
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

20- Design: JSP/JSD & RUP

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Calendar

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSP & JSD

ßJackson System Development
ßEmphasis on high-level conceptual design

ßDevelops collection of coordinated graphical
depictions of system

ßStrong hints about how to carry them to
implementation decisions

ßStrong suggestions about how to go about
doing this

ßJackson Structured Programming
ßJSD Based on/uses JSP, so let’s look at that
first

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSP

ßDesign is about structure, about the relation of parts to
the whole.

ß Programs consist of the following parts or components:
ßelementary components

ßthree types of composite components -- components
having one or more parts:
ßsequence -- a sequence is a composite component that
has two or more parts occurring once each, in order.

ßselection -- a composite component that consists of two or
more parts, only one of which is selected, once.

ßiteration a composite component that consists of one part
that repeats zero or more times.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Difficulties in applying JSP

ßThe development procedures of a method should be closely
matched to specific properties of the problems it can be used to
solve
ßbasic JSP requires the problem to possess at least these two

properties:
ß the data structures of the input and output files, and the

correspondences among their data components, are such that a
single program structure can embody them all
ßeach input file can be unambiguously parsed by looking ahead just

one record

ß If the file structures do not correspond appropriately it is impossible
to design a correct program structure: this difficulty is called a
structure clash
ß If an input file can not be parsed by single look ahead it is

impossible to write all the necessary conditions on the program’s
iterations and selections: this is a recognition difficulty

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Structure Clashes

ß three kinds of structure clash
ß interleaving clash
ß data groups that occur sequentially in one structure correspond

functionally to groups that are interleaved in another structure
ße.g., the input file of a program may consist of chronologically

ordered records of calls made at a telephone exchange; the
program must produce a printed output report of the same calls
arranged chronologically within subscriber. The ‘subscriber groups’
that occur successively in the printed report are interleaved in the
input file

ßordering clash
ßcorresponding data item instances are differently ordered in two

structures
ße.g., an input file contains the elements of a matrix in row order,

and the required output file contains the same elements in column
order.

ßboundary clash,
ß two structures have corresponding elements occurring in the same

order, but the elements are differently grouped in the two
structures; the boundaries of the two groupings are not
synchronized.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Program decomposition

ßExample of a “structure clash”
ßan inventory transaction file consists of daily
transactions sorted by part number

ßeach part number may have one or more transactions
ßeither a receipt into the warehouse or an order out of the
warehouse

ßeach transaction contains a transaction code, a part-
identifier, and a quantity received or ordered

ßA program is to be written that prints a line for each part
number showing the net daily movement for that part
number into or out of the warehouse
ßAssumption: the input file is blocked, with each block
containing a record count followed by a number of records

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation

1. Draw system diagram

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation example

2. Draw data structures

1. Draw new system diagram

Structures
don’t match
“boundary”

clash

Part_no Name Number In/Out Time
02-131 widget 5 out 0815
 07-288 gizmo 5 out 0935
02-131 widget 15 in 1005

….
07-288 gizmo 5 out 1055

Part_no 02-131
Name widget

Number In/Out Time
5 out 0815
15 in 1005

….

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation example

ß Program PA consumes the input file of blocks of records
and produces an unblocked file of transactions. Program
PB consumes the groups of unblocked transaction records
and produces the required report.

2. Draw data structures

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Resolution of the structure clash

ßdecomposing the program P into two programs,
PA and PB as shown below:

ßprogram inversion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Uses of program inversion

ßInteractive conversational programs

ßInterrupt handler

ßImplementation of pipes & filters and hierarchical
networks

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Significance of Inversion

ßmany situations appearing in their dynamic, piecemeal
executable form can be recast in their underlying serial form as
a simple program
ßany resumable program--one that is alternately activated and
suspended--is an example of inversion

ßwhat is the underlying seriality of its input and output?
ßcan recast the problem in serial form, and design a simple
program using JSP

ßcan optimize the design using inversion

ß inversion preserves program correctness--it is an algorithmic
transformation--we can be confident about the design of the
inverted (resumable) program

ß inversion allows us to extend the range of JSP to many
situations that at first glance do not appear to be amenable to it

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Recognition Difficulties

ßA recognition difficulty is present when an input file can
not be unambiguously parsed by single look-ahead
ßsometimes the difficulty can be overcome by looking
ahead two or more records

ßsometimes a more powerful technique is necessary

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Backtracking technique

1. the recognition difficulty is simply ignored. The program is designed, and
the text for the AGroup and BGroup components is written, as usual. No
condition is written on the Group selection component. The presence of
the difficulty is marked only by using the keywords posit and admit in
place of if and else.

2. a quit statement is inserted into the text of the posit AGroup component
at each point at which it may be detected that the Group is, in fact, not an
AGroup. In this example, the only such point is when the B record is
encountered. The quit statement is a tightly constrained form of GO TO:
its meaning is that execution of the AGroup component is abandoned
and control jumps to the beginning of the admit BGroup component.

3. the program text is modified to take account of side-effects: that is, of the
side-effects of operations executed in AGroup before detecting that the
Group was in fact a BGroup.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sketch

Group

AGroup BGroup

0 0

Group

AGroup BGroup
?P

AGroup BGroup
0!else Q

?A

0!else Q

Assume (posit) Agroup Admit Bgroup

read AGroup unless
discover BGroup record
-> Quit (throw exception)

read BGroup unless
discover AGroup record
-> Quit (throw exception)

ß The component attempt!to!read
Agroup records posits
assume!you!can!read Agroup records
and admits that you (cannot & should)
instead read Bgroup records
ß The attempt!to!read Agroup records is

a call of the subprogram read Agroup
records which may cause an implicit
quit when, in reading, it is discovered
the record is a BGroup record
ß an implicit quit is an exception thrown

within a subprogram and not handled
and so is propagated from the
subprogram to its calling environment

ß a posit/!admit design must contain a
single posit and at least one admit
connected at the same level
ß it can contain any number of, implicit or

explicit, quits within the admit
component at any level

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Central virtues of JSP
ß it provides a strongly systematic and prescriptive method for a clearly

defined class of problem
ß independent JSP designers working on the same problem produce the same

solution
ß JSP keeps the program designer firmly in the world of static structures to

the greatest extent possible.
ß only in the last step of the backtracking technique, when dealing with side-

effects, is the JSP designer encouraged to consider the dynamic behavior of
the program
ß this restriction to designing in terms of static structures is a decisive

contribution to program correctness for those problems to which JSP can be
applied
ß avoids the dynamic thinking -- the mental stepping through the program

execution -- that has always proved so seductive and so fruitful a source of
error.

ß Hints
ßDon't optimize!!If you have to, do it as the last step, after you have designed

the program properly.
ßUse Models not functions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Jackson System Development (JSD)

ßEmphasis on high-level conceptual design

ßDevelops collection of coordinated graphical depictions
of system

ßStrong hints about how to carry them to implementation
decisions

ßStrong suggestions about how to go about doing this

ßConsiderable literature delving into the details of JSD

ßProduct of a commercial company

ßSupported by courses, tools, consultants

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD Models Focus on Actions

ßJSD produces models of the real world and the way in
which the system to be built interacts with it
ßPrimary focus of this is actions (or events)
ßactions can have descriptive attributes
ßset of actions must be organized into set of processes
ßProcesses describe which actions must be grouped
together and what the "legal" sequences of actions are
ßProcesses can overlap in various ways
ßProcesses are aggregated into an overall system model
ßusing two canonical models of inter-process
communication

ßData are described in the context of actions
ßin JSD data considerations are subordinate to actions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD - Phases

ßthe modeling phase
ßEntity/action step

ßEntity structure step

ßModel process step

ßthe network phase
ßconnect model processes and functions in a single
system specification diagram (SSD)

ßimplementation phase
ßexamine the timing constraints of the system

ßconsider possible hardware and software for
implementing our system

ßdesign a system implementation diagram (SID)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Student Loan Example
ßFunctional requirements:
ßbefore getting a loan, there is an evaluation process after which

agreement is always reached
ß a TE transaction records each step of the evaluation process
ß a TA transaction records the overall loan agreement

ßa student can take any number of loans, but only one can be active
at any time
ß each loan is initiated by a TI transaction

ß the student repays the loan with a series of repayment
ß each repayment transaction is recorded by a TR transaction

ßa loan is terminated by a TT transaction
ß two output functions are desired:
ß an inquiry function that prints out the loan balance for any student,
ß a repayment acknowledgment sent to each student after payment is

received by the university
ßNon Functional requirements
ß to be implemented on a single processor
ß inquiries should be processed as soon as they are received
ß repayment acknowledgments need only be processed at the end of

each day.
ßNote: generates a stream of data over a long-period of time

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 1: Entity/action step

ßActions have the following characteristics:
ßan action takes place at a point in time

ßan action must take place in the real world outside of the
system.

ßan action is atomic, cannot be divided into subactions.

ßEntities have the following characteristics:
ßan entity performs or suffers actions in time.

ßan entity must exist in the real world, and not be a
construct of a system that models the real world

ßan entity must be capable of being regarded as an
individual; and, if there are many entities of the same
type, of being uniquely named.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Candidates
ß Entities/Description:
ß student
ß system
ß university
ß loan
ß student-loan

ß Actions/Attributes:
ßevaluate -action of university? (university performs the evaluation); action of

student? (student is evaluated)
ß attributes: student-id, loan-no, date of evaluation, remarks

ß agree - action of university? (university agrees to loan); action of student ?
(agrees to loan)
ß attributes: student-id, loan-no, date of agreement, amount of loan, interest rate,

repayment period)
ßmake loan - action of university
ß attributes: student-id, loan-no, date of loan, loan amount, interest rate, repayment

period
ß initiate - action of university? (university initiates loan); action of student?

(student initiates loan); action of loan? (is initiated)
ß attributes: student-id, date initiated

ß repay - action of loan? (loan is repaid); action of student? (student repays the
loan);
ß attributes: student-id, date of repayment, amount of repayment

ß terminate - action of loan (loan is terminated);
ß attributes: student-id, date of termination, remarks

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Focus on:

ßEntities/Description:
ßstudent

ßActions/Attributes:
ßevaluate -action of student; student? (student suffers the
action, is evaluated);
ßattributes: student-id, loan-no, date of evaluation, remarks

ßagree - action of student
ßattributes: student-id, loan-no, date of agreement, amount of loan,

interest rate, repayment period)

ß initiate - action of student
ßattributes: student-id, date initiated

ßrepay - action of student
ßattributes: student-id, date of repayment, amount of repayment

ßterminate - action of student
ßattributes: student-id, date of termination, remarks

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 2: Entity structure step

(1) evaluation part
- zero or more evaluate actions

(2) student agrees to loan
(3) loan(s) is (are) made

- zero or more loans.
- loan is a sequence of initiate
action, iteration of repay actions, a
terminate action

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Process

ßPrimary building block of a JSD design
ßcontains all actions characterizing a key real-world
process

ßActions are structured into a tree
ßonly the leaf nodes of the tree are real-world actions

ßinterior nodes are conceptual

ßinterior nodes can be annotated to show choice or
iteration

ßtraversals of this tree constitute the only "legal"
sequences of actions for this process

ßModel process tree defines a regular expression
ßset of traversals is a regular set

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Processes

ßA model process is a particular view of the system
ßvarious model processes provide different views

ßmodel process is multiply instantiated for different instances

ßmodel processes are often annotated with informal
specifications and notations

ßsame action may appear as part of more than one process

ßModel Processes and Data

ßactions on data hang off of model process leaf nodes

ßglobal data is necessary too
ß for functions that must combine data from >1 model process

ß to assure consistency between model processes

ß to coordinate between different instances of the same model
process

ß to coordinate between different models of the same entity

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 3: Model process step

abstract student entity
in the real world

realization in the
Information system

Use JSP to create a
program for the process

entity structure diagram
describes the structure of

the serial data stream

•a TE transaction records
each step of the evaluation
process
•a TA transaction records the
overall loan agreement
•each loan is initiated by a TI
transaction
•each repayment transaction is
recorded by a TR transaction
•a loan is terminated by a TT
transaction

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Error handling

ßa real-time system (but slow-running)
system
ß information is collected as it arrives

from the real-world
ßentity model process is synchronized

with the actions of the real world entity
ß the state vector of a model process's

“program” has a “counter” … and if it
“points” to repay component of a
student's process, then an 'E'
(evaluate), 'A' (agree) or 'I' (initiate)
transaction must be recognized as an
error

counter

state vector (SV) connection
 -- one process can examine
the SV of a 2nd process
 -- the double lines indicate
 that an inquiry process,
over its life, will examine
 many student processes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Total System Model

ßAt the Network Phase, weave Model Processes
together incrementally to form the total system
specification
ßalso add new processes during this phase: e.g., input,
output, user interface, data collection

ßGoal is to indicate how model processes communicate
with each other, use each other, are connected to user
and outside world
ßLinkage through two types of communication:
ßMessage passing
ßState vector inspection
ßIndicates which data moves between which processes
ßand more about synchronization

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Process Communication

ßFundamental notion is Data Streams
ßcan have multiple data streams arriving at an action in a
process

ßcan model multiple instances entering a data stream or
departing from one

ßTwo types of data stream communication:
ßasynchronous message passing

ßState vector inspection

ßThese communication mechanisms used to model how
data is passed between processes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Message Passing

ßData stream carries a message from one process
activity to an activity in another process
ßmust correlate with output leaf of sending model process

ßmust correlate with input leaf of receiving model process

ßData transfer assumed to be asynchronous
ßless restrictive assumption

ßno timing constraints are assumed

ßmessages are queued in infinitely long queues

ßmessages interleaved non-deterministically when
multiple streams arrive at same activity

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

State Vector Inspection

ßModeling mechanism used when one process needs
considerable information about another

ßState vector includes
ßvalues of all internal variables

ßexecution text pointer

ßProcess often needs to control when its state vector can
be viewed
ßprocess may need exclusive access to its vector

ßCould be modeled as message passing, but important
to underscore characteristic differences

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Network Phase -- the SSD
ß loan balance inquiry function (LBE) is connected to the

Student-1 process by state vector (SV) connection
ßThe function to produce the student acknowledgments data

stream (ACK) is embedded in the student-1 process in the
repays component

ßDT is an input signal at the end of the day--a daily time marker-
-that tells the payment acknowledgment lister (PAL) function to
begin
ßThe ACK and DT data streams are rough-merged, that is, we

don't know precisely whether a repayment acknowledgment will
appear on today's or tomorrow's daily list.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Designing the LBE function w/ JSP

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Implementation Phase

ßUse of inferences encouraged by understandings
gleaned from the network phase

ßNetwork Phase suggests ideal traversal paths through
model processes and their local data
ßsuggests internal implementation of model processes

ßstudying use of model processes suggests internal
structure of their data

ßCommunication by data streams and state vector
inspection often suggest real implementations
ßBut often not

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The SID
all of the serial data
streams are input to
 the scheduler process

all student processes have an
identical structure; only their
SV are different
--separate the state vectors of
student processes from their
process text (state vector
 separation).
--set of SV is the data base of
our student loan system

student-1 process is inverted
with respect to its data stream,
 S. and is called by the
 scheduler to process a
transaction, and then
 suspended

PAL is inverted with respect to
 both of its inputs, the repayment
 acknowledgment data stream
and the daily marker. PAL is
 invoked by Student-1 whenever
 Student-1 processes a repayment
transaction. The scheduler invokes
PAL directly when it receives a DT
 and this triggers the daily listing

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design of the scheduler in JSP
ß records from the serial data stream

(loan balance inquiries and student
loan transactions) are read and
processed in real-time
ß at the end of the day, a daily time

marker--perhaps a signal to the
system from the operator--is input

ß PAL is invoked & processes
payment acknowledgments that
have been previously generated in
real-time whenever a student
repayment is made and stored in a
buffer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD and JSP

ß In JSD, the principles of JSP are extended into the areas of
systems analysis, specification, design and implementation
ß In JSP, a simple program describes a sequential process that

communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream
ß In JSD, the real world is modeled as a set of sequential model

processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.
ßThe JSD implementation step embodies the JSP implementation

technique, program inversion, in which a program is transformed
into a procedure
ßOther JSP techniques, such as the single read-ahead rule and

backtracking, and principles, such as implementation through
transformation, are used in JSD

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comments/Evaluation

ßFocus on conceptual design
ßBut difficult to build a system this way

ßBased upon model of real world

ßCareful (and experienced) analysis of the model
generally points suggested implementation tactics,
though
ßParnas notions of module not perceptible here

ßNot an iterative refinement approach either

ßTreatment of data is very much subordinated/secondary

ßDoes a good job of suggesting possible parallelism

ßContrasts strongly with Objected Oriented notions (eg.
Booch, UML)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Rational Unified Process

adapted from
OOAD Using the UML

Copyright ” 1994-1998 Rational Software, all rights reserved

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

So where do we start?

Architect

Architectural
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Review the
Architecture

Database
Design

Use-Case
Analysis

Subsystem
Design

Class
Design

Use-Case
Design

Review the
Design

Designer

Database
Designer

Design
Reviewer

Architecture
Reviewer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Analysis Overview

Use Case Realization

Supplementary
Specifications

Glossary

Use-Case Model

Use-Case
Modeling Guidelines

Use-Case Realization

Architecture Document

Use-Case
Analysis

Analysis Classes

Design ModelAnalysis Model

OR

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Analysis Steps

ßSupplement the Descriptions of the Use Case

ßFor each use case realization
ßFind Classes from Use-Case Behavior

ßDistribute Use-Case Behavior to Classes

ßFor each resulting analysis class
ßDescribe Responsibilities

ßDescribe Attributes and Associations

ßQualify Analysis Mechanisms

ßUnify Analysis Classes

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What is an Analysis Class?

<<entity>>

<<boundary>>

<<control>>

<<control>>

<<boundary>>

<<entity>>

System
boundary

Use-case
behavior
coordination

System
information

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Roles

Customer

Boundary Class -- Model
interaction between the
system and its environment

Entity Class -- Store and
manage information in the
system

Control Class -- Coordinate
the use case behavior

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Entity & Control Classes

Course
(from University Artifacts)

CourseOffering
(from University Artifacts)

Grade
(from University Artifacts)

Student
(from University Artifacts)

Professor
(from University Artifacts)

Schedule
(from University Artifacts)

RegistrationController
(from Registration)

SubmitGradesController
(from Student Evaluation)

SelectCoursesToTeachController
(from Registration)

MaintainProfessorController
(from Registration)

MaintainStudentController
(from Registration)

ReportCardController
(from Student Evaluation)

CloseRegistrationController
(from Registration)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Describe Responsibilities

ßWhat are responsibilities?

ßHow do we find them?

Class Name

Responsibility 1

Responsibility 2

Responsibility N

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities from a
Collaboration Diagram

 : Student

 : Maintain
ScheduleForm

 : Registration
Controller

:Schedule

 : CourseCatalog
System

 : Main
Form

5: // select 4 primary and 2 alternate offerings()

1: // select maintain schedule()

3: // get course offerings()
6: // add courses to schedule()

7: // create with offerings()

2: // open schedule form()

4: // get course offerings()

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

RegistrationController

// add courses to schedule()

<<control>>

Schedule

// create with offerings()

<<entity>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Responsibilities from a
Sequence Diagram

 : Student : Maintain
ScheduleForm

 : Registration
Controller

 : Schedule : MainForm : CourseCatalog
System

5: // select 4 primary and 2 alternate offerings()

6: // add courses to schedule()

7: // create with offerings()

1: // select maintain schedule()

2: // open schedule form()

3: // get course offerings()

4: // get course offerings()

MaintainScheduleForm

// select 4 primary and 2 alternate offerings()
// open ()

<<boundary>>

MainForm

// select maintain schedule()

<<boundary>>

CourseCatalogSystem

// get course offerings()

<<boundary>>

RegistrationController

// add courses to schedule()

<<control>>

Schedule

// create with offerings()

<<entity>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

What are Roles?

ßThe “face” that a class plays in the association

Course

Pre-requisites

CourseOffering Professor

Instructor

Department

Department head

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example: Finding Relationships

MainForm

// select maintain schedule()

<<boundary>> MaintainScheduleForm

+ // open()
+ // select 4 primary and 2 alternate offerings()

<<boundary>>

1 0..11

CourseCatalogSystem

// get course offerings()

<<boundary>>
1 0..*

RegistrationController

// add courses to schedule()
// get course offerings ()

<<control>>

1

1

Schedule

// create with offerings()

<<entity>>

1

0..1

