CMPSCI520/620

COMPUTER
SCIENCE

20- Design: JSP/JSD & RUP

Rick Adrion

UNIVERSITY. OF MASSACHUSETTS: AMHERST 5

et JSP & JSD

=Jackson System Development
=Emphasis on high-level conceptual design

=Develops collection of coordinated graphical
depictions of system

=Strong hints about how to carry them to
implementation decisions

=Strong suggestions about how to go about
doing this
=Jackson Structured Programming

=JSD Based on/uses JSP, so let’s look at that
first

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

COMPUTER Calendar

CMPSCI 520/620
Advanced Software Engineering:
Synthesis and Development
online material: http://www-edlab.cs.umass.edu/cs 520/
Calendar 11/12/03 7:06 AM

Lec Scheduled Lecture 520/620 620 | Assignment | Due Date Date
Reading | Reading
19a | SIS Interviews 11/10/03
20 | Design Maciaszek HW #3 11/12/03 _
Ch7,8

21 | Design 11/17/03

22 | Analyzing Products W@h Project #3 11/19/03

19b | SIS Interviews 11/21/03

23 | Analyzing Products Project #2 ')1 1/24/03

T —]

24 | Analyzing Products HW #4 HW #3 | 11/26/03

25 | Representing & 12/1/03
Managing Processes

26 | Analyzing Processes 12/3/03

27 | Guest Lecture or 12/8/03
Rescheduled Class

28 | Reuse, Evolution & HW # | 12/10/03

i Project #3

UNIVERSITY-OF MASSACHUSETTS AMHERST:

U JsP

=Design is about structure, about the relation of parts to
the whole.
= Programs consist of the following parts or components:
=elementary components
sthree types of composite components -- components
having one or more parts:

=sequence -- a sequence is a composite component that
has two or more parts occurring once each, in order.

=selection -- a composite component that consists of two or
more parts, only one of which is selected, once.

=iteration a composite component that consists of one part
that repeats zero or more times.

UNIVERSITY- OF MASSACHUSETTS AMHERST:

CMPSCI520/620

CONPUTER Difficulties in applying JSP

= The development procedures of a method should be closely
matched to specific properties of the problems it can be used to
solve

= basic JSP requires the problem to possess at least these two
properties:
=the data structures of the input and output files, and the
correspondences among their data components, are such that a
single program structure can embody them all
=each input file can be unambiguously parsed by looking ahead just
one record
= |f the file structures do not correspond appropriately it is impossible
to design a correct program structure: this difficulty is called a
structure clash
= |f an input file can not be parsed by single look ahead it is
impossible to write all the necessary conditions on the program’s
iterations and selections: this is a recognition difficulty

UNIVERSITY: OF MASSACRUSETTS AMHERST - DEPA

COMPUTER Program decomposition

=Example of a “structure clash”

=an inventory transaction file consists of daily
transactions sorted by part number

=each part number may have one or more transactions

=either a receipt into the warehouse or an order out of the
warehouse

=each transaction contains a transaction code, a part-
identifier, and a quantity received or ordered

=A program is to be written that prints a line for each part
number showing the net daily movement for that part
number into or out of the warehouse

=Assumption: the input file is blocked, with each block
containing a record count followed by a number of records

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER Structure Clashes

=three kinds of structure clash
=interleaving clash
= data groups that occur sequentially in one structure correspond
functionally to groups that are interleaved in another structure
=e.g., the input file of a program may consist of chronologically
ordered records of calls made at a telephone exchange; the
program must produce a printed output report of the same calls
arranged chronologically within subscriber. The ‘subscriber groups’
that occur successively in the printed report are interleaved in the
input file
=ordering clash
= corresponding data item instances are differently ordered in two
structures
=e.g., an input file contains the elements of a matrix in row order,
and the required output file contains the same elements in column
order.

=boundary clash,
=two structures have corresponding elements occurring in the same
order, but the elements are differently grouped in the two
structures; the boundaries of the two groupings are not
synchronized.

UNIVERSITY-OF MASSACRUSETTS-AMHERST - ERA

CONPUTER Report generation

1. Draw system diagram

C-Input;
P- Beport

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEF?

CMPSCI520/620

CONPUTE Report generation example

2. Draw data structures

Inpaut file Report file

Structures Daily R
b transaction epart
don’t match N
“boundary”
clash
m\ Report body ‘ Endline
- Part_no 02-131
Name widget
FReportine 6’\ Number In/Out Time
Part_no Name Number In/Out Time w $155 o e
02-131 widget 5 out 0815 Transaction
07-288 gizmo 5 out 0935 record
02-131widget 15 in 1005

07-288 gizmo 5 out 1055

UNIVERSITY. OF MASSACHUSETTS:AMHERST 4"

COMPUTER Resolution of the structure clash

=decomposing the program P into two programs,
PA and PB as shown below:

O Il e O Kl ©

=program inversion

P& produces a record and iorokes
the subroutine PRI which uses it
to produce X

We say that PBI is inverted with
respect to its input file

PE produces ¥, invoking the
subroutine PAI to obtain the
next record,

We say that PAI is inverted with
respect to its output file

UNIVERSITY OF MASSACHUSETTS AVMHERST: '

©Rick Adrion 2003 (except where noted)

CONPUTE Report generation example

= Program PA consumes the input file of blocks of records
and produces an unblocked file of transactions. Program
PB consumes the groups of unblocked transaction records
and produces the required report.

2. Draw data structures

Program PA Program PB
Input file Inbrjf‘zllfﬁd.\ate Interﬂfgdmte Report file
Daily ol
transaction W—m | transactio
fils file

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

CONPUTER Uses of program inversion

=|nteractive conversational programs

uinal
inp\.u TP Ivlonitor Response
progen (™ [
progar

=|nterrupt handler

=Implementation of pipes & filters and hierarchical
networks

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

CMPSCI520/620

CONPUTER Significance of Inversion

=many situations appearing in their dynamic, piecemeal
executable form can be recast in their underlying serial form as
a simple program
=any resumable program--one that is alternately activated and
suspended--is an example of inversion
=what is the underlying seriality of its input and output?
=can recast the problem in serial form, and design a simple
program using JSP
=can optimize the design using inversion
=inversion preserves program correctness--it is an algorithmic
transformation--we can be confident about the design of the
inverted (resumable) program
=inversion allows us to extend the range of JSP to many
situations that at first glance do not appear to be amenable to it

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE! Al

COMPUTER Backtracking technique

1. the recognition difficulty is simply ignored. The program is designed, and
the text for the AGroup and BGroup components is written, as usual. No
condition is written on the Group selection component. The presence of
the difficulty is marked only by using the keywords posit and admit in
place of if and else.

2. a quit statement is inserted into the text of the posit AGroup component
at each point at which it may be detected that the Group is, in fact, not an
AGroup. In this example, the only such point is when the B record is
encountered. The quit statement is a tightly constrained form of GO TO:
its meaning is that execution of the AGroup component is abandoned
and control jumps to the beginning of the admit BGroup component.

3. the program text is modified to take account of side-effects: that is, of the
side-effects of operations executed in AGroup before detecting that the
Group was in fact a BGroup.

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER Recognition Difficulties

= A recognition difficulty is present when an input file can
not be unambiguously parsed by single look-ahead

=sometimes the difficulty can be overcome by looking
ahead two or more records
ssometimes a more powerful technique is necessary

open read;
read;

read read read read read read

UNIVERSITY-OF MASSACRUSETTS AMHERST - DER,

[P Sketch

= The component attemptEbiead
Agroup records posits
assumeljouldanead Agroup records
and admits that you (cannot & should)
instead read Bgroup records

= The attemptlibllead Agroup records is
a call of the subprogram read Agroup
records which may cause an implicit

Assume (posit) Agroup Admit Bgroup

quit when, in reading, it is discovered
the record is a BGroup record AGroup BGroup
= an implicit quit is an exception thrown
within a subprogram and not handled | |
and so is propagated from the
subprogram to its calling environment Olelse Olelse
= a posit/@dmit design must contain a AG"’% BG""R

L

read BGroup unless
discover AGroup record
-> Quit (throw exception)|

single posit and at least one admit
connected at the same level

= it can contain any number of, implicit or
explicit, quits within the admit

component at any level read AGroup unless
discover BGroup record
-> Quit (throw exception)|

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

COMPUTER Central virtues of JSP

= it provides a strongly systematic and prescriptive method for a clearly
defined class of problem
= independent JSP designers working on the same problem produce the same
solution
= JSP keeps the program designer firmly in the world of static structures to
the greatest extent possible.
=only in the last step of the backtracking technique, when dealing with side-
effects, is the JSP designer encouraged to consider the dynamic behavior of
the program
= this restriction to designing in terms of static structures is a decisive
contribution to program correctness for those problems to which JSP can be
applied
= avoids the dynamic thinking -- the mental stepping through the program
execution -- that has always proved so seductive and so fruitful a source of
error.
= Hints
= Don't optimize!!lf you have to, do it as the last step, after you have designed
the program properly.
= Use Models not functions

UNIVERSITY: OF MASSACRUSETTS AMHERST - DEPA

COMPUTER JSD Models Focus on Actions

=JSD produces models of the real world and the way in
which the system to be built interacts with it

=Primary focus of this is actions (or events)
=actions can have descriptive attributes
sset of actions must be organized into set of processes

=Processes describe which actions must be grouped
together and what the "legal" sequences of actions are

=Processes can overlap in various ways
=Processes are aggregated into an overall system model

=using two canonical models of inter-process
communication

=Data are described in the context of actions
=in JSD data considerations are subordinate to actions

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER Jackson System Development (JSD)

=Emphasis on high-level conceptual design

=Develops collection of coordinated graphical depictions
of system

=Strong hints about how to carry them to implementation
decisions

= Strong suggestions about how to go about doing this
=Considerable literature delving into the details of JSD
=Product of a commercial company

=Supported by courses, tools, consultants

UNIVERSITY-OF MASSACRUSETTS-AMHERST - ERA

COMPUTER JSD - Phases

=the modeling phase

=Entity/action step

=Entity structure step

=Model process step
=the network phase

=connect model processes and functions in a single

system specification diagram (SSD)

=implementation phase

=examine the timing constraints of the system

=consider possible hardware and software for
implementing our system

=design a system implementation diagram (SID)

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEF?

CMPSCI520/620

COMPUTER Student Loan Example

= Functional requirements:
= before getting a loan, there is an evaluation process after which
agreement is always reached
= a TE transaction records each step of the evaluation process
= a TA transaction records the overall loan agreement
= a student can take any number of loans, but only one can be active
at any time
= each loan is initiated by a Tl transaction
=the student repays the loan with a series of repayment
= each repayment transaction is recorded by a TR transaction
=a loan is terminated by a TT transaction
=two output functions are desired:
= an inquiry function that prints out the loan balance for any student,

= a repayment acknowledgment sent to each student after payment is
received by the university

=Non Functional requirements
=to be implemented on a single processor
=inquiries should be processed as soon as they are received

=repayment acknowledgments need only be processed at the end of
each day.

=Note: generates a stream of data over a long-period of time

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE! Al

CONPUTER Candidates

= Entities/Description:
= student
= system
= university
=loan
= student-loan
= Actions/Attributes:
= evaluate -action of university? (university performs the evaluation); action of
student? (student is evaluated)
= attributes: student-id, loan-no, date of evaluation, remarks
= agree - action of university? (university agrees to loan); action of student ?
(agrees to loan)

= attributes: student-id, loan-no, date of agreement, amount of loan, interest rate,
repayment period)

= make loan - action of university

- attrjbgtes: student-id, loan-no, date of loan, loan amount, interest rate, repayment
perio
= initiate - action of university? (university initiates loan); action of student?
(student initiates loan); action of loan? (is initiated)
= attributes: student-id, date initiated
= I'epa - action of loan? (loan is repaid); action of student? (student repays the
oan);
= attributes: student-id, date of repayment, amount of repayment
= terminate - action of loan (loan is terminated);
= attributes: student-id, date of termination, remarks

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER Step 1: Entity/action step

= Actions have the following characteristics:
=an action takes place at a point in time

=an action must take place in the real world outside of the
system.

=an action is atomic, cannot be divided into subactions.
=Entities have the following characteristics:
=an entity performs or suffers actions in time.

=an entity must exist in the real world, and not be a
construct of a system that models the real world

=an entity must be capable of being regarded as an
individual; and, if there are many entities of the same
type, of being uniquely named.

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEP--

COMPUTER Focus on:

= Entities/Description:
=student
= Actions/Attributes:
=evaluate -action of student; student? (student suffers the
action, is evaluated);
= attributes: student-id, loan-no, date of evaluation, remarks
=agree - action of student

= attributes: student-id, loan-no, date of agreement, amount of loan,
interest rate, repayment period)

=initiate - action of student

= attributes: student-id, date initiated
=repay - action of student

= attributes: student-id, date of repayment, amount of repayment
=terminate - action of student

= attributes: student-id, date of termination, remarks

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

CMPSCI520/620

COMPUTER . i COMPUTER
NPUTER Step 2: Entity structure step MU Model Process
student =Primary building block of a JSD design
/ | \ =contains all actions characterizing a key real-world
process
evaluate part agree loan part =Actions are structured into a tree
L L =only the leaf nodes of the tree are real-world actions
evaluate loan sinterior nodes are conceptual
/l\ sinterior nodes can be annotated to show choice or
iteration
(1) evaluation part initiate repay part terminate straversals of this tree constitute the only "legal"
- zero or more evaluate actions L - sequences of actions for this process
(2) student agrees to loan * . X
(3) loan(s) is (are) made repay =Model process tree defines a regular expression
- zero or more loans. .
- loan is a sequence of initiate sset of traversals is a regular set
action, iteration of repay actions, a
terminate action

UNIVERSITY: OF MASSACRUSETTS AMHERST 5

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

COMPUTER

<cienee Model Processes COMPUTER

seince Otep 3: Model process step

STUDENJ;0

abstract student entity
in the real world

= A model process is a particular view of the system
=various model processes provide different views
=model process is multiply instantiated for different instances

=model processes are often annotated with informal
specifications and notations

=same action may appear as part of more than one process

SYSTEM

STUDENT-]

realization in the
Information system

entity structure diagram
describes the structure of
the serial data stream

process

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

=to coordinate between different models of the same entity

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

REPAY end
IERM seq
rocess TT: read S
TERM end
LOAN-PART end

STUDENT-1 end

STUDENT-1 seq
read S
*Model Processes and Data [] Py
; y EVAL end Use JSP to create a
=actions on data hang off of model process leaf nodes STR— program for the process
=global data is necessary too evaluate .ml I agree I loan part | AcREEen) —
AN-P/ iter (forever)
= for functions that must combine data from >1 model process oan * e et ; .
process Tl: read § -a TE transaction records
=to assure consistency between model processes I N . cach step of the evaluation
REPAY iter (while TR) ’
=to coordinate between different instances of the same model | e | I“‘Pa.‘ part | | m,,,,w| process TR; read S 504 transaction records the

~each loan is initiated by a Tl
transaction

«each repayment transaction is
recorded by a TR transaction
«a loan i terminated by a TT
transaction

CMPSCI520/620

COMPYTER Error handling

STUDENT-1 seq

= a real-time system (but slow-running) read S
system EVAL iter (while TE)

= information is collected as it arrives process TE: read S
from the real-world EVAL end

= entity model process is synchronized AGREE seq
with the actions of the real world entity process TA: read S

= the state vector of a model process's AGREE end
“program” has a “counter” ... and if it LOAN-PART iter (forever)
“points” to repay component of a INIT seq
student's process, then an 'E' process T1: read S
(evaluate), 'A' (agree) or 'l' (initiate) INIT
transaction must be recognized as an REPAY iter (while TR)
error rocess TR: read §

state vector (SV) connection
-- One process can examine
the SV of a 2nd process

-- the double lines indicate
that an inquiry process,
over its life, will examine
many student processes

; INPUT
STUDENT-0 '_.@_"wur\\'snm STUDENT-1
ST

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DE

COMPUTER Total System Model

= At the Network Phase, weave Model Processes
together incrementally to form the total system
specification
=also add new processes during this phase: e.g., input,
output, user interface, data collection

=Goal is to indicate how model processes communicate
with each other, use each other, are connected to user
and outside world
=Linkage through two types of communication:
="Message passing
=State vector inspection
=|ndicates which data moves between which processes
=and more about synchronization

COMPUTER Model Process Communication

=Fundamental notion is Data Streams
=can have multiple data streams arriving at an action in a
process
=can model multiple instances entering a data stream or
departing from one

=Two types of data stream communication:
=asynchronous message passing
=State vector inspection

=These communication mechanisms used to model how
data is passed between processes

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DE

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3!

COMPUTER Message Passing

=Data stream carries a message from one process
activity to an activity in another process
=must correlate with output leaf of sending model process
=must correlate with input leaf of receiving model process
=Data transfer assumed to be asynchronous
uless restrictive assumption
=no timing constraints are assumed
"messages are queued in infinitely long queues

"messages interleaved non-deterministically when
multiple streams arrive at same activity

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

CMPSCI520/620

COMPUTER State Vector Inspection

=Modeling mechanism used when one process needs
considerable information about another

=State vector includes
=values of all internal variables
=execution text pointer

=Process often needs to control when its state vector can
be viewed

=process may need exclusive access to its vector

=Could be modeled as message passing, but important
to underscore characteristic differences

UNIVERSITY: OF MASSACHUSETTS AMHERST. ~

CONPUTER Designing the LBE function w/ JSP

(i) input and output STUDENT-1
data structures: - . - _K
SVs
¥

*
STUDENT-1
SV

(i) basic program
et Loan balance
enquiry function

(iii) list of operations
- write 'loan balance for'. stud ent-id, 'is', balance
- oet STHDENT SV (student-id)

(iv) elaborated program structurcand text:

LBE seq

reac
LBE-BODY itr (forever)
get STUDENTSV(student-id);

write 'loan balance for ', stud ent-id.

C-eng is !, balance'
|

read |
1—‘ LBE-BODY end
LBE end

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

COMPUTER Network Phase -- the SSD

=|oan balance inquiry function (LBE) is connected to the
Student-1 process by state vector (SV) connection

= The function to produce the student acknowledgments data
stream (ACK) is embedded in the student-1 process in the
repays component

Payment
acknowledgement
lister (PAL)

Loan balance

enquiry function

=DT is an input signal at the end of the day--a daily time marker-
-that tells the payment acknowledgment lister (PAL) function to
begin

=The ACK and DT data streams are rough-merged, that is, we
don't know precisely whether a repayment acknowledgment will
appear on today's or tomorrow's daily list.

UNIVERSITY-OF MASSACHUSETTS AMHERST: ~

CONPUTER Implementation Phase

=Use of inferences encouraged by understandings
gleaned from the network phase

=Network Phase suggests ideal traversal paths through
model processes and their local data

ssuggests internal implementation of model processes

sstudying use of model processes suggests internal
structure of their data

=Communication by data streams and state vector
inspection often suggest real implementations
=But often not

UNIVERSITY- OF MASSACHUSETTS AMHERS

CMPSCI520/620

et The SID

all of the serial data
streams are input to
the scheduler process

! . Scheduler
Eng..
D1
stud
STUDENT-1
SVs

PAL m

all student processes have an
identical structure; only their
SV are different

--separate the state vectors of
student processes from their
process text (state vector
separation).

--set of SV is the data base of
our student loan system

Loan balance
enquiry
function

‘ PAL is inverted with respect to

student-1 process is inverted
with respect to its data stream,
S. and is called by the
scheduler to process a
transaction, and then
suspended

DEPARTRA OFCOMPLT

both of its inputs, the repayment
acknowledgment data stream
and the daily marker. PAL is
invoked by Student-1 whenever
Student-1 processes a repayment
transaction. The scheduler invokes
PAL directly when it receives a DT
and this triggers the daily listing

2 AR BBl 200

COMPUIER JSD and JSP

COMPUIER Design of the scheduler in JSP

= records from the serial data stream

(loan balance inquiries and student
loan transactions) are read and
processed in real-time

= at the end of the day, a daily time
marker--perhaps a signal to the
system from the operator--is input

List of operations:

1-read input

2-call LBE(inrec)

3-get SSV(student-id)
4-call student-1(srec, ssv)
S-put SSV(student-id)
6-call PAL(DT)

= PAL is invoked & processes
payment acknowledgments that
have been previously generated in
real-time whenever a student
rbe%ayment is made and stored in a
uffer

Student

Loan balance
i loan part

enquiry
Lk

= |n JSD, the principles of JSP are extended into the areas of
systems analysis, specification, design and implementation

=In JSP, a simple program describes a sequential process that
communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream

=In JSD, the real world is modeled as a set of sequential model
processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.

= The JSD implementation step embodies the JSP implementation
technique, program inversion, in which a program is transformed
into a procedure

= Other JSP techniques, such as the single read-ahead rule and
backtracking, and principles, such as implementation through
transformation, are used in JSD

UNIVERSITY OF MASSACHUSETTS AVMHERST: o

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF MASSACHUSETTS:AMHERS'

CONPUTER Comments/Evaluation

=Focus on conceptual design
=But difficult to build a system this way
=Based upon model of real world
=Careful (and experienced) analysis of the model
generally points suggested implementation tactics,
though
=Parnas notions of module not perceptible here
=Not an iterative refinement approach either
=Treatment of data is very much subordinated/secondary
=Does a good job of suggesting possible parallelism
=Contrasts strongly with Objected Oriented notions (eg.
Booch, UML)

UNIVERSITY- OF MASSACHUSETTS AMHERS

10

CMPSCI520/620

COMPUTER
SCIENCE

Rational Unified Process

adapted from
OOAD Using the UML

UNIVERSITY: OF MASSACRUSETTS: AMHEF&:S-.

Copyright © 1994-1998 Rational Software, all rights reserved

CONTENE! So where do we start?

D Architectural Architectural Describe Describe Review the ~ Architecture
Analysis Design Concurrency Distribution | | Architecture ~ Reviewer

Architect

L/
» 5

Design Design
Reviewer

Use-Case
Analysis

Designer

Subsystem
Design

Use-Case
Design

Class
Design

o
[] atabse

Database E=m
Designer

N

=—— | Architecture| Document
Glossary yse-Case
Supplementary \Modeling Guidelines
Specifications

~ -

Use-Case Realization

/%%Ob %R

Use-Case Model

Analysis Model

UNIVERSITY- OF MASSACHUSETTS AMHE!

©Rick Adrion 2003 (except where noted)

CONTHNE! Use Case Analysis Overview

OO O

Analysis Classes

se Case Realization

Design Model

UNIVERSITY-OF MASSACRUSETES: AMHER_é:

PNV Use Case Analysis Steps

=Supplement the Descriptions of the Use Case
=For each use case realization
=Find Classes from Use-Case Behavior
=Distribute Use-Case Behavior to Classes
=For each resulting analysis class
=Describe Responsibilities
=Describe Attributes and Associations
=Qualify Analysis Mechanisms
=Unify Analysis Classes

UNIVERSITY- OF MASSACHUSETTS, AMHEFL__

11

CMPSCI520/620

CONPUTE What is an Analysis Class?

i—O <<boundary>>

<<boundary>>

<<control>>

A
Use-case @

behavior <<control>>
coordination

System
boundary

System

information

<<entity>>

O

<<entity>>

UNIVERSITY: OF MASSACRUSETTS AMHERST 5

COMPUTER

Q @) Q

Course CourseOffering Grade
(from University Artifacts) (from University Artifacts) (from University Artifacts)

O Q

Student Professor Schedule
(from University Artifacts) (from University Artifacts) (from University Artifacts)

O O

eB e

(from Registration) (from Registration) (from Registration)

@)

¢ HE

SubmitGradesController
(from Student Evaluation)

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

MaintainProfessorController SelectCoursesToTeachController ReportCardController
(from Registration) (from Regjstration) (from Student Evaluation)

seience Example: Entity & Control Classes

RegistrationController CloseRegistrationController MaintainStudentController

COMPUTE The Roles

Boundary Class -- Model

’ S interaction between the .
system and its environment Control Class -- Coordinate

\
1 @ : the use case behavior
U

x

Customer

\

Entity Class -- Store and \
manage information in the
system

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

CONPUTE Describe Responsibilities

=What are responsibilities?
=*How do we find them?

— tHO
Responsibility 1

Class Name

Responsibility 2

000 | {an | 000
000 || 00| {000

Responsibility N

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

12

CMPSCI520/620

Class Responsibilities from a coneuri S12SS Responsibilities from a

c“ﬂgﬂ%‘[‘ Collaboration Diagram seiENce Sequence Diagram

Student MainForm Maintain | [Registration| [~ CourseCataich [< Schedule
2 open schedule form() ~Student ScheduleForm|| ~Controller “System
1 ’ el | ﬂ :
l Wecl 4 primary and 2 A{\ema(e offerings(i T H 4 E;lem S—
“4_” 2.1/ open schediule formy)
[31 get)
Student
3:// get cc ui@ offerings() <<boundary>> t cour <<boundary>>
6://add chifses to schedue() MaintainScheduleForm o [T o 7 MaintainScheduleForm
- Registration
o c";"‘f’:‘a‘ 1 get course offerings(] Controllr Il select 4 primary and 2 alternate offerings() 6:/lagd courses to shedule() 1/ selagt 4 primary and 2 alternate offerings()
I open () 7. create with offerings() I open
THerel %wllh offerings()
<<boundary>> <<entity>> d<boundary>> <<entity>>
MainForm Schedule MainForm Schedule
Schedule L
1 mlecwm) I create with offerings() i select msmﬁr\schedulet) I create with offerings()
<<control>> <<boundary>> <<control>> <<boundary>>
ontroller CourseCatalogSystem RegisirationController CourseCatalogSystem
1 add courses to schedule() 1 get course offerings() 1 add courses to schedule() 1 get course offerings()

UNIVERSITY-OF MASSACHUSETTS:AMHERS'

UNIVERSITY: OF MASSACHUSETTS AMHERST: :

CONITEE What are Roles? FINEs Example: Finding Relationships

=The “face” that a class plays in the association <<boundary>>
<<boundary>> MaintainScheduleForm
MainForm
P 1 0.1
m /I select maintain schedule() +// open()
+// select 4 primary and 2 alternate offerings()
Instructor __/ Department head
1
CourseOffering Professor Department
1
<<boundary>> 1 0. <<control>>
CourseCatalogSystem ” RegistrationController

// add courses to schedule()
I get course offerings ()

/I get course offerings()

Pre-requisites 01

1
Course <<entity>>
Schedule

1/ create with offerings()

UNIVERSITY- OF MASSACHUSETTS AMHERS "

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

