
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

18- Architecture, Frameworks,
Components, Patterns, Middleware
  + Design: JSP/JSD

Rick Adrion

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Architectures

ß Architectural taxonomy (“boxology”)
ß Architectural patterns & idioms
ß Design patterns & idioms
ß Reuse
ß Class libraries
ß Components
ß Frameworks
ß Middleware

RequirementsRequirements

Detailed
Design

Detailed
Design

High-level
Design

High-level
Design

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architectural taxonomy (“boxology”)
ß dataflow

ß batch sequential
ß data flow network
ß pipes & filter

ß call/return
ß main program/subroutines
ß abstract data types
ß objects
ß call based client/server
ß layered

ß independent components
ß communicating processes
ß distributed
ß event systems (implicit, explicit)

ß virtual machine
ß interpreter
ß rule-based

ß data-centered
ß repository
ß blackboard

can decompose into sequential stages
involves transformations on continuous

(or on very long streams) streams of
data

flexibility, configurability, loose coupling
hierarchies, producer-consumer, tightly

connected

cross-platform
late decision on hardware

focus on management and representation
of data

long-lived (persistent) data is focus on
repositories

stream of incoming requests to access
highly structured data

changing data
 “noisy” input data, uncertain execution

order can not be predetermined,
consider a blackboard

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Active Object, Bridge,
Proxy, Wrapper
Façade, & Visitor

Capture the static & dynamic roles &
relationships in solutions that occur
repeatedly

Design patterns

Half-Sync/Half-Async,
Layers, Proactor,
Publisher-Subscriber,
& Reactor

Express a fundamental structural
organization for software systems that
provide a set of predefined subsystems,
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

Architectural
patterns

Optimize for common
case, pass
information between
layers

Document rules for avoiding common
design & implementation mistakes that
degrade performance

Optimization
principle patterns

Scoped lockingRestricted to a particular language, system,
or tool

Idioms

ExamplesDescriptionType

Taxonomy of Patterns & Idioms



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

design
view

deployment
view

process
view

implementation
view

Use -Case
View

Use cases

Components 

Classes, interfaces,
collaborations

Active classes Nodes

Organization
Package, subsystem

Dynamics
Interaction

State machine

The Rational 4+1 Views

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Rational 4+1 Views

Use cases, 
Scenarios 
(sequence 
diagrams)

Design:
class & 
collaboration
diagrams

Process:
class & 

statechart
diagrams

Implementation:
component
diagrams

Deployment:
deployment

diagrams

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architecture Description Languages

ßformal notations for representing and analyzing
architectural designs

ßprovide both a conceptual framework and a concrete
syntax for characterizing software architectures

ßtools for parsing, displaying, compiling, analyzing, or
simulating architectural descriptions.

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

ADL Examples
ß Adage
ß supports the description of architectural frameworks for avionics navigation

and guidance
ß Aesop
ß supports the use of architectural styles

ß C2
ß supports the description of user interface systems using anevent-based style

ß Darwin
ß supports the analysis of distributed message-passing systems

ßMeta-H
ß provides guidance for designers of real-time avionics control software;

ß Rapide
ß allows architectural designs to be simulated, and has tools for analyzing the

results of those simulations;
ß SADL
ß provides a formal basis for architectural refinement;

ß UniCon
ß has a high-level compiler for architectural designs that supports a mixture of

heterogeneous component and connector types;
ßWright
ß supports the formal specification and analysis of interactions between

architectural components.



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

formal architectural specification.

ßmodule interconnection languages
ßstatic aspects of component interaction
ßdefinition and use of types, variables, and functions among
components
ßexamples: INTERCOL, PIC, CORBA/IDL

ßprocess algebras
ßdynamic interplay among components
ßconcerned with the protocols by which components
communicate
ßexamples: Wright (based on CSP), Chemical Abstract
Machine (based on term rewriting)

ßevent languages
ß identification and ordering of events
ßevent is a very flexible, abstract notion
ßexample: Rapide

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Evaluation & analysis

ßconduct a formal review with external reviewers
ßtime the evaluation to best advantage
ßchoose an appropriate evaluation technique
ßcreate an evaluation contract
ßlimit the number of qualities to be evaluated
ßinsist on a system architect
ßbenefits
ßfinancial
ßincreased understanding and documentation of the
system
ßdetection of problems with the existing architecture
ßclarification and prioritization of requirements
ßorganizational learning

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Benefits

ßexamples
ßAT&T
ß10% reduction in project costs, on projects of 700 staff days
or longer, the evaluation pays for itself.

ßconsultants
ßreported  80% repeat business, customers recognized
sufficientvalue

ßwhere architecture reviews did not occur
ßcustomer accounting system estimated to take two years,
took seven years, re-implemented three times, performance
goals never met

ß large engineering relational database system, performance
made integration testing impossible, project was cancelled
after twenty million dollars had been spent.

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architecture vs Frameworks
ßFrameworks
ßan object-oriented reuse technique
ßused successfully for some time & are an important
part of the culture of long-time object-oriented
developers,
ßBUT they are not well understood outside the
object-oriented community and are often misused

ßQuestion:
ßare frameworks mini-architectures, large-scale
patterns, or they are just another kind of
component?

ßDefinitions
ßa framework is a reusable design of all or part of a
system that is represented by a set of abstract
classes and the way their instances interact
ßa framework is the skeleton of an application that
can be customized by an application developer

Ralph E. Johnson, “Frameworks= (Components+Patterns).”Communications of the ACM, October 1997/Vol. 40, No. 10



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks & Class Libraries

ßdevelopers often do not even know they are using a
framework, but refer to a “class library”

ßframeworks differ from other class libraries by reusing
high-level design
ßmore to learn before a class can be reused

ßcan never be reused in isolation; typically a set of
classes must be learned at once

ßyou can often tell that a class library is a framework if
there are dependencies among its components and if
programmers who are learning it complain about its
complexity.

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Framework Architecture

Class Library Architecture

ADTs

Strings

Locks
IPC

Math

LOCAL 
INVOCATIONS APPLICATION-

SPECIFIC
FUNCTIONALITY

GLUE
CODE

Files

GUI
EVENT
LOOP

Frameworks & Class Libraries

ßA class is a unit of abstraction
& implementation in an OO
programming language

ßA framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Components &  frameworks

ßFrameworks
ßwere originally intended to be reusable
components
ßbut reusable O-O components have not found a
market

ßare a component in the sense that
ßvenders sell them as products
ßan application might use several frameworks.

ßBUT
ßthey more customizable than most components
ßhave more complex interfaces
ßmust be learned before the framework can be used

ßa component represents code reuse, while
frameworks are a form of design reuse

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Components &  frameworks
ßframeworks
ßprovide a reusable context for components
ßprovide a standard way for components to handle
errors, to exchange data, and to invoke operations
on each other
ß“component systems’’ such as OLE, OpenDoc, and Beans,
are really frameworks that solve standard problems that
arise in building compound documents and other composite
objects. make it easier to develop new components

ßenable making a new component (such as a user
interface) out of smaller components (such as a
widget)
ßprovide the specifications for new components and
a template for implementing them.

ßa good framework can reduce the amount of
effort to develop customized applications by an
order of magnitude



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

 Middleware Bus

Component Architecture

Naming

LockingLogging

Events

Framework Architecture

ADTs

Locks

Strings

Files

INVOKES

Reactor 

GUI

DATABASE 

NETWORKING

APPLICATION-
SPECIFIC
FUNCTIONALITY CALLBACKS

Frameworks & Components

ßA framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

ßA component is an
encapsulation unit with one
or more interfaces that
provide clients with access to
its services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comparison

Class Libraries Frameworks
Macro-levelMeso-levelMicro-level

Borrow caller’s threadInversion of
control

Borrow caller’s
thread

   Domain-specific or

   Domain-independent

Domain-specificDomain-independent

Stand-alone
composition entities

“Semi-complete”
applications

Stand-alone
language entities

Components

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks as Reusable Design

ßAre they like other techniques for reusing high-level
design, e.g., templates or schemas?
ßtemplates or schemas
ßusually depend on a special purpose design notation
ßrequire special software tools
ßframeworks
ßare expressed in a programming language
ßmakes them easier for programmers to learn and to
apply
ßno tools except compilers
ßcan gradually change an application into a framework
ßbecause they are specific to a programming language,
some design ideas, such as behavioral constraints,
cannot be expressed well

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks
and domain-specific architectures

ßA framework is ultimately an object-oriented design, while a
domain-specific architecture might not be.

ßA framework can be combined with a domain-specific
language by translating programs in the language into a set
of objects in a framework
ßwindow builders associated with GUI frameworks are
examples of domain-specific visual programming languages

ßUniformity reduces the cost of maintenance

ßGUI frameworks give a set of applications a similar look and
feel

ßusing a distributed object framework ensures that all
applications can communicate with each other.

ßmaintenance programmers can move from one application to
the next without having to learn a new design



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Overview of Patterns

ßPatterns
ßpresent solutions to common software problems
arising within a certain context

ßhelp resolve key software design issues
ßFlexibility, Extensibility, Dependability, Predictability,
Scalability,Efficiency

ßcapture recurring structures & dynamics among
software participants to facilitate reuse of
successful designs

ßcodify expert knowledge of design strategies,
constraints and best practices

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

software patterns

ßrecord experience of good designers
ßdescribe general, recurring design structures in a
pattern-like format
ßproblem, generic solution, usage
ßsolutions (mostly) in terms of O-O models
ßcrc-cards; object-, event-, state diagrams
ßoften not O-O specific
ßpatterns are generic solutions; they allow for design and
implementation variations
ßthe solution structure of a pattern must be “adapted” to
your problem design
ßmap to existing or new classes, methods, ...
ßa pattern is not a concrete reusable piece of software!

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

qualities of a pattern

ßencapsulation and abstraction
ßeach pattern encapsulates a well-defined problem and its
solution in a particular domain
ßserve as abstractions which embody domain knowledge and
experience

ßopenness and variability
ßopen for extension or parametrization by other patterns so that
they may work together

ßgenerativity and composability
ßgenerates a resulting context which matches the initial context
of one or more other patterns in a pattern language
ßapplying one pattern provides a context for the application of
the next pattern.

ßequilibrium
ßbalance among its forces and constraints

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Active Object, Bridge,
Proxy, Wrapper
Façade, & Visitor

Capture the static & dynamic roles &
relationships in solutions that occur
repeatedly

Design patterns

Half-Sync/Half-Async,
Layers, Proactor,
Publisher-Subscriber,
& Reactor

Express a fundamental structural
organization for software systems that
provide a set of predefined subsystems,
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

Architectural
patterns

Optimize for common
case, pass
information between
layers

Document rules for avoiding common
design & implementation mistakes that
degrade performance

Optimization
principle patterns

Scoped lockingRestricted to a particular language, system,
or tool

Idioms

ExamplesDescriptionType

Taxonomy of Patterns & Idioms



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks and Patterns

ßframeworks represent a kind of pattern
ße.g., Model/View/Controller is a user-interface framework
often described as a pattern
ßapplications that use frameworks must conform to the
frameworks’ design and model of collaboration, so the
framework  causes patterns in the applications that use it.

ßframeworks are at a different level of abstraction than
patterns
ßframeworks can be embodied in code, but only examples
of patterns can be embodied in code.
ßa strength of frameworks is that they can be written down
in programming languages and not only studied but
executed and reused directly
ßin contrast, design patterns have to be implemented each
time they are used.

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks and Patterns

ßdesign patterns are smaller architectural elements than frameworks
ßa typical framework contains several design patterns but the reverse

is never true
ßdesign patterns are the micro-architectural elements of frameworks.
ß e.g., Model/View/Controller can be decomposed into three major design

patterns, and several less important ones
ßMVC uses the Observer pattern to ensure the view’s picture of the model is

up-to-date, the Composite pattern to nest views, and the Strategy pattern
to cause views to delegate responsibility for handling user events to their
controller.

ßdesign patterns are less specialized than frameworks.
ß frameworks always have a particular application domain.
ßdesign patterns can be used in nearly any kind of application.
ßmore specialized design patterns are certainly possible, even these

wouldn't dictate an application architecture

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks

ßare firmly in the middle of reuse techniques.

ßare more abstract and flexible than components,

ßare more concrete and easier to reuse than a pure
design (but less flexible and less likely to be applicable)

ßare more like techniques that reuse both design and
code, such as application generators and templates.

ßcan be thought of as a more concrete form of a pattern
ßpatterns are illustrated by programs, but a framework is
a program

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Application-specific functionality

Framework Characteristics

ßFrameworks exhibit
“inversion of control” at
runtime via callbacks

ßFrameworks provide
integrated domain-
specific structures &
functionality

ßFrameworks are “semi-
complete” applications

Networking Database
GUI 

Mission
Computing

Scientific
VisualizationE-commerce

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Using Frameworks Effectively

ßFrameworks are powerful, but hard to develop & use
effectively by application developers
ßIt’s often better to use & customize COTS frameworks
than to develop in-house frameworks
ßComponents are easier for application developers to
use, but aren’t as powerful or flexible as frameworks
ßSuccessful projects are often organized using the
“funnel” model

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Relation to Middleware

ßone of the strengths of frameworks is that they are
represented by traditional object-oriented programming
languages.
ßBUT, this is also a weakness of frameworks, however,
and it is one that the other design-oriented reuse
techniques do not share.
ßMiddleware
ßCOM, CORBA, etc. address this problem, since they let
programs in one language interoperate with programs in
another

ßOther approaches
ßsome frameworks have been implemented twice so that
users of two different languages can use them, such as
the SEMATECH CIM framework

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

Evolution of Middleware

ßHistorically, mission-critical apps were
built directly atop hardware & OS
ßtedious, error-prone, & costly over
lifecycles

ßThere are layers of middleware, just like
there are layers of networking protocols
ßStandards-based COTS middleware

helps:
ßControl end-to-end resources & QoS
ßLeverage hardware & software
technology advances
ßEvolve to new environments &
requirements
ßProvide a wide array of reuseable, off-
the-shelf developer-oriented services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Middleware

ß Infrastructure middleware.
ßencapsulates core OS communication and concurrency services to

eliminate many tedious, error-prone, and non-portable aspects of
developing and maintaining distributed applications using low-level
network programming mechanisms, such as sockets
ßExamples: the Java Virtual Machine (JVM) and the ADAPTIVE

Communication Environment (ACE).
ßDistribution middleware
ßbuilds upon the lower-level infrastructure middleware to automate

common network programming tasks, such as parameter
marshaling/demarshaling, socket and request demultiplexing, and
fault detection/recovery
ßExamples: Object Management Group's (OMG's) Common Object

Request Broker Architecture (CORBA), Microsoft's Distributed COM
(DCOM), and JavaSoft's Remote Method Invocation (RMI).



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Middleware

ß Common middleware services
ß augments the distribution middleware by defining domain-independent

services, such as event notifications, logging, multimedia streaming,
persistence, security, transactions, fault tolerance, and distributed
concurrency control

ß applications can reuse these services to perform common distribution tasks
that would otherwise be implemented manually.

ß Domain-specific Services
ß  tailored to the requirements of particular domains, such as

telecommunications, e-commerce, health-care, or process automation

ß are generally reusable, and thus are the least mature of the middleware layers
today

ß embody domain-specific knowledge, however, they have the most potential to
increase system quality and decrease the cycle-time and effort required to
develop particular types of networked applications

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Progress

ßsignificant progress in QoS-
enabled middleware,
stemming in large part from
the following trends:
ßyears of iteration,
refinement, & successful
use
ßmaturation of middleware
standards
ß .NET, J2EE, CCM
ßReal-time CORBA
ßReal-time Java
ßSOAP & Web Services

ßmaturation of component
middleware frameworks &
patterns

Year1970 2005

ARPAnet

RPC

Micro-kernels

CORBA & DCOM

Real-time
CORBA

    Component
   Models (EJB)        

CORBA Component
Model (CCM)

Real-time CCM

DCE

Web Services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSP & JSD

ßJackson System Development
ßEmphasis on high-level conceptual design

ßDevelops collection of coordinated graphical
depictions of system

ßStrong hints about how to carry them to
implementation decisions

ßStrong suggestions about how to go about
doing this

ßJackson Structured Programming
ßJSD Based on/uses JSP, so let’s look at that
first

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSP

ßDesign is about structure, about the relation of parts to
the whole.

ß Programs consist of the following parts or components:
ßelementary components

ßthree types of composite components -- components
having one or more parts:
ßsequence -- a sequence is a composite component that
has two or more parts occurring once each, in order.

ßselection -- a composite component that consists of two or
more parts, only one of which is selected, once.

ßiteration a composite component that consists of one part
that repeats zero or more times.



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

composite components

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Basic program design method (JSP)

ßsystem diagram

ßinput/output structure diagrams

ßprogram structure diagram

ßallocation of operations to program structure
ßwhich part?  how many times?

ß"read-ahead rule"

ßconstructive method of design
ßnot top-down, not stepwise refinement

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSP design method

ßconsists of the following steps:
1. Draw a system diagram

2. Draw a data structure for each input and output file

3. Draw a single data structure based on
correspondences between the input and output
data structures; this data structure forms the basic
program structure

4. List the operations needed by the program, For
each, ask "Where does it belong (in what program
part?)" "How many times does it occur?" Allocate
the operations to the basic program structure.

5. Translate the program structure into text, specifying
the conditions for iteration and selection

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

multiplication table example

ß The required output is:

        1

        2 4

        3 6 9

        4 8 12 16

        ... ... ... ...

        10 20 30 40 50 60 70 80 90 100

1. Draw system diagram



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

multiplication table example

2. Draw data structures 3. Form program structure
based on the data
structures from the
previous step.

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

multiplication table example

4. List and allocate operations
ß elementary operations needed to perform the task,

and for each operation
ß "How often is it executed?"

ß "In what program component(s) does it belong?”

ß  The operations must be elementary statements of
some programming language; e.g., Pascal.

operation how often?  where?
1 row-no := 1; once  at start of program
2 col-no := 1; once per line in part that produces a

line, at start
3 row-no := row-no + 1; 9 times in part that produces a

line
4 col-no := col-no + 1; (row-no)-1 per

line
in part that computes an
element

5 line[col_no] := row_no*col_no once per element in part that computes an
element

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

multiplication table example

5. Code program from structure diagram or structure text

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Difficulties in applying JSP

ßThe development procedures of a method should be closely
matched to specific properties of the problems it can be used to
solve
ßbasic JSP requires the problem to possess at least these two

properties:
ß the data structures of the input and output files, and the

correspondences among their data components, are such that a
single program structure can embody them all
ßeach input file can be unambiguously parsed by looking ahead just

one record

ß If the file structures do not correspond appropriately it is impossible
to design a correct program structure: this difficulty is called a
structure clash
ß If an input file can not be parsed by single look ahead it is

impossible to write all the necessary conditions on the program’s
iterations and selections: this is a recognition difficulty



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Structure Clashes

ß three kinds of structure clash
ß interleaving clash
ß  data groups that occur sequentially in one structure correspond

functionally to groups that are interleaved in another structure
ß e.g., the input file of a program may consist of chronologically ordered

records of calls made at a telephone exchange; the program must produce
a printed output report of the same calls arranged chronologically within
subscriber. The ‘subscriber groups’ that occur successively in the printed
report are interleaved in the input file

ßordering clash
ß corresponding data item instances are differently ordered in two structures
ß e.g., an input file contains the elements of a matrix in row order, and the

required output file contains the same elements in column order.
ßboundary clash,
ß two structures have corresponding elements occurring in the same order,

but the elements are differently grouped in the two structures; the
boundaries of the two groupings are not synchronized.

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Boundary clashes

ßare surprisingly common
ß three well-known examples:
ßThe calendar consists of years, each year consisting of a number of

days. In one structure the days may be grouped by months, but by
weeks in another structure. There is a boundary clash here: the
weeks and months can not be synchronized.
ßA chapter of a printed book consists of text lines. In one structure the

lines may be grouped by paragraphs, but in another structure by
pages. There is a boundary clash because pages and paragraphs
can not be synchronized.
ßA file in a low-level file handling system consists of variable-length

records, each consisting of between 2 and 2000 bytes. The records
must be stored sequentially in fixed blocks of 512 bytes. There is a
boundary clash here: the boundaries ofthe records can not be
synchronized with the boundaries of the blocks

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Program decomposition

ßExample of a “structure clash”
ßan inventory transaction file consists of daily
transactions sorted by part number

ßeach part number may have one or more transactions
ßeither a receipt into the warehouse or an order out of the
warehouse

ßeach transaction contains a transaction code, a part-
identifier, and a quantity received or ordered

ßA program is to be written that prints a line for each part
number showing the net daily movement for that part
number into or out of the warehouse
ßAssumption: the input file is blocked, with each block
containing a record count followed by a number of records

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation

1. Draw system diagram



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation example

2. Draw data structures

1. Draw new system diagram

Structures
don’t match
“boundary”

clash

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Report generation example

ß Program PA consumes the input file of blocks of records
and produces an unblocked file of transactions. Program
PB consumes the groups of unblocked transaction records
and produces the required report.

2. Draw data structures

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Resolution of the structure clash

ßdecomposing the program P into
two programs, PA and PB as
shown below:

ßImplementation
ß Batch processing: PA produces
the serial data stream, I, which is
then processed by program PB.
ßParallel processing: cooperating
programs or coroutines or as
independent tasks under control
of a multi-programming task
supervisor

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Program Inversion

ßsolution of a structure clash more cheaply than
employing Multi-programming
ß convert one program that it runs as a subroutine of the
other



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Uses of program inversion

ßInteractive conversational programs

ßInterrupt handler

ßImplementation of pipes & filters and hierarchical
networks

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Significance of Inversion

ßmany situations appearing in their dynamic, piecemeal
executable form can be recast in their underlying serial form as
a simple program
ßany resumable program--one that is alternately activated and
suspended--is an example of inversion

ßwhat is the underlying seriality of its input and output?
ßcan recast the problem in serial form, and design a simple
program using JSP

ßcan optimize the design using inversion

ß inversion preserves program correctness--it is an algorithmic
transformation--we can be confident about the design of the
inverted (resumable) program

ß inversion allows us to extend the range of JSP to many
situations that at first glance do not appear to be amenable to it

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Recognition Difficulties

ßA recognition difficulty is present when an input file can
not be unambiguously parsed by single look-ahead
ßsometimes the difficulty can be overcome by looking
ahead two or more records

ßsometimes a more powerful technique is necessary

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Backtracking technique

1. the recognition difficulty is simply ignored. The program is designed, and
the text for the AGroup and BGroup components is written, as usual. No
condition is written on the Group selection component. The presence of
the difficulty is marked only by using the keywords posit and admit in
place of if and else.

2. a quit statement is inserted into the text of the posit AGroup component
at each point at which it may be detected that the Group is, in fact, not an
AGroup. In this example, the only such point is when the B record is
encountered. The quit statement is a tightly constrained form of GO TO:
its meaning is that execution of the AGroup component is abandoned
and control jumps to the beginning of the admit BGroup component.

3. the program text is modified to take account of side-effects: that is, of the
side-effects of operations executed in AGroup before detecting that the
Group was in fact a BGroup.



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Central virtues of JSP
ß it provides a strongly systematic and prescriptive method for a clearly

defined class of problem
ß  independent JSP designers working on the same problem produce the same

solution
ß JSP keeps the program designer firmly in the world of static structures to

the greatest extent possible.
ß only in the last step of the backtracking technique, when dealing with side-

effects, is the JSP designer encouraged to consider the dynamic behavior of
the program
ß this restriction to designing in terms of static structures is a decisive

contribution to program correctness for those problems to which JSP can be
applied
ß avoids the dynamic thinking -- the mental stepping through the program

execution -- that has always proved so seductive and so fruitful a source of
error.

ß Hints
ßDon't optimize!!If you have to, do it as the last step, after you have designed

the program properly.
ßUse Models not functions

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Jackson System Development (JSD)

ßEmphasis on high-level conceptual design

ßDevelops collection of coordinated graphical depictions
of system

ßStrong hints about how to carry them to implementation
decisions

ßStrong suggestions about how to go about doing this

ßConsiderable literature delving into the details of JSD

ßProduct of a commercial company

ßSupported by courses, tools, consultants

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD Models Focus on Actions

ßJSD produces models of the real world and the way in
which the system to be built interacts with it
ßPrimary focus of this is actions (or events)
ßactions can have descriptive attributes
ßset of actions must be organized into set of processes
ßProcesses describe  which actions must be grouped
together and what the "legal" sequences of actions are
ßProcesses can overlap in various ways
ßProcesses are aggregated into an overall system model
ßusing two canonical models of inter-process
communication

ßData are described in the context of actions
ßin JSD data considerations are subordinate to actions

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD - Phases

ßthe modeling phase
ßEntity/action step

ßEntity structure step

ßModel process step

ßthe network phase
ßconnect model processes and functions in a single
system specification diagram (SSD)

ßimplementation phase
ßexamine the timing constraints of the system

ßconsider possible hardware and software for
implementing our system

ßdesign a system implementation diagram (SID)



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Student Loan Example
ß Functional requirements:
ß before getting a loan, there is an evaluation process after which agreement is

always reached
ß a TE transaction records each step of the evaluation process
ß a TA transaction records the overall loan agreement

ß a student can take any number of loans, but only one can be active at any
time
ß each loan is initiated by a TI transaction

ß the student repays the loan with a series of repayment
ß each repayment transaction is recorded by a TR transaction

ß a loan is terminated by a TT transaction.
ß two output functions are desired:
ß an inquiry function that prints out the loan balance for any student,
ß a repayment acknowledgment sent to each student after payment is received by the

university
ß Non Functional requirements
ß to be implemented on a single processor
ß inquiries should be processed as soon as they are received
ß repayment acknowledgments need only be processed at the end of each day.
ßNote: generates a stream of data over a long-period of time

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 1: Entity/action step

ßActions have the following characteristics:
ßan action takes place at a point in time

ßan action must take place in the real world outside of the
system.

ßan action is atomic, cannot be divided into subactions.

ßEntities have the following characteristics:
ßan entity performs or suffers actions in time.

ßan entity must exist in the real world, and not be a
construct of a system that models the real world

ßan entity must be capable of being regarded as an
individual; and, if there are many entities of the same
type, of being uniquely named.

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Candidates
ß Entities/Description:
ß student
ß system
ß university
ß loan
ß student-loan

ß Actions/Attributes:
ß evaluate -action of university? (university performs the evaluation); action of

student? (student is evaluated)
ß attributes: student-id, loan-no, date of evaluation, remarks

ß agree - action of university? (university agrees to loan); action of student ?
(agrees to loan)
ß attributes: student-id, loan-no, date of agreement, amount of loan, interest rate,

repayment period)
ßmake loan - action of university
ß attributes: student-id, loan-no, date of loan, loan amount, interest rate, repayment

period
ß initiate - action of university? (university initiates loan); action of student?

(student initiates loan); action of loan? (is initiated)
ß attributes: student-id, date initiated

ß repay - action of loan? (loan is repaid); action of student? (student repays the
loan);
ß attributes: student-id, date of repayment, amount of repayment

ß terminate - action of loan (loan is terminated);
ß attributes: student-id, date of termination, remarks

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Focus on:

ßEntities/Description:
ßstudent

ßActions/Attributes:
ßevaluate -action of student; student? (student suffers the
action, is evaluated);
ßattributes: student-id, loan-no, date of evaluation, remarks

ßagree - action of student
ßattributes: student-id, loan-no, date of agreement, amount of loan,

interest rate, repayment period)

ß initiate - action of student
ßattributes: student-id, date initiated

ßrepay - action of student
ßattributes: student-id, date of repayment, amount of repayment

ßterminate - action of student
ßattributes: student-id, date of termination, remarks



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 17

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 2: Entity structure step

(1) evaluation part
- zero or more evaluate actions

(2) student agrees to loan
(3) loan(s) is (are) made

- zero or more loans.
- loan is a sequence of initiate
action, iteration of repay actions, a
terminate action

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Process

ßPrimary building block of a JSD design
ßcontains all actions characterizing a key real-world
process

ßActions are structured into a tree
ßonly the leaf nodes of the tree are real-world actions

ßinterior nodes are conceptual

ßinterior nodes can be annotated to show choice or
iteration

ßtraversals of this tree constitute the only "legal"
sequences of actions for this process

ßModel process tree defines a regular expression
ßset of traversals is a regular set

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Processes

ßA model process is a particular view of the system
ßvarious model processes provide different views

ßmodel process is multiply instantiated for different instances

ßmodel processes are often annotated with informal
specifications and notations

ßsame action may appear as part of more than one process

ßModel Processes and Data

ßactions on data hang off of model process leaf nodes

ßglobal data is necessary too
ß for functions that must combine data from >1 model process

ß to assure consistency between model processes

ß to coordinate between different instances of the same model
process

ß to coordinate between different models of the same entity

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Step 3: Model process step

abstract student entity 
in the real world

realization in the
Information system

entity structure diagram 
describes the structure of 

the serial data stream

Use JSP to create a
program for the process



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 18

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Error handling

ßa real-time system (but slow-running)
system
ß information is collected as it arrives

from the real-world
ßentity model process is synchronized

with the actions of the real world entity
ß the state vector of a model process's

“program” has a “counter” … and if it
“points” to repay component of a
student's process, then an 'E'
(evaluate), 'A' (agree) or 'I' (initiate)
transaction must be recognized as an
error

counter

state vector (SV) connection
 -- one process can examine 
the SV of a 2nd process
 -- the double lines indicate
 that an inquiry process, 
over its life, will examine
 many student processes

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Total System Model

ßAt the Network Phase, weave Model Processes
together incrementally to form the total system
specification
ßalso add new processes during this phase:  e.g., input,
output, user interface, data collection

ßGoal is to indicate how model processes communicate
with each other, use each other, are connected to user
and outside world
ßLinkage through two types of communication:
ßMessage passing
ßState vector inspection
ßIndicates which data moves between which processes
ßand more about synchronization

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Model Process Communication

ßFundamental notion is Data Streams
ßcan have multiple data streams arriving at an action in a
process

ßcan model multiple instances entering a data stream or
departing from one

ßTwo types of data stream communication:
ßasynchronous message passing

ßState vector inspection

ßThese communication mechanisms used to model how
data is passed between processes

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Message Passing

ßData stream carries a message from one process
activity to an activity in another process
ßmust correlate with output leaf of sending model process

ßmust correlate with input leaf of receiving model process

ßData transfer assumed to be asynchronous
ßless restrictive assumption

ßno timing constraints are assumed

ßmessages are queued in infinitely long queues

ßmessages interleaved non-deterministically when
multiple streams arrive at same activity



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 19

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

State Vector Inspection

ßModeling mechanism used when one process needs
considerable information about another

ßState vector includes
ßvalues of all internal variables

ßexecution text pointer

ßProcess often needs to control when its state vector can
be viewed
ßprocess may need exclusive access to its vector

ßCould be modeled as message passing, but important
to underscore characteristic differences

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Network Phase -- the SSD
ß loan balance inquiry function (LBE) is connected to the

Student-1 process by state vector (SV) connection
ßThe function to produce the student acknowledgments data

stream (ACK) is embedded in the student-1 process in the
repays component

ßDT is an input signal at the end of the day--a daily time marker-
-that tells the payment acknowledgment lister (PAL) function to
begin
ßThe ACK and DT data streams are rough-merged, that is, we

don't know precisely whether a repayment acknowledgment will
appear on today's or tomorrow's daily list.

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Designing the LBE function w/ JSP

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Implementation Phase

ßUse of inferences encouraged by understandings
gleaned from the network phase

ßNetwork Phase suggests ideal traversal paths through
model processes and their local data
ßsuggests internal implementation of model processes

ßstudying use of model processes suggests internal
structure of their data

ßCommunication by data streams and state vector
inspection often suggest real implementations
ßBut often not



CMPSCI520/620

”Rick Adrion 2003 (except where noted) 20

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The SID
all of the serial data 
streams are input to
 the scheduler process

all student processes have an 
identical structure; only their 
SV are different
--separate the state vectors of
student  processes from their 
process text  (state vector
 separation). 
--set of SV is the data base of 
our student loan system 

student-1 process is inverted
with respect to its data stream,
 S. and is called by the
 scheduler to process a 
transaction, and then
 suspended

PAL is inverted with respect to
 both of its inputs, the repayment
 acknowledgment data stream 
and the daily marker. PAL is
 invoked by Student-1 whenever
 Student-1 processes a repayment 
transaction. The scheduler invokes 
PAL directly when it receives a DT
 and this triggers the daily listing

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Design of the scheduler in JSP
ß records from the serial data stream

(loan balance inquiries and student
loan transactions) are read and
processed in real-time
ß at the end of the day, a daily time

marker--perhaps a signal to the
system from the operator--is input

ß PAL is invoked & processes
payment acknowledgments that
have been previously generated in
real-time whenever a student
repayment is made and stored in a
buffer

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

JSD and JSP

ß In JSD, the principles of JSP are extended into the areas of
systems analysis, specification, design and implementation
ß In JSP, a simple program describes a sequential process that

communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream
ß In JSD, the real world is modeled as a set of sequential model

processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.
ßThe JSD implementation step embodies the JSP implementation

technique, program inversion, in which a program is transformed
into a procedure
ßOther JSP techniques, such as the single read-ahead rule and

backtracking, and principles, such as implementation through
transformation, are used in JSD

UUNIVERSITYNIVERSITY  OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST    ••   D DEPARTMENTEPARTMENT  OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE ••  CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comments/Evaluation

ßFocus on conceptual design
ßBut difficult to build a system this way

ßBased upon model of real world

ßCareful (and experienced) analysis of the model
generally points  suggested implementation tactics,
though
ßParnas notions of module not perceptible here

ßNot an iterative refinement approach either

ßTreatment of data is very much subordinated/secondary

ßDoes a good job of suggesting possible parallelism

ßContrasts strongly with Objected Oriented notions (eg.
Booch, UML)


