CMPSCI520/620

COMPUTER
)SCIENCE

18- Architecture, Frameworks,
Components, Patterns, Middleware
+ Design: JSP/JSD

Rick Adrion

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

COMPUTER Architectural taxonomy (“boxology”)

= dataflow can decompose into sequential stages
. batch:mmﬁ\ involves transformations on continuous

= data flow network (or on very long streams) streams of
= pipes & filter data
= callreturn
= main program/subroutines flexibility, configurability, loose coupling
= abstract data types hierarchies, producer-consumer, tightly
= objects connected
= call based client/server
= layered

= independent components
= communicating processes
= distributed
= event systems (j
= virtual machine
= interpreter
= rule-based
+ data-centered «——
= repository
= blackboard

cross-platform
late decision on hardware
focus on management and representation
of data
long-lived (persistent) data is focus on
repositories
stream of incoming requests to access
highly structured data
hanging data
“noisy” input data, uncertain execution
order can not be predetermined,
consider a blackboard

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER Software Architectures

= Architectural taxonomy (“boxology”)
= Architectural patterns &djoms
= Design patterns & idigms .
* Reuse
» Class Iib
{ Design
Design

= Components
= Frameworks
= Middleware

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

CONPUTER Taxonomy of Patterns & Idioms

Type Description Examples
Idioms Restricted to a particular language, system, | Scoped locking
or tool
Design patterns Capture the static & dynamic roles & Active Object, Bridge,
relationships in solutions that occur Proxy, Wrapper
repeatedly Facade, & Visitor
Architectural Express a fundamental structural Half-Sync/Half-Async,
patterns organization for software systems that Layers, Proactor,
provide a set of predefined subsyst s Publist k iber,
specify their relationships, & include the & Reactor
rules and guidelines for organizing the
relationships between them
Optimization Dc t rules for iding common Optimize for common
principle patterns design & implementation mistakes that case, pass
degrade performance information between
layers

UNIVERSITY- OF MASSACHUSETTS AMHERST 7 DEP/

CMPSCI520/620

COMPUTER The Rational 4+1 Views CONPUTER The Rational 4+1 Views

g8 =
\.//. N //’ Bl R IR Use cases,
= q A B Scenarios
design implementation (sequence
view view diagrams)

Classes, interfaces,
collaborations

i 7& Components
P i Design: Process:
Organlzatlon s cases Dynamllcs classg& class &
Pa(;kageY subsystem Interaction collaboratiol - 5 - = .= statechart
Use -Case State machine diagrams L . = =t = = === diagrams
e View — \
____ F| - - " —
a /
N/ &
Eake -/-

process

g deployment
view

view

Implementation:
component
diagrams

Deployment:
deployment
diagrams

Active classes

UNIVERSITY: OF MASSACHUSETTS: AMHERST 4 DERARTHIE

UNIVERSITY-OF MASSACRUSETTS-AMHERST - DERARTNEN

CONPUIER Architecture Description Languages CONPUIER ADL Examples

i i H = Adage
L]
formgl notations .for representlng and analyzmg = supports the description of architectural frameworks for avionics navigation
architectural designs and guidance
. = Aeso
=provide both a conceptual framework and a concrete . Sugpons the use of architectural styles
syntax for characterizing software architectures =C2
. = supports the description of user interface systems using anevent-based style
=tools for parsing, displaying, compiling, analyzing, or = Darwin
simulating architectural descriptions. = supports the analysis of distributed message-passing systems
= Meta-H
= provides guidance for designers of real-time avionics control software;
= Rapide

= allows architectural designs to be simulated, and has tools for analyzing the
results of those simulations;

= SADL
= provides a formal basis for architectural refinement;
= UniCon

= has a high-level compiler for architectural designs that supports a mixture of
heterogeneous component and connector types;

= Wright

= supports the formal specification and analysis of interactions between
architectural components.

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPAF‘\TMEV?}

UNIVERSITY OF MASSACHUSETTS AMHERST - DERARTME]

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

COMPUTER formal architectural specification.

=module interconnection languages
=static aspects of component interaction

=definition and use of types, variables, and functions among
components

=examples: INTERCOL, PIC, CORBA/IDL
=process algebras
=dynamic interplay among components

=concerned with the protocols by which components
communicate

=examples: Wright (based on CSP), Chemical Abstract
Machine (based on term rewriting)

=event languages
=identification and ordering of events
=event is a very flexible, abstract notion
=example: Rapide

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER Benefits

=examples
sAT&T
=10% reduction in project costs, on projects of 700 staff days
or longer, the evaluation pays for itself.
=consultants
=reported 80% repeat business, customers recognized
sufficientvalue
=where architecture reviews did not occur
=customer accounting system estimated to take two years,
took seven years, re-implemented three times, performance
goals never met
=large engineering relational database system, performance
made integration testing impossible, project was cancelled
after twenty million dollars had been spent.

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

CONPUTER Evaluation & analysis

=conduct a formal review with external reviewers
stime the evaluation to best advantage
=choose an appropriate evaluation technique
screate an evaluation contract
=limit the number of qualities to be evaluated
minsist on a system architect

=benefits
=financial

mincreased understanding and documentation of the
system

=detection of problems with the existing architecture
sclarification and prioritization of requirements
=organizational learning

UNIVERSITY-OF MASSACRUSETTS AMHERST: DERA

COMPUTER Architecture vs Frameworks
=Frameworks
=an object-oriented reuse technique
=used successfully for some time & are an important
part of the culturé of long-time object-oriented
developers,
=BUT they are not well understood outside the
object-oriented community and are often misused
=Question:
=are frameworks mini-architectures, large-scale
patterns, or they are just another kind of
component?
=Definitions
=a framework is a reusable design of all or part of a
system that is represented bY a set of abstract
classes and the way their instances interact
=a framework is_the skeleton of an application that
can be customized by an application developer

Ralph E. Johnson, (C .C ications of the ACM, October 1997/Vol. 40, No. 10

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620
COMPUTE Frameworks & Class Libraries CONPUTE Frameworks & Class Libraries
=developers often do not even know they are using a
framework, but refer to a “class library” mibions [VABE A class is a unit of abstraction
. . . . «—{FUNCTIONALITY . . .
=frameworks differ from other class libraries by reusing & implementation in an OO
high-level design] 1 programming language
=more to learn before a class can be reused <_
=can never be reused in isolation; typically a set of Class Library Architecture
classes must be learned at once
=you can often tell that a class library is a framework if o »A framework is an integrated
there are dependencies among its components and if oeh set of abstract classes that
programmers who are learning it complain about its e ;
complexity. 9 can be customlzeq for
[wrs instances of a family of
: Db () applications
Framework Architecture
UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEE UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERA!

Components & frameworks

COMPUTER Components & frameworks T
=frameworks
=provide a reusable context for components
=provide a standard way for components to handle
errors, to exchange data, and to invoke operations

on each other
=“component systems” such as OLE, OpenDoc, and Beans,

=Frameworks
=were originally intended to be reusable
are really frameworks that solve standard problems that
arise in building compound documents and other composite

components
=but reusable O-O components have not found a
market
=are a component in the sense that
=venders sell them as products objects. make it easier to develop new components
=an application might use several frameworks. =enable making a new component (such as a user
interface) out of smaller components (such as a
widget)
=provide the specifications for new components and
a template for implementing them.
=a good framework can reduce the amount of
effort to develop customized applications by an

order of magnitude

BUT
=they more customizable than most components

=have more complex interfaces
=must be learned before the framework can be used

=a component represents code reuse, while
frameworks are a form of design reuse

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEF?

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEP;_

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

Lo TE Frameworks & Components

=A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

=A component is an
encapsulation unit with one
or more interfaces that
provide clients with access to
its services

Middleware Bus

Component Architecture
Adapted from Douglas

UNIVERSITY: OF MASSACHUSETTS AMHERST 41!

COTE Frameworks as Reusable Design

=Are they like other techniques for reusing high-level
design, e.g., templates or schemas?
=templates or schemas
=usually depend on a special purpose design notation
=require special software tools
=frameworks
=are expressed in a programming language
="makes them easier for programmers to learn and to
apply
=no tools except compilers
=can gradually change an application into a framework

=because they are specific to a programming language,
some design ideas, such as behavioral constraints,
cannot be expressed well

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[A

©Rick Adrion 2003 (except where noted)

COMPUTER Comparison

Class Libraries Frameworks Components
Micro-level Meso-level Macro-level
Stand-alone “Semi-complete” Stand-alone
language entities applications composition entities
Domain-independent | Domain-specific Domain-specific or

Domain-independent

Borrow caller’s Inversion of Borrow caller’s thread

thread control

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DER‘;

comeuren Frameworks . i
seienee and domain-specific architectures

= A framework is ultimately an object-oriented design, while a
domain-specific architecture might not be.
= A framework can be combined with a domain-specific
language by translating programs in the language into a set
of objects in a framework
=window builders associated with GUI frameworks are
examples of domain-specific visual programming languages
= Uniformity reduces the cost of maintenance
=GUI frameworks give a set of applications a similar look and
feel
=using a distributed object framework ensures that all
applications can communicate with each other.
=maintenance programmers can move from one application to
the next without having to learn a new design

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

CMPSCI520/620

COMPUTER Overview of Patterns

=Patterns
=present solutions to common software problems
arising within a certain context
=help resolve key software design issues
=Flexibility, Extensibility, Dependability, Predictability,
Scalability,Efficiency
=capture recurring structures & dynamics among
software participants to facilitate reuse of
successful designs
smare | mcodify expert knowledge of design strategies,
- constraints and best practices

UNIVERSITY: OF MASSACRUSETTS AMHERST - DEPA

COMPUTER qualities of a pattern

=encapsulation and abstraction

=each pattern encapsulates a well-defined problem and its
solution in a particular domain

=serve as abstractions which embody domain knowledge and
experience

=openness and variability

=open for extension or parametrization by other patterns so that
they may work together

= generativity and composability

=generates a resulting context which matches the initial context
of one or more other patterns in a pattern language

=applying one pattern provides a context for the application of
the next pattern.

= equilibrium
=balance among its forces and constraints

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

CONPUTER software patterns

=record experience of good designers

=describe general, recurring design structures in a

pattern-like format
=problem, generic solution, usage

=solutions (mostly) in terms of O-O models
scrc-cards; object-, event-, state diagrams

=often not O-O specific

=patterns are generic solutions; they allow for design and

implementation variations

=the solution structure of a pattern must be “adapted” to

your problem design

=*map to existing or new classes, methods, ...
=a pattern is not a concrete reusable piece of software!

UNIVERSITY-OF MASSACRUSETTS-AMHERST - ERA

COMPUTER :
seieice Taxonomy of Patterns & Idioms

Type Description Examples

Idioms Restricted to a particular language, system, | Scoped locking
or tool

Design patterns Capture the static & dynamic roles & Active Object, Bridge,
relationships in solutions that occur Proxy, Wrapper
repeatedly Facade, & Visitor

Architectural Express a fundamental structural Half-Sync/Half-Async,

patterns organization for software systems that Layers, Proactor,

provide a set of predefined subsy s
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

P

iber,
& Reactor

Optimization Dc t rules for iding common
principle patterns design & implementation mistakes that
degrade performance

Optimize for common
case, pass
information between
layers

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEF?

CMPSCI520/620

CONPTE Frameworks and Patterns

=frameworks represent a kind of pattern

=e.g., Model/View/Controller is a user-interface framework
often described as a pattern

=applications that use frameworks must conform to the
frameworks’ design and model of collaboration, so the
framework causes patterns in the applications that use it.

=frameworks are at a different level of abstraction than
patterns

=frameworks can be embodied in code, but only examples
of patterns can be embodied in code.

=a strength of frameworks is that they can be written down
in programming languages and not only studied but
executed and reused directly

=in contrast, design patterns have to be implemented each
time they are used.

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

CONPUTE Frameworks

=are firmly in the middle of reuse techniques.
=are more abstract and flexible than components,

=are more concrete and easier to reuse than a pure
design (but less flexible and less likely to be applicable)

=are more like techniques that reuse both design and
code, such as application generators and templates.

=can be thought of as a more concrete form of a pattern

=patterns are illustrated by programs, but a framework is
a program

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

CONTE Frameworks and Patterns

= design patterns are smaller architectural elements than frameworks
= a typical framework contains several design patterns but the reverse
is never true
=design patterns are the micro-architectural elements of frameworks.

= e.g., Model/View/Controller can be decomposed into three major design
patterns, and several less important ones

= MVC uses the Observer pattern to ensure the view’s picture of the model is
up-to-date, the Composite pattern to nest views, and the Strategy pattern
to cause views to delegate responsibility for handling user events to their
controller.

= design patterns are less specialized than frameworks.
=frameworks always have a particular application domain.
=design patterns can be used in nearly any kind of application.

=more specialized design patterns are certainly possible, even these
wouldn't dictate an application architecture

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPfA::,

COMPTE Framework Characteristics

Application-specific functionality

=Frameworks exhibit
“inversion of control” at
runtime via callbacks
*Frameworks provide
integrated domain-

specific structures &
functionality

J *Frameworks are “semi-
complete” applications

Adapted from Douglas C. Schmid, “Patierns, Fi & Mi Their Synergistic
UNIVERSITY OF MASSACHUSETTS AMHERST: D

CMPSCI520/620

COMPUTER Using Frameworks Effectively

=Frameworks are powerful, but hard to develop & use
effectively by application developers

=lt’s often better to use & customize COTS frameworks
than to develop in-house frameworks

=Components are easier for application developers to
use, but aren’t as powerful or flexible as frameworks

=Successful projects are often organized using the
“funnel” model

PROJECT APPLICATION
COMPONENTS, SCRIPTING, & MODELING TECHNOLOGIES, DEVELOPERS
COMPONENT MIDDLEWARE
TECHNOLOGIES PROJECT
INFRASTRUCTURE

CUSTOMIZED FRAMEWORK DEVELOPERS

TECHNOLOGIES

COTS FRAMEWORK
TECHNOLOGIES

COTS FRAMEWORK
DEVELOPERS

Adapted from Douglas C. Schmid, “Patierns, Fi & Mi Their Synergistic

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DE

CONPUTER Evolution of Middleware

[Aoplications] = Historically, mission-critical apps were
il built directly atop hardware & OS

Domain-§pecific =tedious, error-prone, & costly over
Services lifecycles
_ = There are layers of middleware, just like

there are layers of networking protocols
= Standards-based COTS middleware

helps:
Host Infrastructure =Control end-to-end resources & QoS
Middleware =Leverage hardware & software

technology advances
=Evolve to new environments &

rating Systems
& Protocols .
requirements
Hardware =Provide a wide array of reuseable, off-

the-shelf developer-oriented services

Adapted from Dougl
UNIVERSITY. OF MASSACHUSETTS AMHERST D

©Rick Adrion 2003 (except where noted)

COMPUTER Relation to Middleware

=one of the strengths of frameworks is that they are
represented by traditional object-oriented programming
languages.
=BUT, this is also a weakness of frameworks, however,
and it is one that the other design-oriented reuse
techniques do not share.
=Middleware
*COM, CORBA, etc. address this problem, since they let
programs in one language interoperate with programs in
another
=Other approaches
=some frameworks have been implemented twice so that

users of two different languages can use them, such as
the SEMATECH CIM framework

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3!

CONPUTER Middleware

= Infrastructure middleware.
=encapsulates core OS communication and concurrency services to
eliminate many tedious, error-prone, and non-portable aspects of
developing and maintaining distributed applications using low-level
network programming mechanisms, such as sockets
=Examples: the Java Virtual Machine (JVM) and the ADAPTIVE
Communication Environment (ACE).
= Distribution middleware

=builds upon the lower-level infrastructure middleware to automate
common network programming tasks, such as parameter
marshaling/demarshaling, socket and request demultiplexing, and
fault detection/recovery

=Examples: Object Management Group's (OMG's) Common Object
Request Broker Architecture (CORBA), Microsoft's Distributed COM
(DCOM), and JavaSoft's Remote Method Invocation (RMI).

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

CMPSCI520/620

CONPUTER Middleware

= Common middleware services
= augments the distribution middleware by defining domain-independent
services, such as event notifications, logging, multimedia streaming,
persistence, security, transactions, fault tolerance, and distributed
concurrency control
= applications can reuse these services to perform common distribution tasks
that would otherwise be implemented manually.
= Domain-specific Services
= tailored to the requirements of particular domains, such as
telecommunications, e-commerce, health-care, or process automation
= are generally reusable, and thus are the least mature of the middleware layers
today
= embody domain-specific knowledge, however, they have the most potential to
increase system quality and decrease the cycle-time and effort required to
develop particular types of networked applications

UNIVERSITY: OF M ASSACHUSETTS AMHERST 4 DER;

et JSP & JSD

=Jackson System Development
=Emphasis on high-level conceptual design

=Develops collection of coordinated graphical
depictions of system

=Strong hints about how to carry them to
implementation decisions

=Strong suggestions about how to go about
doing this
=Jackson Structured Programming

=JSD Based on/uses JSP, so let’s look at that
first

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DER)

©Rick Adrion 2003 (except where noted)

COMPUTER Progress

=significant progress in QoS-
enabled middleware,
Reattime ccm@ | Stemming in large part from i

coRBA
SERVICES |

0 _ | cospongy
SERVANT)

Web Services@) the following trends: ==
e o 4 =years of iteration, ot e o
Campbnent refinement, & successful
Models (EJB) use
Real-time @) =maturation of middleware
COR& standards
CORBA & DCOM
@ocx -.NET,_JZEE, CCM
=Real-time CORBA
‘ Micro-kernels = Real-time Java
@ rec =SOAP & Web Services
@ ARPAnet =maturation of component
1970 Year 2005 Middleware frameworks &
patterns
Adapted from Douglas C. Schmidt, “Patterns, Fi & Mi Their Synergistic

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

U JsP

=Design is about structure, about the relation of parts to
the whole.
= Programs consist of the following parts or components:
=elementary components
sthree types of composite components -- components
having one or more parts:
=sequence -- a sequence is a composite component that
has two or more parts occurring once each, in order.
=selection -- a composite component that consists of two or
more parts, only one of which is selected, once.
=jteration a composite component that consists of one part
that repeats zero or more times.

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

CMPSCI520/620

COMPUTER
)SCIENCE

composite components

Jackson structure Jackson structure Pseudocode
diagram text
do B; do B;
do C; do C;
Aend end
]
Jackson structure Jackson structure Pseudocode

diagram text

Asel <cond-1> if <cond-1> then
do B; do B;

Aalt <cond-2> else if <cond-2> then
do C; do C;

Aend endif

Jackson structure Jackson structure Pseudocode
diagram

“ Aiter <cond> while <cond>
doB: doB;

endwhile

Aend

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPA-R

COMPUTER
)SCIENCE

JSP design method

=consists of the following steps:
1. Draw a system diagram
2. Draw a data structure for each input and output file

3. Draw a single data structure based on
correspondences between the input and output
data structures; this data structure forms the basic
program structure

4. List the operations needed by the program, For
each, ask "Where does it belong (in what program
part?)" "How many times does it occur?" Allocate
the operations to the basic program structure.

5. Translate the program structure into text, specifying
the conditions for iteration and selection

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DER)

©Rick Adrion 2003 (except where noted)

“"ﬂ;ﬂ'ﬁﬁ% Basic program design method (JSP)

=system diagram

=input/output structure diagrams

=program structure diagram

=allocation of operations to program structure
=which part? how many times?
="read-ahead rule"

=constructive method of design
=not top-down, not stepwise refinement

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPfA::

COMPUTER multiplication table example

= The required output is:
1
24
369
481216

10 20 30 40 50 60 70 80 90 100
1. Draw system diagram

UNIVERSITY- OF MASSACHUSETTS AMHERST- [£

Generate]
raultiplication Printed
tahle table

10

CMPSCI520/620

COMPUTER
)SCIENCE

multiplication table example

2. Draw data structures 3. Form program structure
based on the data
structures from the

previous step.

Tahle Produce
Tahle
Line) Produce
I |
* *
Eleraent FProduce
Element

UNIVERSITY: OF M ASSACHUSETTS AMHERST 4 DER;

COMPUTER
)SCIENCE

multiplication table example

5. Code program from structure diagram or structure text

Produce
Table Bod

"

Produce
Line

Clear Line Produce Display Line
Line Body
w
G{Compute
Eleraent

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DER)

©Rick Adrion 2003 (except where noted)

COMPUTER multiplication table example

4. List and allocate operations
= elementary operations needed to perform the task,
and for each operation
= "How often is it executed?"
= "In what program component(s) does it belong?”
= The operations must be elementary statements of
some programming language; e.g., Pascal.

operation how often? where?

1 row-no :=1; once at start of program

2 col-no :=1; once per line in part that produces a
line, at start

3 row-no :=row-no + 1; 9 times in part that produces a
line

4 col-no := col-no + 1; (row-no)-1 per in part that computes an

line element

5 line[col_no] := row_no*col_no | once per element | in part that computes an

element

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘_

COMPUTER Difficulties in applying JSP

= The development procedures of a method should be closely
matched to specific properties of the problems it can be used to
solve

= basic JSP requires the problem to possess at least these two
properties:
=the data structures of the input and output files, and the
correspondences among their data components, are such that a
single program structure can embody them all
=each input file can be unambiguously parsed by looking ahead just
one record
= |f the file structures do not correspond appropriately it is impossible
to design a correct program structure: this difficulty is called a
structure clash
= |f an input file can not be parsed by single look ahead it is
impossible to write all the necessary conditions on the program’s
iterations and selections: this is a recognition difficulty

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

11

CMPSCI520/620

COMPUTER Structure Clashes

= three kinds of structure clash
=interleaving clash

= data groups that occur sequentially in one structure correspond
functionally to groups that are interleaved in another structure

= e.g., the input file of a program may consist of chronologically ordered
records of calls made at a telephone exchange; the program must produce
a printed output report of the same calls arranged chronologically within
subscriber. The ‘subscriber groups’ that occur successively in the printed
report are interleaved in the input file

=ordering clash
= corresponding data item instances are differently ordered in two structures

=e.g., an input file contains the elements of a matrix in row order, and the
required output file contains the same elements in column order.

=boundary clash,
= two structures have corresponding elements occurring in the same order,

but the elements are differently grouped in the two structures; the
boundaries of the two groupings are not synchronized.

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE! Al

COMPUTER Program decomposition

=Example of a “structure clash”

=an inventory transaction file consists of daily
transactions sorted by part number

=each part number may have one or more transactions

=either a receipt into the warehouse or an order out of the
warehouse

=each transaction contains a transaction code, a part-
identifier, and a quantity received or ordered

=A program is to be written that prints a line for each part
number showing the net daily movement for that part
number into or out of the warehouse

=Assumption: the input file is blocked, with each block
containing a record count followed by a number of records

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER

<cienee Boundary clashes

= are surprisingly common
= three well-known examples:

=The calendar consists of years, each year consisting of a number of
days. In one structure the days may be grouped by months, but by
weeks in another structure. There is a boundary clash here: the
weeks and months can not be synchronized.

= A chapter of a printed book consists of text lines. In one structure the
lines may be grouped by paragraphs, but in another structure by
pages. There is a boundary clash because pages and paragraphs
can not be synchronized.

= A file in a low-level file handling system consists of variable-length
records, each consisting of between 2 and 2000 bytes. The records
must be stored sequentially in fixed blocks of 512 bytes. There is a
boundary clash here: the boundaries ofthe records can not be
synchronized with the boundaries of the blocks

UNIVERSITY-OF MASSACRUSETTS AMHERST - DER,

COMPUTER

<cienee Report generation

1. Draw system diagram

C-Input;
P- Beport

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

12

CMPSCI520/620

2. Draw data structures

Structures
don’t match
“boundary”

Dally,
transaction

CONPUTE Report generation example

Inpaut file Report file

Feport

clash

ﬁ

m\

FReportbody

‘ Endline ‘

N

Feportline ‘

UNIVERSITY: OF MASSACHUSETTS AMHERST. p

SCIENCE

=decomposing the program P into
two programs, PA and PB as
shown below:

On e Co LG

=|mplementation

= Batch processing: PA produces
the serial data stream, |, which is
then processed by program PB.

=Parallel processing: cooperating
programs or coroutines or as
independent tasks under control
of a multi-programming task
supervisor

UNIVERSITY OF MASSACHUSETTS AVMHERST: o

©Rick Adrion 2003 (except where noted)

CONNENE! Resolution of the structure clash

PA PB

put
callPB —— »get

f— ‘\\ —— (process)
ot call PA

callPp —— 0%t
_‘-—__\\Ri (process)
put call PA

callPB —— mget
—— (hrocess)

CONPUTE Report generation example

= Program PA consumes the input file of blocks of records
and produces an unblocked file of transactions. Program
PB consumes the groups of unblocked transaction records
and produces the required report.
2. Draw data structures
Program PA Program PB
Input file Inbrjf‘zllfﬁd.\ate Interﬂfgdmte Report file

Dilly i
tm%i‘;;tjoh w— | transactio

UNIVERSITY-OF MASSACHUSETTS:AMHERS'

CONPUIER Program Inversion

=solution of a structure clash more cheaply than
employing Multi-programming
= convert one program that it runs as a subroutine of the

other
< (2 ()

P& produces a record and iorokes
the subroutine PRI which uses it
to produce X

We say that PBI is inverted with
respect to its input file

PE produces ¥, invoking the
subroutine PAI to obtain the
next record,

We say that PAI is inverted with
respect to its output file

UNIVERSITY- OF MASSACHUSETTS AMHERS

13

CMPSCI520/620

CONPUTER Uses of program inversion

=|nteractive conversational programs
e i
prograt

=|nterrupt handler

=Implementation of pipes & filters and hierarchical
networks

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DE

CONPUTER Recognition Difficulties

= A recognition difficulty is present when an input file can
not be unambiguously parsed by single look-ahead

=sometimes the difficulty can be overcome by looking
ahead two or more records

ssometimes a more powerful technique is necessary

open read;
read;

read read read read read read

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DE

©Rick Adrion 2003 (except where noted)

CONPUTER Significance of Inversion

=many situations appearing in their dynamic, piecemeal
executable form can be recast in their underlying serial form as
a simple program
=any resumable program--one that is alternately activated and
suspended--is an example of inversion
=what is the underlying seriality of its input and output?
=can recast the problem in serial form, and design a simple
program using JSP
=can optimize the design using inversion
=inversion preserves program correctness--it is an algorithmic
transformation--we can be confident about the design of the
inverted (resumable) program
=inversion allows us to extend the range of JSP to many
situations that at first glance do not appear to be amenable to it

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3!

COMPUTER Backtracking technique

1. the recognition difficulty is simply ignored. The program is designed, and
the text for the AGroup and BGroup components is written, as usual. No
condition is written on the Group selection component. The presence of
the difficulty is marked only by using the keywords posit and admit in
place of if and else.

2. a quit statement is inserted into the text of the posit AGroup component
at each point at which it may be detected that the Group is, in fact, not an
AGroup. In this example, the only such point is when the B record is
encountered. The quit statement is a tightly constrained form of GO TO:
its meaning is that execution of the AGroup component is abandoned
and control jumps to the beginning of the admit BGroup component.

3. the program text is modified to take account of side-effects: that is, of the
side-effects of operations executed in AGroup before detecting that the
Group was in fact a BGroup.

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

14

CMPSCI520/620

COMPUTER Central virtues of JSP

= it provides a strongly systematic and prescriptive method for a clearly
defined class of problem
= independent JSP designers working on the same problem produce the same
solution
= JSP keeps the program designer firmly in the world of static structures to
the greatest extent possible.
=only in the last step of the backtracking technique, when dealing with side-
effects, is the JSP designer encouraged to consider the dynamic behavior of
the program
= this restriction to designing in terms of static structures is a decisive
contribution to program correctness for those problems to which JSP can be
applied
= avoids the dynamic thinking -- the mental stepping through the program
execution -- that has always proved so seductive and so fruitful a source of
error.
= Hints
= Don't optimize!!lf you have to, do it as the last step, after you have designed
the program properly.
= Use Models not functions

UNIVERSITY: OF MASSACRUSETTS AMHERST - DEPA

COMPUTER JSD Models Focus on Actions

=JSD produces models of the real world and the way in
which the system to be built interacts with it

=Primary focus of this is actions (or events)
=actions can have descriptive attributes
sset of actions must be organized into set of processes

=Processes describe which actions must be grouped
together and what the "legal" sequences of actions are

=Processes can overlap in various ways
=Processes are aggregated into an overall system model

=using two canonical models of inter-process
communication

=Data are described in the context of actions
=in JSD data considerations are subordinate to actions

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER

seieice Jackson System Development (JSD)

=Emphasis on high-level conceptual design

=Develops collection of coordinated graphical depictions
of system

=Strong hints about how to carry them to implementation
decisions

= Strong suggestions about how to go about doing this
=Considerable literature delving into the details of JSD
=Product of a commercial company

=Supported by courses, tools, consultants

UNIVERSITY-OF MASSACRUSETTS-AMHERST - ERA

COMPUTER JSD - Phases

=the modeling phase

=Entity/action step

=Entity structure step

=Model process step
=the network phase

=connect model processes and functions in a single

system specification diagram (SSD)

=implementation phase

=examine the timing constraints of the system

=consider possible hardware and software for
implementing our system

=design a system implementation diagram (SID)

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEF?

15

CMPSCI520/620

COMPUTER Student Loan Example

= Functional requirements:
= before getting a loan, there is an evaluation process after which agreement is
always reached
= a TE transaction records each step of the evaluation process
= a TA transaction records the overall loan agreement
-ta student can take any number of loans, but only one can be active at any
ime
= each loan is initiated by a Tl transaction
= the student repays the loan with a series of repayment
= each repayment transaction is recorded by a TR transaction
= a loan is terminated by a TT transaction.
= two output functions are desired:
= an inquiry function that prints out the loan balance for any student,

= a repayment acknowledgment sent to each student after payment is received by the
university

= Non Functional requirements
= to be implemented on a single processor
= inquiries should be processed as soon as they are received
= repayment acknowledgments need only be processed at the end of each day.
= Note: generates a stream of data over a long-period of time

UNIVERSITY: OF MASSACRUSETTS AMHERST - DEPAF

CONPUTER Candidates

= Entities/Description:
= student
= system
= university
=loan
= student-loan
= Actions/Attributes:
= evaluate -action of university? (university performs the evaluation); action of
student? (student is evaluated)
= attributes: student-id, loan-no, date of evaluation, remarks
= agree - action of university? (university agrees to loan); action of student ?
(agrees to loan)

= attributes: student-id, loan-no, date of agreement, amount of loan, interest rate,
repayment period)

= make loan - action of university
. attribgtes: student-id, loan-no, date of loan, loan amount, interest rate, repayment
io

= initiate - action of university? (university initiates loan); action of student?
(student initiates loan); action of loan? {is initiated)
= attributes: student-id, date initiated
. Irepail - action of loan? (loan is repaid); action of student? (student repays the
oan);

= attributes: student-id, date of repayment, amount of repayment
= terminate - action of loan (loan is terminated);
= attributes: student-id, date of termination, remarks

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEPAT

©Rick Adrion 2003 (except where noted)

COMPUTER Step 1: Entity/action step

= Actions have the following characteristics:
=an action takes place at a point in time

=an action must take place in the real world outside of the
system.

=an action is atomic, cannot be divided into subactions.
=Entities have the following characteristics:
=an entity performs or suffers actions in time.

=an entity must exist in the real world, and not be a
construct of a system that models the real world

=an entity must be capable of being regarded as an
individual; and, if there are many entities of the same
type, of being uniquely named.

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAVS‘_\-:':F

COMPUTER Focus on:

= Entities/Description:
=student
= Actions/Attributes:
=evaluate -action of student; student? (student suffers the
action, is evaluated);
= attributes: student-id, loan-no, date of evaluation, remarks
=agree - action of student

= attributes: student-id, loan-no, date of agreement, amount of loan,
interest rate, repayment period)

=initiate - action of student

= attributes: student-id, date initiated
=repay - action of student

= attributes: student-id, date of repayment, amount of repayment
=terminate - action of student

= attributes: student-id, date of termination, remarks

UNIVERSITY: OF MASSACHUSETTS AMHERST- /- DERA]

16

CMPSCI520/620

CONPUTER Step 2: Entity structure step
student
evaluate part agree loan part
|]
evaluate i loan

| T

- zero or more loans.

- loan is a sequence of initiate
action, iteration of repay actions, a
terminate action

UNIVERSITY: OF MASSACHUSETTS AMHERST: :

(1) evaluation part initiate repay part terminate
- zero or more evaluate actions 1

(2) student agrees to loan *

(3) loan(s) is (are) made repay

CONPUTE! Model Processes

specifications and notations

=Model Processes and Data

=global data is necessary too

process

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

= A model process is a particular view of the system
=various model processes provide different views
=*model process is multiply instantiated for different instances
=*model processes are often annotated with informal

=actions on data hang off of model process leaf nodes

=same action may appear as part of more than one process

=for functions that must combine data from >1 model process
=to assure consistency between model processes
=to coordinate between different instances of the same model

=to coordinate between different models of the same entity

CONPUTE! Model Process

=Primary building block of a JSD design

=contains all actions characterizing a key real-world
process

=Actions are structured into a tree
=only the leaf nodes of the tree are real-world actions
sinterior nodes are conceptual

sinterior nodes can be annotated to show choice or
iteration

straversals of this tree constitute the only "legal"
sequences of actions for this process

=Model process tree defines a regular expression
sset of traversals is a regular set

UNIVERSITY-OF MASSACHUSETTS:AMHERS'

CONPUTER Step 3: Model process step

EXTERNAL WORLD

STUDENJ;0

abstract student entity
in the real world

SYSTEM

STUDENT-]

realization in the
Information system

entity structure diagram
describes the structure of
the serial data stream

STUDENT-1 seq
read S;
EVAL iter (while TE)
process TE: read S
EVAL end
AGREE seq
process TA: read $

AGREE end
Use JSP to create a OAN-PART iter (forever)
program for the process INIT seq

process TI: read
INIT
REPAY iter (while TR)
process TR: read S
REPAY end
TERM seq
process TT: read S
TERM end
LOAN-PART end
STUDENT-1 end

UNIVERSITY- OF MASSACHUSETTS AMHERS "

17

CMPSCI520/620

COMPYTER Error handling

. . STUDENT-I se
= a real-time system (but slow-running) q

read S:
system EVAL iter (while TE)
= information is collected as it arrives process TE: read S
from the real-world EVAL end
= entity model process is synchronized AGREE seq
with the actions of the real world entity process TA: read S
= the state vector of a model process's AGREE end
“program” has a “counter” ... and if it LOAN-PART iter (forever)
“points” to repay component of a INIT seq
student's process, then an 'E' process T1: read S
(evaluate), 'A' (agree) or 'l' (initiate) INIT
transaction must be recognized as an REPAY iter (while TR)

rocess TR: read S
state vector (SV) connection
-- One process can examine
the SV of a 2nd process

-- the double lines indicate
that an inquiry process,
over its life, will examine
many student processes

error

; INPUT
STUDENT-0 '_.@_"wur\\'snm STUDENT-1
ST

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DE

COMPUTER Model Process Communication

=Fundamental notion is Data Streams

=can have multiple data streams arriving at an action in a
process

=can model multiple instances entering a data stream or
departing from one

=Two types of data stream communication:
=asynchronous message passing
=State vector inspection

=These communication mechanisms used to model how
data is passed between processes

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DE

©Rick Adrion 2003 (except where noted)

COMPUTER Total System Model

= At the Network Phase, weave Model Processes
together incrementally to form the total system
specification
=also add new processes during this phase: e.g., input,
output, user interface, data collection

=Goal is to indicate how model processes communicate
with each other, use each other, are connected to user
and outside world
=Linkage through two types of communication:
="Message passing
=State vector inspection
=|ndicates which data moves between which processes
=and more about synchronization

UNIVERSITY-OF MASSACHUSETTS AMHERST: 3!

COMPUTER Message Passing

=Data stream carries a message from one process
activity to an activity in another process

=must correlate with output leaf of sending model process

=must correlate with input leaf of receiving model process
=Data transfer assumed to be asynchronous

uless restrictive assumption

=no timing constraints are assumed

"messages are queued in infinitely long queues

"messages interleaved non-deterministically when
multiple streams arrive at same activity

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

18

CMPSCI520/620

COMPUTER State Vector Inspection

=Modeling mechanism used when one process needs
considerable information about another

=State vector includes
=values of all internal variables
=execution text pointer

=Process often needs to control when its state vector can
be viewed

=process may need exclusive access to its vector

=Could be modeled as message passing, but important
to underscore characteristic differences

UNIVERSITY: OF MASSACHUSETTS AMHERST. ~

CONPUTER Designing the LBE function w/ JSP

(i) input and output STUDENT-1
data structures: N . - R

*
STUDENT-1
SV

(i) basic program
structure

(iii) list of operations:
1 - write 'loan balance for', stud ent-id. is', balance
2- get STUDENT SV (student-id)

3-re

(iv) elaborated program structurcand text:

(forever)
V(student-id):
ce for ', stud ent-id,

C-eng
|

read E:
ﬁ_—| LBE-BODY end
LBE end

UNIVERSITY OF MASSACHUSETTS AVMHERST: 'él'

©Rick Adrion 2003 (except where noted)

COMPUTER Network Phase -- the SSD

=|oan balance inquiry function (LBE) is connected to the
Student-1 process by state vector (SV) connection

= The function to produce the student acknowledgments data
stream (ACK) is embedded in the student-1 process in the
repays component

Payment
acknowledgement
lister (PAL)

Loan balance

enquiry function

=DT is an input signal at the end of the day--a daily time marker-
-that tells the payment acknowledgment lister (PAL) function to
begin

=The ACK and DT data streams are rough-merged, that is, we
don't know precisely whether a repayment acknowledgment will
appear on today's or tomorrow's daily list.

UNIVERSITY-OF MASSACHUSETTS AMHERST: ~

CONPUTER Implementation Phase

=Use of inferences encouraged by understandings
gleaned from the network phase

=Network Phase suggests ideal traversal paths through
model processes and their local data

ssuggests internal implementation of model processes

sstudying use of model processes suggests internal
structure of their data

=Communication by data streams and state vector
inspection often suggest real implementations
=But often not

UNIVERSITY- OF MASSACHUSETTS AMHERST: :

19

CMPSCI520/620

et The SID

all of the serial data
streams are input to
the scheduler process

! . Scheduler
Eng..
D1
stud
STUDENT-1
SVs

PAL m

all student processes have an
identical structure; only their
SV are different

--separate the state vectors of
student processes from their
process text (state vector
separation).

--set of SV is the data base of
our student loan system

Loan balance
enquiry
function

‘ PAL is inverted with respect to

student-1 process is inverted
with respect to its data stream,
S. and is called by the
scheduler to process a
transaction, and then
suspended

DEPARTRA OFCOMPLT

both of its inputs, the repayment
acknowledgment data stream
and the daily marker. PAL is
invoked by Student-1 whenever
Student-1 processes a repayment
transaction. The scheduler invokes
PAL directly when it receives a DT
and this triggers the daily listing

2 AR BBl 200

COMPUIER JSD and JSP

COMPUIER Design of the scheduler in JSP

= records from the serial data stream

(loan balance inquiries and student
loan transactions) are read and
processed in real-time

= at the end of the day, a daily time
marker--perhaps a signal to the
system from the operator--is input

List of operations:

1-read input

2-call LBE(inrec)

3-get SSV(student-id)
4-call student-1(srec, ssv)
S-put SSV(student-id)
6-call PAL(DT)

= PAL is invoked & processes
payment acknowledgments that
have been previously generated in
real-time whenever a student
rbe%ayment is made and stored in a
uffer

Student

Loan balance
i loan part

enquiry
Lk

= |n JSD, the principles of JSP are extended into the areas of
systems analysis, specification, design and implementation

=In JSP, a simple program describes a sequential process that
communicates by means of sequential data streams; its structure is
determined by the structure of its input and output data stream

=In JSD, the real world is modeled as a set of sequential model
processes that communicate with the real world and with each other
by sequential data streams (as well as by a second read-only
communication called state vector connection). The structure of a
model process is determined by the structure of its inputs and
outputs.

= The JSD implementation step embodies the JSP implementation
technique, program inversion, in which a program is transformed
into a procedure

= Other JSP techniques, such as the single read-ahead rule and
backtracking, and principles, such as implementation through
transformation, are used in JSD

UNIVERSITY OF MASSACHUSETTS AVMHERST: o

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF MASSACHUSETTS:AMHERS'

CONPUTER Comments/Evaluation

=Focus on conceptual design
=But difficult to build a system this way
=Based upon model of real world
=Careful (and experienced) analysis of the model
generally points suggested implementation tactics,
though
=Parnas notions of module not perceptible here
=Not an iterative refinement approach either
=Treatment of data is very much subordinated/secondary
=Does a good job of suggesting possible parallelism
=Contrasts strongly with Objected Oriented notions (eg.
Booch, UML)

UNIVERSITY- OF MASSACHUSETTS AMHERS

20

