CMPSCI520/620

COMPUTER
SCIENCE

21- Design: RUP

Rick Adrion

UNIVERSITY: OF M ASSACHUSETTS: AMHER!

CONPUTER JSD and JSP

= |n JSD, the principles of JSP are extended into the areas of
systems analysis, specification, design and implementation

=In JSP, a simple program describes a sequential process that
communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream

=In JSD, the real world is modeled as a set of sequential model
processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.

= The JSD implementation step embodies the JSP implementation
technique, program inversion, in which a program is transformed
into a procedure

= Other JSP techniques, such as the single read-ahead rule and
backtracking, and principles, such as implementation through
transformation, are used in JSD

UNIVERSITY- OF MASSACHUSETTS AMHER!

©Rick Adrion 2003 (except where noted)

CMPSCI 520/620
COMPUTER Advanced Software Engineering:
Y P
nIE“cE enline material: http:/iwww-edlab.cs.uma fes520/
' Calendar 11/16/03 3:47 PM
Lec Scheduled Lecture 520/620 620 Assignment | Due Date Date
Reading | Reading
19a | SIS Interviews 11/10/03
20 | Design W HW #3 11/12/03
19b | SIS Interviews 11/14/03
11/17/03
21 | Design Project #3 11/17/03
22 | Design; Analyzing i 11/19/03
Products ch10
23 | Analyzing Products Project #2 | 11/24/03
24 | Analyzing Products HW #4 HW#3 | 11/26/03
25 | Representing & 12/1/03
Managing Processes
26 | Analyzing Processes 12/3/03
27 | Guest Lecture or 12/8/03
Rescheduled Class
28 | Reuse, Evolution & 12/10/03
Maintenance
Scheduled Final Exam HN #4 | 12/18/03
(there will be no final) Project #3

UNIVERSITY-OF M ASSACHUSETTS - AMHER!

COMPUTER Comments/Evaluation

=Focus on conceptual design
=But difficult to build a system this way
=Based upon model of real world

=Careful (and experienced) analysis of the model
generally points suggested implementation tactics,
though

=Parnas notions of module not perceptible here

=Not an iterative refinement approach either
=Treatment of data is very much subordinated/secondary
=Does a good job of suggesting possible parallelism

=Contrasts strongly with Objected Oriented notions (eg.
Booch, UML)

UNIVERSITY- OF MASSACHUSETTS AMHER!

CMPSCI520/620

COMPUTER A Minimal Iterative Process

Getting Started: (do this once)
1. Capture the major functional and non-functional requirements for

the system.
= Express the functional requirements as use cases, scenarios, or
stories.
= Capture non-functional requirements in a standard paragraph-style
document.

2. ldentify the classes which are part of the domain being modeled.
3. Define the responsibilities and relationships for each class in the
domain.
4. Construct the domain class diagram.
= This diagram and the responsibility definitions lay a foundation for
a common vocabulary in the project.
5. Capture use case and class definitions in an OO CASE tool (e.g.,
Rose) only when they have stablilized.

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com
UNIVERSITY: OF MASSACHUSETTS AMHERST [

COMPUTER A Minimal Iterative Process

For each iteration: (repeat until done)
1. Merge the functional flow in the use cases/scenarios with the
classes in the domain class diagram
= Produce sequence (and collaboration) diagrams at the analysis level.
2. Test and challenge the sequence diagrams on paper, or whiteboard
= Discover additional operations and data to be assigned to classes
= Validate the business process captured in the flow of the sequence
diagram
3. Develop statechart diagrams for classes with “significant” state
= Statechart events, actions, and most activities will become operations
on the corresponding class
4. Enhance sequence diagrams and statechart diagrams with design
level content
= |dentify and add to the class diagram and sequence diagrams any
required support or design classes (e.g. collection classes, GUI and
other technology classes, etc.)
5. Challenge the sequence diagrams on paper/whiteboard, discovering
additional operations and data assigned to classes.

Copyright 2002. Gary K. Evans. All Rights Reserved.

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER A Minimal Iterative Process

Getting Started: (do this once)
6. Identify the major risk factors and prioritize the most
architecturally significant use cases and scenarios.
= |tis absolutely imperative that the highest risk items and the most
architecturally significant functionality be addressed in the early
iterations. You must not pick the “low hanging fruit” and leave the
risks for later.
7. Partition the use cases/scenarios across the planned iterations.
8. Develop an lteration plan describing each “mini-project” to be
completed in each iteration.
= Describe the goals of each iteration, plus the staffing, the schedule,
the risks, inputs and deliverables.
= Keep the iterations focused and limited (2-3 weeks per iteration).
In each iteration, conduct all of the software activities in the
process: requirements, analysis, design, implementation and test.

Copyright 2002. Gary K. Evans. All Rights Reserved. www.evanetics.com

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

COMPUTER A Minimal Iterative Process

For each iteration: (repeat until done)
6. Update the OO CASE tool information as models stabilize, and if
the there is a good reason to save them.
= Update class diagrams: add in discovered datatypes, message
names, actual functions and arguments, actual return types. These
are discovered especially in the design level sequence and
statechart diagrams.
= Add or modify classes as necessary
= Republish system reports for team members
7. Develop the code for the use cases/scenarios in the current
iteration from the current diagrams
8. Test the code in the current iteration. In a test-then-code
approach this step precedes #7.)
9. Conduct an lteration review:
= What went wrong? What went right? Re-evaluate the iteration plan,
and content of next iteration
= Revise the next iteration plan if necessary
= Revise the Project Plan if necessary
10. Conduct the next iteration, adding in the next set of use

cases/scenarios, until the system is completely built.
Copyright 2002. Gary K. Evans. All Rights Reserved.

UNIVERSITY- OF MASSACHUSETTS AMHERST 7 DEP/

CMPSCI520/620

COMPUTER
SCIENCE

COMPUTER

seieice SO where do we start?

@)
)

Architect

Architectural
Analysis

Architectural Describe Describe
Design Concurrency ~ Distribution

Review the Architecture
Architecture ~ Reviewer

Rational Unified Process

adapted from
OOAD Using the UML
Copyright © 1994-1998 Rational Software, all rights reserved

UNIVERSITY: OF MASSACHUSETTS: AMHERST .

COMPUTER Use Case Anal

S

<

[T

Use-Case Model

UNIVERSITY- OF MASSACHUSETTS AMHERST--+

©Rick Adrion 2003 (except where noted)

s Overview

* . 'Per.itexation per use-case

nalysis Model Design Model

L/
» 5

Design Design
Reviewer

Use-Case
Analysis

Designer

Subsystem
Design

Use-Case
Design

Class
Design

o
[] atabse

Database E=m
Designer

UNIVERSITY-OF MASSACHUSETTS AMHERST 3"

CONPUTER Use Case Analysis Steps

=Supplement the Descriptions of the Use Case
=For each use case realization
=Find Classes from Use-Case Behavior
=Distribute Use-Case Behavior to Classes
=For each resulting analysis class
=Describe Responsibilities
=Describe Attributes and Associations
=Qualify Analysis Mechanisms
=Unify Analysis Classes

UNIVERSITY- OF MASSACHUSETTS AMHERS

CMPSCI520/620

CONPUTE What is an Analysis Class?

« Early conceptual model
*Functional requirements
*Model problem domain

<<boundary>> ¢ Likely to change
|_O *Boundary

«Information used
<<boundary>> « Control logic
A

@ <<control>>
Use-case

behavior
coordination

<<control>>

System
boundary

System
information

Q <<entity>>

UNIVERSITY: OF MASSACHUSETTS AMHERST:

CONPUTER Example: Entity & Control Classes

Q @) Q

Course CourseOffering Grade
(from University Artifacts) (from University Artifacts) (from University Artifacts)

O Q

Student Professor Schedule
(from University Artifacts) (from University Artifacts) (from University Artifacts)

O O

RegistrationController CloseRegistrationController MaintainStudentController
(from Registration) (from Registration) (from Registration)

O

MaintainProfessorController SelectCoursesToTeachController ReportCardController
(from Registration) (from Regjstration) (from Student Evaluation)

@,

O

¢ HE

SubmitGradesController
(from Student Evaluation)

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

COMPUTE The Roles

Collaboration Diagram Boundary Class -- Model

’ S interaction between the .
system and its environment Control Class -- Coordinate

\
1 @ : the use case behavior
U

x

Customer

\

Entity Class -- Store and \
manage information in the
system

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

CONPUTE Describe Responsibilities

. «First cut at class operations
=What are responS|b|I|t|es? +Actions that object can perform

.) *Knowledge object maintains
=How do we find them? «Non-functional requirements

«Class should have multiple responsibilities

@ ResponsibilityA// HO Q

Class Name

] O

Responsibility 2

00| {000 | oo
000 || 000 | {000

Responsibility N

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

CMPSCI520/620

CONTHNEr Collaboration Diagram

2./l open schedule form()

Register
[/Qecl 4 primary and 2 A{\ema(e offerings(|

¢ |

1

Class Responsibilities from a

for Courses use case

<<boundary>>
MaintainScheduleForm

Il select 4 primary and 2 alternate offerings()

<<entity>>
Schedule

Il create with offerings()

<<boundary>>
CourseCatalogSystem

Student
3: // get cdurke offerings()
6:// add es to schedule()
: Registration|
- CourseCatalodls: / get course offetigs(){| Controlier
System
Il open ()
7 Wred %wnn offerings()
<<boundary>>
MainForm
:Schedule|
7 mlecwmi)
<<control>>
ontroller
I/ add courses to schedule()

Il get course offerings ()

UNIVERSITY: OF MASSACHUSETTS AMHERST:

CONPUTE What are Roles?

=The “face” that a class plays in the association

CourseOffering Professor

Pre-requisites

Course

UNIVERSITY- OF MASSACHUSETTS AMHERST--+

©Rick Adrion 2003 (except where noted)

Instructor __/ Department head

Department

COMPUTER

Class Responsibilities from a

seienee Sequence Diagram

Student

1

Maintain
ScheduleForm)

Schedule

‘ MainForm ‘ ‘ : Registration

Controller

CourseCatalof
System’

Register for Courses use case

lect maintain schedule

E

2:// open schedule foi
3:// get)
t cout <<boundary>>
/1 elect 4 primary and) MaintainScheduleForm
6:/agd courses to shedule() 1l selagt 4 primary and 2 alternate offerings()
7: /i create with offerinds() 1l open’

d<boundary>> <<entity>>
MainForm Schedule

Il select msmﬁn schedule() Il create with offerings()

<<control>> <<boundary>>
RegistrationController CourseCatalogSystem

[/ add courses to schedule() I/ get course offerings ()

UNIVERSITY-OF MASSACHUSETTS AMHERST:

““ﬂ-‘;{'ﬁé‘f Example: Finding Relationships

MaintainScheduleForm does not

make any sense outside of the <<boundary>>
context of a particular use <<boundary>> MaintainScheduleForm
session MainForm

- Onlyone

can be active at any one time, or
none may be active

1 1 |+ 1 open()

+ 1l select 4 primary and 2 alternate offerings()

Il select maintain schedule()

legacy system. P

X

Student

<<boundary>> P o- <<control>>
CourseC: . i ntroller
|/l get course offefings() l COY{SS to schedule()
get codirse offerings ()
0.1
~one controller for each Schedule 1
o ofe sc?\se‘d) e Peing created (e.g., each Student
registration session). <<entity>>
+ only one CourseC Schedule
instance for possibly many
MaintainScheduleForms I create with offerings()
+ serializes access
1] crel%wllh offerings() Many MaintainScheduleForms
can be active at one time (for
different sessions/students)

View of Participating Classes (VOPC) diagram.

UNIVERSITY- OF MASSACHUSETTS AMHERST:

CMPSCI520/620

CONPUTER So Where Are We?

Architectural
Analysis

D Architectural _Describe

Architect

Describe
Design Concurrency ~ Distribution

Review the
Architecture

/

Architecture
Reviewer

Use-Case
Analysis

Subsystem
Design

Designer

Use-Case
Design

Class
Design

Review the
Design

Design
Reviewer

Database
Designer

Database
Design

UNIVERSITV: OF MASSACHUSETTS AMHE

COMPUTER Design Classes

In analysis, we had one
application with many
different forms ...

[<<boundary>1 1
MainForm_fc>
 —

0.1
<<boundary>>
(from Student Interface)
<<boundary>>
4 (from Profe: Interfz
electC orm| (from Professor Interface)
(from Professor Interface)

During design, some
analysis classes may
be split, joined,
removed, etc.

<<boundary>>
ReportCardForm

(from Student Interface |

0.1

<<boundary>
LogonForm

<<boundary>>
CloseRegistrationForn]
(ftom Registar Inertace)

<<boundary>>

(from Registrar Interface)

0.1

<<boundary>>

(from Registrar Interface)

UNIVERSITY- OF MASSACHUSETTS Al

©Rick Adrion 2003 (except where noted)

COMPUTER

N
N
N

Glossary
Design
Guidelines

Supplementary
Specifications

OO O

Analysis Classes.

Design Model

UNIVERSITY-OF MASSACHUSETTS: AMH:.E:R

=

Architecturg Document

seieice Architectural Design Overview

Design
Guidelines

Classes and
Subsystems

Design Model

COMPUTER Design Classes

In design, the one
application becomes
three applications, each
with it’s own forms ...

(cont.)

<<boundary>>
MainStudentForm
(from Student Interface|

% 0.1

2] 1

<<boundary>>

(from Student Interface)

MaintainScheduleForm

<<boundary>>
ReportCardForm
(from Student Interfacg)

<<boundary>>
MainRegistrarForm
(from Registrar Interfacg)

Al

<<boundary>>
MainProfessorForm

(from Professor Interface)

1 T
g \ 0.1

lectC

<<boundary>>

<<boundary>>
orm i

(from Professor Interface)

(from Professor Interfacy

0.1

(from Registrar Interface) | [(from Registrar Interface)

c
(from Registrar Interface)

UNIVERSITY: OF MASSACHUSETTS A

)

CMPSCI520/620

COMPUTER
SCIENCE

Classes & packages

=\What is a class?

=A description of a set of objects that share the same
responsibilities, relationships, operations, attributes, and
semantics.

Class Name

=What is a package?
=A general purpose mechanism for organizing elements
into groups
=A model element which can contain other model

elements

Package Name

UNIVERSITY: OF MASSACHUSETTS: AMHERST .

COMPUTER
SCIENCE

Modeling Design Subsystems

System

(from FinanceSystem)

O FinanceSystem
" i) | <<subsystem>>
IFinance (from Business S(?[yjees) CourseCatalog

O <<subsystem>>

ICourseCatalog
(from CourseCatalog)
<<subsystem>> package =

package with a stereotype
of <<subsystem>>

Note: Rose does not fully
support subsystems

<<subsystem>>

<<subsystem>>|

: CourseCatalog
ICourseCatalog

CourseCatalog

(from Business Objects) oo

<<subsystem>> proxy class =
class with a stereotype of
<<subsystem>>

UNIVERSITY- OF MASSACHUSETTS AMHERST--+

©Rick Adrion 2003 (except where noted)

CONPUTER Packages Vs. Subsystems

= Packages provide no = Subsystems provide

behavior behavior, packages Y

= Packages are simply do not ﬁ‘
containers of things . g\ stems (?’ Packegen
which provide

Class B1
e o compltely bl | [
encapsulate A

their contents

= Packages help
organize and control
sets of classes that ~ *Dependencies are
are needed in on the interface of
common, but which the subsystem

aren't really = Subsystems are

subsystems .
y . easily replaceable
= Dependencies are on

specific elements
within the Package
Encapsulation is the key! But note for packages
dependencies should be on public classes

UNIVERSITY-OF MASSACHUSETTS AMHERST 3"

CONPUTE Design Classes and Subsystems

= [dentifying Design Classes

=analysis class is simple and already represents a single
logical abstraction-> design class

=entity classes survive relatively intact into design.
= [dentifying Subsystems
=analysis class is complex, such that it appears to embody
behaviors that cannot be the responsibility of a single class
acting alone, or the responsibilities may need to be reused,
the analysis class should be mapped to a subsystem
=may take a few iterations to stabilize. O O
= Analysis classes which evolve into
subsystems might include: O ()
=complex services and/or utilities o O
=user interfaces and external
system interfaces.

UNIVERSITY- OF MASSACHUSETTS AMHERS

CMPSCI520/620

CONPUTER Design goals

=Properties of a system which make it flexible,
maintainable

= Abstraction
=Modularity

=Cohesion

=how clearly-defined a particular module or procedure is

=a module with high cohesion does one or a few things exceedingly well.
=Coupling

=strength of connections between modules

=what information needs to be communicated between modules

=Goal: High cohesion, low coupling
=Information hiding
=Complexity

UNIVERSITY: OF M ASSACHUSETTS: AMHER!

c"«"’-ﬂ'ﬁﬁ'ﬁ Typical Layering Approach

Specific
functionality

Distinct application subsystem that
make up an application - contairs the
value ackiing software developed by the
onganization

Business specific - contains a number
of reusable syhsystems specific to the
type of business.
Business-specific

for distributed object computing in
heterogeneous ernvironments andso on.

Middleware

System software to specific
drivers and so on.

General
functionality

UNIVERSITY- OF MASSACHUSETTS AMHER!

Middleware - offers subsystens for utiliy
dasses and platform independent services

System software - contains the software for
the adud nfrastructure such as operating

device

©Rick Adrion 2003 (except where noted)

CONINE Partitioning Considerations

= Coupling and cohesion
= design elements with tight coupling/cohesion (e.g., lots of relationships and
communication) should be should be placed in the same partition

= design elements with loose coupling/cohesion should be placed in separate
partitions.

= User organization
= not a good long-term strategy because the organizational structure may change
= you want the software and the business organization to be independent

= System distribution
= partitioning to reflect distribution can help to visualize the network communication

which will occur as the system executes., but can make the system more difficult to
change if the Deployment Model changes significantly.

= Secrecy & access control

= functionality requiring special clearance must be partitioned into subsystems that
will be developed independently, with the interfaces to the secrecy areas the only
visible aspect of these subsystems.

= Variability
= partition “optional” functionality

UNIVERSITY-OF MASSACHUSETTS:AMHERS' --

CONENE! Layering Guidelines

=V/isibility i
=Dependencies only within current

layer and below |
<<iayer>
'VOlatlhty Business Service
=Upper layers affected by
requirements changes

=Lower layers affected by
environment changes

<<layer>>
Business Object

. <<layer>>
=Generality Miadloware
=More abstract model elements in
lower layers \
=Number of layers — v~
<<layer>> Base Reuse] java
=Small system: 3 layers System
lobal lobal

=Complex system: 5-7 layers

Goal is to reduce coupling and to ease maintenance effort

UNIVERSITY- OF MASSACHUSETTS AMHERS

CMPSCI520/620

CONPUTER Layers & Visibility

<<layer>>
User Interfa

Only public

classes can be
referenced outside

Base Reuse| java
lobal lobal

UNIVERSITY: OF MASSACHUSETTS: AMHERST .

of the owning
<<layer>> package
Business Services
<<layer>> A
Business Obje
T
'
'
\
\72
<<layer>> B
Middleware
Public visibility

PackageA

Class A1
L
Class A3

'
'
'
'
T
'
PackageB | !
g

Class B1

Private visibility

CONPUTER Back to layers

Window

from java. awt
——
——1

A bi-directional relationship exists between
the GUI Framework and the other interface
packages because the Logon Form needs
to be able to notify the application forms

inherits from

View

0.* | +open()
+ refresh()
] + close()

°

g

+ update()
inherits from
_& 1

MainApplicationForm
(from GUI Framework) | 1

LogonForm
0-1] (from GUI Framework)

+start()

1!/01 e

<<interface>>
SecureUser
(from Secure Interfaces)

+getUserld() : Uniqueld
+ getAccess(SecureData) : SecurityAccess
+ setAccess(SecureData, SecurityAccess)

UNIVERSITY- OF MASSACHUSETTS AMHERST--+

+ open()

©Rick Adrion 2003 (except where noted)

“ibie Layering

=Concentrate on encapsulating change

=Package dependencies are not transitive, thus one layer
can shield another from change
=Upward dependencies should be resolved in design
=e.g., call backs can be replaced with the “subscribes to”
association whose source is a class (called the
subscriber) and whose target is a class (called the
publisher)

=subscriber specifies a set of events and is notified when one
of those events occurs in the target

UNIVERSITY-OF MASSACHUSETTS AMHERST:

““ﬂ-‘;{'ﬁ'ﬁ User Interface Layer: Main Forms

<<boundary>>

MainApplicationForm [W‘

from GUI Framework) f Iy Gul |
inherit from the MainApplicationForm | —
that came from the GUI framework

<<boundary>>
MainStudentForm

LogonForm was

reverse engineered
From GUI framework

aggregation relationships
to be addressed
in Class Design

<<boundary>>
MainProfessorForm

<<boundary>>
MainRegistrarForm
)
\ 0.1 0.1
1 1 <<boundary>> <<boundary>>
lectCoursesForm
0.* 0. 0.1)
[I 1
B | | | Lo |
(from Registrar Interface) (from Registrar Interface) (from Registrar Interface)
[1

UNIVERSITY- OF MASSACHUSETTS AMHERST:

CMPSCI520/620

CONPUTE More Layers

1

Relational 0ODBMS

DBMS <<subsystem>>]

Security
2 packages Manager

Contains

Secure
Interfaces

IPersistent
(from 0ODBMS)

0OODBMSTransaction H (fom Secure Interfaces)
(from OODBMS H
v

Interfaces)

Middleware System
O (o Secuty Manager)
<<Interface>> " SecureUser |

<<utility>> ' |
sql
(from OODBMS) (from OODBMS: |

1 B

UNIVERSITY: OF MASSACHUSETTS AMHERST:

=Use-Case design vs. analysis

diagrams)

=\We have:
= an initial architectural definition

= defined the major elem
subsystems, their

UNIVERSITY- OF MASSACHUSETTS AMHERST:

©Rick Adrion 2003 (except where noted)

COMPITER A look ahead to Use Case Design

=in analysis, the classes we discovered are “large” to keep the
model “small” so we can uderstand the interactions (and

=in design, flesh out the class structure (“look inside”) to add
design elements to implement the publicly visible behaviors,
but defer subsystem design to the subsygtam-dagionaea
Subsystem Design,

Class Design and
Use Case Design

ur system (e.g., the
aces, the design classes, the

processes and threads) and their relationships, and we have
an understanding of how these elements map into the
hardware on which the system will run.
= In Use Case Design, concentrate on how a use case has been
implemented and make sure that there is consistency from
beginning to end, and that nothing has been missed

CONPUTER So Where Are We?

o
—» [/

Architectural Describe Describe Review the ~ Architecture
Designg, Concurrency Distribution Architecture Reviewer

[T sctiecia

Architect (oD

L/
»

Design Design
Reviewer

Subsystem
Design

Use-Case
Analysis

Designer

Use-Case
Design

Class
Design

o
[] atabse

Database E=m
Designer

UNIVERSITY-OF MASSACHUSETTS:AMHERS'

COMPUTER Use Case Design Overview
S]

Use-Case Realizations,
described with
sequence diagrams

Supplementary Design Subsystems and Interfaces

UNIVERSITY- OF MASSACHUSETTS AMHERS E:

10

CMPSCI520/620

“"W-WJE'E Use Case Realization

Use

<<realizes>> R ~
---------------------------------- S)
N

Use Case Use Case Realization

O

Case Model Design Model

Ao 2>)
Ly §\+O/¢/}/o

1 1 [} | XQ

1 T
Sequence Diagrams Collaboration Diagrams

redraw diagrams
*sub system interfaces

Use Ca:

Documentation

- erefined classes, objects
se Realization

Class Diagrams

UNIVERSITY: OF MASSACRUSETTS: AMHEF&:

COMPUTER
SCIENCE

Advantages of Encapsulation

=Use-case realizations are less cluttered

=Use-case realizations can be created before the internal
designs of subsystems are created

=Use-case realizations are more generic and easy to
change

=Supports parallel subsystem development

Raises the level of abstraction

UNIVERSITY- OF MASSACHUSETTS. AMHEFt

©Rick Adrion 200

3 (except where noted)

““!"n'ii'.},‘;'é Encapsulating Subsystem Interactions

=Subsystems should be represented by their interfaces
on interaction diagrams

=Messages to subsystems are modeled as messages to
the subsystem interface

=Messages to subsystems correspond to operations of
the subsystem interface

=|nteractions within subsystems modeled in Subsystem

Design % |:| O_ I:I I:I
[.

:InterfaceA
O <<subsystem>>| g >I ! i i
InterfaceA MySubsystem : 1 Op1() 1 : :
op1() i : s

UNIVERSITY-OF MASSACRUSETTS:AMHERS

COENE! Design Element Interactions (Login)

- Student ‘ : MainStuden ‘ A;m”w‘

1: start() <<boundary>>

1 0.1 LogonForm
rm
- (from GUI F

2} open() from GUI Frameworl

3: enterUserName() cgrmposition
4: enterPassword()
inherits|from
5: logInUser()
0.1
6: validateUserIDP:) <<Interface>>
<<boundary>> SecureUser
[Login was successful | MainStudentForm (from Secure Interfage:
: from Student Interface)|
7: sety texty)
Q etAccess()
+ registerForCourses() getAccess()
mew(UseriD) + viewReportCard() + getUserld()
+ new()

[Login uccessful |
9: sef(pUserContext() exists an object whose class
realizes the SecureUser interface
. & manages information about the
10: getUserContext() current user’s access to secure
11: close() data without directly depending
on the classes

UNIVERSITY- OF MASSACHUSETTS, AMHEFL

11

CMPSCI520/620

Design Element Interactions
““«"!-';E'JE'E‘ (Register For Courses - Set-Up)

1; registerForCours

2: open()

: new(SecureUser)

4: lgokup(’ i i antroller”)
5 i Jser)

: ICourse

; l\ : MainStuden| : Maintain : Registration |ClientSchedule| : Naming | : RemoteRegistrati
. Form ScheduleForr Controller : Schedule Controller Catalog
: Student —_— _— —_— _—

es()

6: selectClrriculum()

10: displayOfferings()

11: new(Student)

12: displaySchedule()

UNIVERSITY: OF MASSACHUSETTS: AMH

9: gett

semester)

COMPUTER
SciENeE Deployment

: MainStuden| : Maintain : Registration| |ClientSchedule| : Namin
- Student Form ScheduleForr Controller : Schedule
es()

1; registerForCours

2: open()

: new(SecureUser)

4: lgokup(’ i i antroller”)
5 i Jser)

% Subsystem Interface

Controller

6: selectClrriculum()

10: displayOfferings()

1er)

9: gett

semester)

Works similar to Observer.
12: displaySchedule() Cache will potify when Cou
play has been retrieved

Client
UNIVERSITY- OF MASSACHUSETTS ANHi F

©Rick Adrion 2003 (except where noted)

|

COMPUTER Example: Design Classes Relationships:
scieNeE Register for Courses VOPC
oy

| a——)
<<boundary>>
MainStudentForm P —
(from Student Interface)| P— .
+ registerForCourses
o 0 [—
1 i
—
Naniing
0.1 (from fava.)iy
<<boundary>> 77|+ lookup()
MaintainScheduleForm <control>>
) jonController jonController
|displayOfferings() 4 . 1 |(from
selectCurriculum () : Curriculum 5] geIOerings (glriculumy —, o
selectOffering() : CourseOffering yOfferingpelection(offering : CourseOffering) [|+ getOfferings curriculum)
save() q SecureUser, + notifyOfferingSelection (offering : CourseOffering)
lcancel() edutetschied ~Schedule) + + Schedule)
 ISubject) + Schedule)
|displaySchedule() 1
0.1 0.1
0.1 1 1

<<Interface>>
ICourseCatalog
(from CourseCatakbg)

<<entity>>
Schedule

UNIVERSITY-OF MASSACHUSETTS AM

COMPUTER More steps

=Annotate the sequence diagrams

Scripts can be used to

. — describe the details
Script surrounding these

Do Something M

Notes can include
more informatior

Note—F|about a particular

diagram element

=Unify classes & subsystems
=*merge similar model elements
=use inheritance to abstract model elements

2

UNIVERSITY: OF MASSACHUSETTS A EF

12

CMPSCI520/620

CONPUTER So Where Are We?

o
- [/

Architectural Describe Describe Review the Architecture
Design Concurrency Distribution Architecture Reviewer

[T sctiesia

Architect (oD

o
»

Design Design
Reviewer

Use-Case Subsystem
Analysis Design

Designer

Use-Case
Design

Class
Design

o
[7 atabae

Database E=m
Designer

UNIVERSITY: OF M ASSACHUSETTS: AMHER!

CONPUTER Subsystem design

=we have
=defined the subsystems, their interfaces, and their
dependencies
=*made an initial cut at some design classes, which have been
allocated to subsystems
=identified components or subsystems: “containers” of complex
behavior that, for simplicity, we treat as a ‘black box’.
=in Subsystem Design, we look at
=responsibilities of the subsystems in detail
=defining and refining the classes that are needed to implement
those responsibilities
=refining subsystem dependencies, as needed
=internal interactions are expressed as collaborations of
classes and possibly other components or subsystems

UNIVERSITY- OF MASSACHUSETTS AMHER!

©Rick Adrion 2003 (except where noted)

FIE: Subsystem Design Overview

Design Subsgystems and Intexfaces

Use-Case Realization \ Use Case Realization

Design Classes

UNIVERSITY-OF M ASSACHUSETTS - AMHER!

COMPUTER Interface and Subsystem

=\What is an interface?

=a model element which defines a set of behaviors (a set
of operations) offered by a classifier model element
(specifically, a class, subsystem or component)

=What is a subsystem?
=Contains other model elements and has behavior
=Realizes one or more interfaces
1

) <<Ilnterface>>‘ <<subsystem>>
FinancialTransaction < “Fealizes™ " | Finance System

1

<<subsystem>>

O— Finance System

Financial
Transaction

Recall: packages provide no behavior; they are simply containers of things which
provide behavior

UNIVERSITY- OF MASSACHUSETTS AMHER!

13

CMPSCI520/620

c"e"!-';mlg‘ Distribute Subsystem Responsibilities

=|dentify or reuse existing classes and/or subsystems

= Allocate subsystem responsibilities to classes and/or
subsystems

=Incorporate the applicable mechanisms (e.g.,
persistence, distribution, etc.)

=Document collaborations with “interface realization”
diagrams

=1 or more sequence diagrams per interface operation
=Revisit Architectural Design

=Adjust subsystem boundaries and/or dependencies, as
needed

UNIVERSITY: OF M ASSACHUSETTS: AMHER!

COMPUTER | ocal Subsystem Interaction

CourseCatal : CourseCatalos : DBCoursc : Course ||: RDBMSTransaction| :sql ‘ :CourseOfferin
Client Offering Offering List
1: getCourseOfferi i untyped object because See Maciaszek - n
we dont care who the time t6 discuss DB
. client ig. :
The string represepts //' 2 desig
some criteria. P :new
i .
Sometimes a more 3 start() AN
robust solution witk 4 T
a query object is ~4o_ : startTrans(
used. = ~5: getCourseO! i 6: new()
6: bind()

7: execsql(String)

Get attribiute values e 8ifeton() > RDBMS
from raw data Retrieve

-.pars ()

Do until fet
returns Not
Found status

10: i number, startTime, iendTime, days, coyrseld)

B ---{...______11: add (GourseOffering)
CourseCatalog Interaction| 12 commiy
*“looks insjde” the subsystem
-one or more per subsystem

13: entTrans(/

UNIVERSITY- OF MASSACHUSETTS AMHER!

©Rick Adrion 2003 (except where noted)

CONPUTER Subsystem design

: Student Controller Catalog
1; registerForCours

% Subsystem Interface
: MainStuden| : Maintain : Registratiof CIientScheduIH :Namind \ - RemoteRegistratif - ICourse
Form ScheduleForr Controller : Schedule
es()

, Flesh out
2: open()
: new(SecureUser)
4: lgokup(’ i i antroller”)
5 i Jser)
6: selectClrriculum()
7: getOf
8: getO!

9: gett i i semester)

10: displayOfferings()

11: new(Student)

12: displaySchedule()

UNIVERSITY-OF MASSACHUSETTS:AMHERS' --

COMPUTE Document Subsystem Elements

create one or more class RDBMST’?“SEC‘“’,\’;S)
. h |(from RelationalDH
diagrams showing the 1
. + start()
elements contained by the |+ commit()
<1+ rollback()

DBCourseOfferin

subsystem, and their o ¢ new() -
associations with one 1/ sql
another {from Relai)

CourseCatalo +bind()
1 10+ getCourseOfferings() + execsql()
ICourseCatalog + getOfferings () + parseResults() + startTrans()
L 7 + commit()
S~ + fetch()
Seal 0.* + endTrans()
<<entity>>
) CourseOffering
List (from University Aftifacts)

(from Base Reuse)

+ getCourseld()

+ addStudent() A state diagram may be
<<bind>> + new()
<CourseOffering> + getNumber() need_ed to document the
1+ getStartTime () possible states the
+ getEndTime()
CourseOfferingList + getDays() subsystem can assume

(from University ifacts) + getNumStudents()
+ removeStudent()
+ new() + update()

UNIVERSITY- OF MASSACHUSETTS AMHERS

14

CMPSCI520/620

COMPUTER

<<subsystem>> <<subsystem>>
Client Support t----------= > Server Support

seieice Describe Subsystem Dependencies

=Subsystem layering using direct dependency

Not
recommended

=Subsystem layering using interface dependency

<<subsystem>> <<subsystem>>
Client Support | ----------- >)—————| Server Support
Server More
flexible
Client <<Interface>>
(from Client Support) ~ f============= >| Server

UNIVERSITY: OF MASSACHUSETTS! AMHER:@I

©Rick Adrion 2003 (except where noted)

COMPUTER
SCIENCE

UNIVERSITY-OF MASSACHUSETTS: AMHER:

]

Registration

Describe Subsystem Dependencies

\
.

N
N
\
\
\
Y

RelationalDBMS

