)

The applications need to
retain the current user's
context

Professor
Interface

SecureUser
<<interface>>

+ getUserId() : UniqueId

(from Secure Interfaces)

+ getAccess(SecureData) : SecurityAccess
+ setAccess(SecureData, SecurityAccess)

(from GUI Framework)
LogonForm

+ open()

0..1

1

MainApplicationForm

+ start()

(from GUI Framework)

0..1

1

A bi-directional relationship exists between
the GUI Framework and the other interface
packages because the Logon Form needs
to be able to notify the application forms

Window
(from java.awt)

View

+ open()
+ refresh()
+ close()
+ update()

1

0..*

1

0..*

inherits frominherits from

inherits from

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

User Interface Layer: Main Forms

MaintainScheduleForm
(from Student Interface)

<<boundary>>

ReportCardForm
(from Student Interface)

<<boundary>>

MainStudentForm
(from Student Interface)

<<boundary>>

1

0..1

1

0..1

MaintainStudentForm
(from Registrar Interface)

<<boundary>>
MaintainProfessorForm

(from Registrar Interface)

<<boundary>>
CloseRegistrationForm

(from Registrar Interface)

<<boundary>>

MainRegistrarForm
(from Registrar Interface)

<<boundary>>

1

0..*

1

0..*

1

0..1 (from Professor Interface)
SubmitGradesForm

<<boundary>>
SelectCoursesForm

(from Professor Interface)

<<boundary>>

MainProfessorForm
(from Professor Interface)

<<boundary>>

11

0..1 0..1

MainApplicationForm

(from GUI Framework)

<<boundary>>
LogonForm

(from GUI Framework)
1 0..1inherit from the MainApplicationForm

 that came from the GUI framework

LogonForm was
reverse engineered

From GUI framework

aggregation relationships
to be addressed
in Class Design

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More Layers

Database
(from OODBMS)

Objectstore
(from OODBMS)

OODBMSTransaction
(from OODBMS)

IPersistent
(from OODBMS)

<<Interface>>

sql
(from RelationalDBMS)

<<utility>>

RDBMSTransaction
(from RelationalDBMS)

Relational
DBMS

OODBMS

Middleware

UniqueId
(from Secure Interfaces)

SecurityAccess
(from Secure Interfaces)

SecureData

(from Secure Interfaces)

SecureUser

(from Secure Interfaces)

UserSecurityContext
(from Security Manager)

Security
Secure

InterfacesSecurity
Manager

<<subsystem>>Contains

2 packages

System

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

A look ahead to Use Case Design

ßUse-Case design vs. analysis
ß in analysis, the classes we discovered are “large” to keep the
model “small” so we can uderstand the interactions (and
diagrams)
ß in design, flesh out the class structure (“look inside”) to add
design elements to implement the publicly visible behaviors,
but defer subsystem design to the subsystem designers

ßWe have:
ß an initial architectural definition
ß defined the major elements of our system (e.g., the
subsystems, their interfaces, the design classes, the
processes and threads) and their relationships, and we have
an understanding of how these elements map into the
hardware on which the system will run.

ß In Use Case Design, concentrate on how a use case has been
implemented and make sure that there is consistency from
beginning to end, and that nothing has been missed

tend to alternate between
Subsystem Design,
Class Design and
Use Case Design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Design Overview

Use Case Realization

Use-Case
Design

Supplementary
Specifications

Use-Case Model

Use-Case Realization

Design Subsystems and Interfaces

Design Classes

Use-Case Realizations,
described with
sequence diagrams

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Realization

Use Case Use Case Realization

<<realizes>>

Class Diagrams

Sequence Diagrams Collaboration Diagrams

Use Case Realization
Documentation

Use Case Model Design Model

redraw diagrams
•sub system interfaces
•refined classes, objects

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Encapsulating Subsystem Interactions

ßSubsystems should be represented by their interfaces
on interaction diagrams

ßMessages to subsystems are modeled as messages to
the subsystem interface

ßMessages to subsystems correspond to operations of
the subsystem interface

ßInteractions within subsystems modeled in Subsystem
Design

<<subsystem>>
MySubsystem

InterfaceA

op1()

Op1()

:InterfaceA

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Advantages of Encapsulation

ßUse-case realizations are less cluttered

ßUse-case realizations can be created before the internal
designs of subsystems are created

ßUse-case realizations are more generic and easy to
change

ßSupports parallel subsystem development

Raises the level of abstraction

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Element Interactions (Login)

 : MainStudent
Form : Student

1: start()

 : LogonForm

2: open()

3: enterUserName()

4: enterPassword()

5: logInUser()

 : SecureUser

[Login was successful]

6: validateUserIDPassword()

8: new(UserID)

7: setupUserContext()

10: getUserContext()

11: close()

[Login was successful]
9: setupUserContext()

SecureUser

+ setAccess()
+ getAccess()
+ getUserId()
+ new()

(from Secure Interfaces)

<<Interface>>

1

0..1

MainStudentForm

+ registerForCourses()
+ viewReportCard()

(from Student Interface)

<<boundary>>

LogonForm

(from GUI Framework)
MainApplicationForm

(from GUI Framework)

<<boundary>>
0..11

inherits from

exists an object whose class
realizes the SecureUser interface
& manages information about the
current user’s access to secure
data without directly depending
on the classes

composition

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design Element Interactions
(Register For Courses - Set-Up)

Give current user context
wide open access

No Conflict

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Design Classes Relationships:
Register for Courses VOPC

MainStudentForm

+ registerForCourses()

(from Student Interface)

<<boundary>>

ICourseCatalog

(from CourseCatalog)

<<Interface>>

RemoteRegistrationController

+ getOfferings(curriculum)
+ notifyOfferingSelection(offering : CourseOffering)
+ saveSchedule(theSchedule : Schedule)

(from Registration)

1

1

Naming

+ lookup()

(from java.rmi)

RegistrationController

getOfferings(curriculum)
notifyOfferingSelection(offering : CourseOffering)
new(context : SecureUser)
saveSchedule(sched : Schedule)
cancelSchedule(sched : Schedule)

<<control>>

1

1

Schedule
<<entity>>

1

0..1

MaintainScheduleForm

displayOfferings()
selectCurriculum() : Curriculum
selectOffering() : CourseOffering
save()
cancel()
update(changedItem : ISubject)
displaySchedule()

<<boundary>>

1 1

0..1

1

0..1

0..1

View of Participating Classes (VOPC) diagram.

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Deployment

Works similar to Observer.
Cache will notify when Course
has been retrieved

Give current user context
wide open access

No Conflict

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

Subsystem Interface

Client Server
UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

More steps

ßAnnotate the sequence diagrams

ßUnify classes & subsystems
ßmerge similar model elements

ßuse inheritance to abstract model elements

 : Actor1 : ClassA : ClassB

1: Do Something

2: Do Something More
Scripts can be used to
describe the details
surrounding these
messages.

Notes can include
more information
about a particular
diagram element

Script

Note

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So Where Are We?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Subsystem Design Overview

Use-Case Realization

Design Subsystems and Interfaces

Subsystem
Design

Use Case Realization

Design Subsystems and Interfaces

Design Classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Subsystem design

ßwe have
ßdefined the subsystems, their interfaces, and their
dependencies

ßmade an initial cut at some design classes, which have been
allocated to subsystems

ß identified components or subsystems: “containers” of complex
behavior that, for simplicity, we treat as a ‘black box’.

ß in Subsystem Design, we look at
ßresponsibilities of the subsystems in detail

ßdefining and refining the classes that are needed to implement
those responsibilities

ßrefining subsystem dependencies, as needed

ß internal interactions are expressed as collaborations of
classes and possibly other components or subsystems

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Interface and Subsystem

ßWhat is an interface?
ßa model element which defines a set of behaviors (a set
of operations) offered by a classifier model element
(specifically, a class, subsystem or component)

ßWhat is a subsystem?
ßContains other model elements and has behavior

ßRealizes one or more interfaces

<<subsystem>>
Finance System

Financial
Transaction

FinancialTransaction
<<Interface>>

realizes
<<subsystem>>
Finance System

Recall: packages provide no behavior; they are simply containers of things which
provide behavior

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Distribute Subsystem Responsibilities

ßIdentify or reuse existing classes and/or subsystems

ßAllocate subsystem responsibilities to classes and/or
subsystems

ßIncorporate the applicable mechanisms (e.g.,
persistence, distribution, etc.)

ßDocument collaborations with “interface realization”
diagrams
ß1 or more sequence diagrams per interface operation

ßRevisit Architectural Design
ßAdjust subsystem boundaries and/or dependencies, as
needed

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Subsystem design

 : RemoteRegistration
Controller

 : MainStudent
Form

 : Maintain
ScheduleForm

 : Registration
Controller

 : NamingClientSchedule
: Schedule : Student

2: open()
3: new(SecureUser)

5: setSession(SecureUser)

4: lookup("RemoteRegistrationController")

1: registerForCourses()

6: selectCurriculum()

7: getOfferings(curriculum)

8: getOfferings(curriculum)

10: displayOfferings()

11: new(Student)

 : ICourse
Catalog

9: getOfferings(curriculum, semester)

12: displaySchedule()

Subsystem Interface

Client Server

Flesh out

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Local Subsystem Interaction
:CourseOffering
List

Do until fetch
returns Not
Found status

The string represents
 some criteria.
Sometimes a more
robust solution with
a query object is
used.

Get attribute values
from raw data

 : Course
Offering

CourseCatalog
Client

 : CourseCatalog : DBCourse
Offering

 : RDBMSTransaction : sql

1: getCourseOfferings(string)

5: getCourseOfferings(string)

9: parseResults()

10: new(offeringId, number, startTime, endTime, days, courseId)

2: new

3: start()
4: startTrans()

6: bind()

7: execsql(String)

8: fetch()

11: add (CourseOffering)

12: commit()
13: entTrans()

6: new()

CourseCatalog Interaction
•“looks inside” the subsystem
•one or more per subsystem

RDBMS
Retrieve

untyped object because
we don’t care who the
client is.

See Maciaszek - no
time to discuss DB
design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Document Subsystem Elements

CourseCatalog

+ getOfferings()

<<subsystem>>

sql

+ bind()
+ execsql()
+ startTrans()
+ commit()
+ fetch()
+ endTrans()

(from RelationalDBMS)

<<utility>>

RDBMSTransaction

+ start()
+ commit()
+ rollback()
+ new()

(from RelationalDBMS)

DBCourseOffering

+ getCourseOfferings()
+ parseResults()11

CourseOffering

+ getCourseId()
+ addStudent()
+ new()
+ getNumber()
+ getStartTime()
+ getEndTime()
+ getDays()
+ getNumStudents()
+ removeStudent()
+ update()

(from University Artifacts)

<<entity>>
0..*

1

0..*

CourseOfferingList

+ new()
+ add()

(from University Artifacts)

List
(from Base Reuse)

<CourseOffering>
<<bind>>

ICourseCatalog

1

0..*

create one or more class
diagrams showing the
elements contained by the
subsystem, and their
associations with one
another

A state diagram may be
needed to document the
possible states the
subsystem can assume

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Client Support
<<subsystem>>

Server Support
<<subsystem>>

More
flexible

Server

Client Support
<<subsystem>>

Server Support
<<subsystem>>

Server
<<Interface>>Client

(from Client Support)

Describe Subsystem Dependencies

ßSubsystem layering using direct dependency

ßSubsystem layering using interface dependency

Not
recommended

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Subsystem Dependencies

ICourseCatalog
Registration CourseCatalog

<<subsystem>>

University
Artifacts

RelationalDBMS

