
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

17- Software Architecture

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

But first

ßA review of UML software development

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

O-O System Development

adapted from Bruegge/Dutoit O-O SW Engr

problem
statement

Requirements
elicitation

Requirements
analysis

System design

system design
object model

design goals subsystem
decomposition

functional
model

nonfunctional
requirements

use case
diagram

analysis
object model

class
diagram

dynamic
model

statechart
diagram

sequence
diagram

Implementation

source
code

Test

deliverable
system

Object design

object design
model

class
diagram

RFP

interviews

Project 3

Project2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

O-O System Development

adapted from Bruegge/Dutoit O-O SW Engr

design
view

deployment
view

process
view

implementation
view

Use -Case
View

Use cases

Components

Classes, interfaces,
collaborations

Active classes Nodes

Organization
Package, subsystem

Dynamics
Interaction

State machine

problem
statement

Requirements
elicitation

Requirements
analysis

System design

system design
object model

design goals subsystem
decomposition

functional
model

nonfunctional
requirements

use case
diagram

analysis
object model

class
diagram

dynamic
model

statechart
diagram

sequence
diagram

Implementation

source
code

Test

deliverable
system

Object design

object design
model

class
diagram

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Adapted from

ßVarious sources including:
ßDavid Garlan, “Software Architecture: a Roadmap,”
Proceedings of the conference on The future of Software
engineering, Limerick, Ireland, June 04 - 11, 2000

ßM. Shaw and P. Clements,”A field guide to boxology:
Preliminary classification of architectural styles for software
systems,” Proceedings of COMPSAC 1997, August 1997

ßM. Shaw and D. Garlan, Tutorial Slides on Software
Architecture http://www-2.cs.cmu.edu/afs/cs/project/tinker-
arch/www/html/Tutorial_Slides/Soft_Arch/quick_index.html

ßGarlan, David & Shaw, “An Introduction To Software
Architecture,” Technical report, The Software Engineering
Instiute, Carnegie Mellon University

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Architecture

ßarchitecture of a system describes its gross structure

ßilluminates the top level design decisions
ßhow the system is composed of interacting parts

ßthe main pathways of interaction

ßthe key properties of the parts

ßallows high-level analysis and critical appraisal

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Roles of Software Architecture

ßa bridge between requirements and implementation
ßan abstract description of a system,

ßexposes certain properties, while hiding others.

ßuseful for:
ßUnderstanding

ßReuse

ßConstruction

ßEvolution

ßAnalysis

ßManagement

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Roles of Software Architecture

ß Understanding:
ß simplifies the understanding of large

systems using an abstraction
ß constraints on system design
ß rationale

ß Construction
ß a partial blueprint for development:

components and dependencies

ß Evolution
ß dimensions along which a system is

expected to evolve
ß "load-bearing walls" -> ramifications of

changes, cost estimation
ß separate concerns about the

functionality of a component from the
ways in which that component is
connected to (interacts with) other
components

ßAnalysis
ßconsistency checking
ßconformance
ß to constraints
ß to quality attributes

ßdependence analysis
ßdomain-specific analyses for

architectural styles

ßReuse
ß reuse of large components

and frameworks

ßManagement
ß leads to a much clearer

understanding of requirements,
implementation strategies, and
potential risks

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

Architecture was largely ad hoc

ßis this an architecture?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

Example

ßwhat is the nature of the components,
and what is the significance of their
separation?
ßdo they run on separate processors?
ßdo they run at separate times?
ßdo the components consist of
processes, programs, or both?
ßdo the components represent ways in
which the project labor will be divided,
or do they convey a sense of runtime
separation?
ßare they modules, objects, tasks,
functions, processes, distributed
programs, or something else?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

Example

ßwhat is the significance of the links?
ßdo the links mean the components
communicate with each other, control
each other, send data to each other,
use each other, invoke each other,
synchronize with each other, or some
combination of these or other
relations?

ßwhat is the significance of the layout?
ßwhy is CP on a separate (higher) level?
ßdoes it call the other three
components, and are the others not
allowed to call it?
ßwas there simply not room enough to
put all four components on the same
row in the diagram?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Historically

ßArchitecture was largely ad hoc affair
ßDesigners freely use informal patterns/idioms
ß informal with imprecise semantics
ßdiagrams + prose, but no rules

ßDesigners use system-level abstraction
ßoverall organization (styles)
ßcomponents and interactions

ßDesigners compose systems from subsystems
ßbut, tend to think statically
ßselect structure by default, rather than by design

ßKey events
ßParnas recognized the importance of system families and
architectural decomposition principles based on information
hiding
ßDijkstra proposed certain system structuring principles

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Abstraction techniques in CS

ßProgramming Languages
ßmachine language
ßsymbolic assemblers
ßmacro processors
ßearly high-level languages
ßFortran
ßdata types served primarily as cues for selecting
the proper machine instructions

ßAlgol and it successors
ßdata types serve to state the programmer’s
intentions about how data should be used.

ßlater high-level languages
ßseparation of a module’s specification
from its implementation
ß introduction of abstract data types.

increasing
abstraction

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Abstraction techniques in CS

ßADT
ßthe software structure (which included a representation
packaged with its primitive operators)

ßspecifications (mathematically expressed as abstract
models or algebraic axioms)

ßlanguage issues (modules, scope, user-defined types)

ßintegrity of the result (invariants of data structures and
protection from other manipulation)

ßrules for combining types (declarations)

ßinformation hiding (protection of properties not explicitly
included in specifications)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

two trends

ßrecognition of a shared repertoire of methods,
techniques, patterns and idioms for structuring complex
software systems

ßconcern with exploiting commonalities in specific
domains to provide reusable frameworks for product
families

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

two trends

ß recognition of a shared repertoire of methods, techniques, patterns
and idioms for structuring complex software systems
ß “Camelot is based on the client-server model and uses remote

procedure calls both locally and remotely to provide communication
among applications and servers.”
ß “Abstraction layering and system decomposition provide the

appearance of system uniformity to clients, yet allow Helix to
accommodate a diversity of autonomous devices. The architecture
encourages a client-server model for the structuring of
applications.”
ß “We have chosen a distributed, object-oriented approach to

managing information.”
ß “The easiest way to make the canonical sequential compiler into a

concurrent compiler is to pipeline the execution of the compiler
phases over a number of processors. . . . A more effective way [is to]
split the source code into many segments, which are concurrently
processed through the various phases of compilation [by multiple
compilerprocesses] before a final, merging pass recombines the
object code into a single program.”

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

two trends

ßconcern with exploiting commonalities in specific
domains to provide reusable frameworks for product
families; examples include:
ß the standard decomposition of a compiler
ß standardized communication protocols, e.g., Open
Systems Interconnection Reference Model (a layered
network architecture)
ß tools, e.g., NIST/ECMA Reference Model (a generic
software engineering environment architecture based on
layered communication substrates)
ß fourth-generation languages
ß user interface toolkits and frameworks, e.g., X Window
System (a distributed windowed user interface
architecture based on event triggering and callbacks)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why Important?

ßmutual communication.
ßsoftware architecture represents a common high-level
abstraction of the system that most, if not all, of the
system’s stakeholders can use as a basis for creating
mutual understanding, forming consensus, and
communicating with each other.

ßtransferable abstraction of a system.
ß software architecture embodies a relatively small,
intellectually graspable model for how the system is
structured and how its components work together; this
model is transferable across systems; in particular, it can
be applied to other systems exhibiting similar
requirements, and can promote large scale reuse.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why Important?

ßearly design decisions
ßsoftware architecture represents the embodiment of the
earliest set of design decisions about a system, and these
early bindings carry weight far out of proportion to their
individual gravity with respect to the system’s remaining
development, its service in deployment, and its maintenance
life.

ßarchitecture
ßprovides builders with constraints on implementation
ßdictates organizational structure for development and
maintenance projects
ßpermits or precludes the achievement of a system’s targeted
quality attributes
ßHelps in predicting certain qualities about a system
architecture can be the basis for training
ßhelps in reasoning about and managing change

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

elements, form, rationale, views

architecture=

ßelements
ßprocessing

ßdata

ßconnectors

ß form
ß rules which constrain

element placement

ßstyle/design

ß rationale
ßselection of form

ß links to reqmnts & design

ß functional/non-functional
attributes

lexer parser
semantic
analyzer

code
generator

optimizer

chars tokens phrases
correlated
phrases

correlated
phrases

annotated
correlated
phrases

lexer parser
semantic
analyzer

code
generator

optimizer

has
tokens

has
phrases

has
correlated
phrases

has
annotated
correlated
phrases

code
generator

Process View

Data View

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

architectural styles/idioms

ßarchitectural style =
ßComponents: locus of computation
ßfilters, databases, objects, clients, servers, ADTs

ßConnectors: mediate interactions of components
ßprocedure call, pipes, event broadcast

ßProperties: specify info for construction & analysis
ßSignatures, pre/post conditions, RT specifications

ßother
ßtopology

ßunderlying structural model?

ßunderlying computational model?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Expected Benefits

” David Garlan CMU

update document
6%

test & debug
28%

define/analyze change
18%

trace logic
23%

implement change
19%

review document
6%

RequirementsRequirements

ArchitectureArchitecture

DesignDesign

Code
Integration

Code
Integration

Test
Accept

Test
Accept

MaintenanceMaintenance

• Clarify intentions
• Make decisions and

implications explicit
• Permit system level

analysis

• Reduce maintenance
costs, directly and
indirectly

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

independent
components

communicating
processes

event systems

implicit
invocation

explicit
invocation

dataflow

batch
sequential

pipes & filters

virtual machine

rule-based
system

interpreter

data-centered

repository blackboard

call/return

main prog.
& subroutine

object-
oriented

layered

taxonomy

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

“Boxology”

ßControl issues
ß Topology
ß geometric form of the control flow for the system:

linear (non-branching), acyclic, hierarchical, star,
arbitrary

ß Synchronicity
ß Interdependency of the component control states:

lockstep (sequential or parallel), synchronous,
asynchronous, opportunistic

ß Binding time
ß time the identity of a partner in a transfer-of-control

operation is established: write (i.e., source code) time,
compile time, invocation time, run time

ßData issues
ß Topology
ß geometric shape of the system’s data flow graph:

linear (non-branching), acyclic, hierarchical, star,
arbitrary

ßContinuity
ß the flow of data throughout the system: continuous,

sporadic, high-volume (in data-intensive systems),
low-volume (in compute-intensive systems)

ßData issues
ßMode
ß data is made available throughout the system:

passed (object style from component to
component), shared: copyout-copy-in,
broadcast, multicast

ß Binding time
ß time identity of a partner in a data operation is

established: write (i.e., source code

ßControl/data interaction issues
ß Shape
ß control flow and data flow topologies

isomorphic

ßDirectionality
ß If shapes the same, does control flow in the

same direction as data or the opposite
direction.

ß Type of reasoning
ß nondeterministic state machine theory,

function composition
ß software substructure and analysis

substructure should be compatible.

ß Components and connectors
ßprimary building blocks of architectures
ßabstractions used by designers in defining their architectures
ßmost of these elements are ultimately implemented in terms of processes (as defined by the
operating system) and procedure calls (as defined by the programming language).

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

validate sort update report

tape tapetapetape

data transformation

data flow

computation

sed grep awk

stdin stdout

data flow (ascii stream)

taxonomy:data flow

ßbatch sequential
ßindependent programs,
dataflow in large chunks, no
parallelism

ßpipes & filters
ßincremental, byte stream
data flow, pipelined
“parallelism”, local context,
no state persistence

dataflow

batch
sequential

pipes & filters

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Boxology: dataflow

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

*to some extent batch

Analysis: pipes & filters*

ßproblem decomposition
ßadvantages: hierarchical decomposition of system
function
ßdisadvantages: “batch mentality,” interactive apps?,
design

ßmaintenance & reuse
ßadvantages: extensibility, reuse, “black box” approach
ßdisadvantages: lowest common denominator for data
flow

ßperformance
ßadvantages: pipelined concurrency
ßdisadvantages: parsing/un-parsing, queues, deadlock
with limited buffers

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Rules of thumb for dataflow/pipes

ß If your problem can be decomposed into sequential stages,
consider batch sequential or pipeline architectures
ßIf in addition each stage is incremental, so that later stages
can begin before earlier stages complete, then consider a
pipelined architecture

ß If your problem involves transformations on continuous
streams of data (or on very long streams) consider a pipeline
architecture
ßHowever, if your problem involves passing rich data
representation, then avoid pipeline architectures restricted to
ASCII

ß If your system involves controlling action, is embedded in a
physical system, and is subject to unpredictable external
perturbation so that preset algorithms go awry, consider a
closed loop architecture

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

main

sub sub sub

sub sub sub sub sub sub

sub sub sub

obj

obj

obj

obj
obj

taxonomy: call/return
ßmain/sub
ßhierarchical
decomposition, single
thread of control,
structure implicit,
correctness depends on
subordinates

ß layered
ßhides lower
layers/services higher
layer, upper=“virtual
machines”/lower =hw,
kernel, scoping

ßobject-oriented
ßencapsulation,
inheritance,
polymorphism

call/return

main prog.
& subroutine

object-
oriented

layered

basic utility

useful system

user interface

core

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Analysis: call/return

ß layers
ßportability, modifiability, reuse
ßadvantages: each layer is abstract machine, each layer interacts

with ≤ 2 other layers, standard interfaces

ßperformance, design
ßdisadvantages: semantic feedback in UI, deep functionality,

abstractions difficult, bridging layers

ßobject-oriented
ßportability, modifiability, reuse
ßadvantages: decreased coupling, frameworks -> reuse
ßdisadvantages: complex structure

ßperformance, design
ßadvantages: maps easily to “real world”, inheritance, encapsulation
ßdisadvantages: design harder, side effects, identity, inheitance

difficult

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

app
module

shared
d b

app
module

app
module

app
module

app
module

app
module

knowledge
source

blackboard

knowledge
source

knowledge
source

knowledge
source

knowledge
source

knowledge
source

data-centered

repository blackboard

Taxonomy: data-centered

ßtransactional db
ßlarge central data store, control via
transactions

ßblackboards
ßcentral shared + app-specific data
representations, control via data state

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Rules of thumb: objects and repositories

ßIf a central issue is understanding the data of the
application, its management, and its representation,
consider a repository or ADT architecture; if the data is
long-lived focus on repositories

ßIf the representation of data is likely to change over the
lifetime of the program, ADTs or objects can confine the
changes to particular components

ßIf you are considering repositories and the input data is
“noisy” and the execution order can not be
predetermined, consider a blackboard

ßIf you are considering repositories and the execution
order is determined by a stream of incoming requests
and the data is highly structured, consider a DB system.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Taxonomy:independent components

ßcommunicating processes
ßindependent processes, point-
point message passing,
asynch/synch, RPC layered
on top

ßevent systems
ßinterface define allowable
in/out events, event-procedure
bindings: procedure
“registration”, communiation
by event “announcement”,
implicit action invocation on
event, non-deterministic
ordering

manager

proc

proc

proc

proc
proc

independent
components

communicating
processes

event systems

implicit
invocation

explicit
invocation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Boxology: independent components

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

analysis

ßevent systems

ßportability, modifiability, reuse
ßadvantages: no “hardwired names”, new objects added
by registration

ßdisadvantages: nameserver/”yellowpages” needed

ßperformance, design
ßadvantages: computation & coordination are separate
objects/more independent, parallel invocations

ßdisadvantages: no control over order of invocation,
correctness, performance penalty from communication
overhead

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Rules of thumb

ßIf your task requires a high degree of flexibility-
configurability, loose coupling between tasks, and
reactive tasks, consider interacting processes
ßIf you have reason not to bind the recipients of signals to
their originators, consider an event architecture

ßIf the task are of a hierarchical nature, consider a
replicated worker or heartbeat style

ßIf the tasks are divided between producers and
consumers, consider a client-server style (naïve or
sophisticated)

ßIf it makes sense for all of the tasks to communicate with
each other in a fully connected graph, consider a token-
passing style

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

data
(program state) program

internal
state

interpretation
engine

inputs

outputs

state
data

program
instructionsupdatesdata

selected instr,

selected data

working
memory

fact
memory

rule/data
selection

interpretation
engine

inputs

outputs

triggering
data

rules/facts
updatesdata

selected rules

selected data

rule
memory

virtual machine

rule-based
system

interpreter

taxonomy: virtual machines

ßinterpreters
ßsimulate functionality which is
not native to the run-time
system; execution engine
“implemented” in software

ßrule-based systems
ßspecialization of an interpreter

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Analysis: virtual machines

ßinterpreters

ßportability, modifiability, reuse
ßdisadvantages: map into actual implementation?

ßperformance, design
ßadvantages: simulate non-native functionality, can
simulate “disaster” modes for safety analysis

ßdisadvantages: much slower than actual system,
additional layer of software to be verified

ßRules of thumb: virtual machines
ßIf you have designed a computation, but have no
machine on which you can execute it, consider a virtual
interpreter architecture.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Problem and Solution

ß Problem:
ßSoftware architecture is too complex to be captured
using a single diagram, and not all aspects of it are
interesting at different moments and to different
stakeholders. How to manage this complexity?

ß Solution:
ßRepresent different aspects and different characteristics
of the architecture through multiple views.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Views

ß What is a view?
ßA view is a presentation of a model, which is a complete
description of a system from a particular perspective.

ß Proposed views:
ßLogical View - captures the object model

ßProcess View - captures the concurrency and
synchronization aspects

ßDevelopment View - captures static organization of the
software in its development environment

ßPhysical View - captures the way software is mapped on
hardware

ßThe “4+1” view: these plus scenarios

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

logical
view

physical
view

process
view

development
view

scenarios

end users
• functionality

system engineers
• system topology
• delivery
• installation
• telecommunication

system integrators
• performance
• scalability
• throughput

programmers
• software management

4+1 view of software architecture

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Logical Architecture

ß Represented by Logical View
ßof interest to end-user

ßsupports functional requirements

ßpresents key abstractions mostly from the problem
domain

ß Class diagrams show how classes are grouped
together, class’ interface (functionality) and associations
ß“close” to the Development Architecture

ß usually deduced from Scenario View (or Use-Case
view)

ß many case tools support it (UML tools, E-R tools etc.)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

example: logical view

class

class
utility

parameterized
class

class
category

association
containment,
agregation
usage
inheritance
instantiation

formal args

style: object-oriented
notation: Booch

translation
services

connection
services

numbering
plan

example: Alcatel PBX

conversation

Terminal

Controller

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Process Architecture

ß Represented by Process View
ßof interest to system designer, integrator

ßconcerned with performance, availability, S/W fault
tolerance, integrity

ßpresents concurrency and distribution of processes, how
abstractions from Logical View map to processes

ß Components:Tasks

ßConnectors: rendezvous, broadcasts,…

ßContainers: process
ß“close” to the Physical Architecture

ßtool support: UNAS/SALE, DADS

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

example: process view

components

process

style: indep.comonents
notation: Booch (Ada tasking)

message

unspecified

connectors

example: Alcatel PBX

terminal process

connectors
controller process

controller task
(low rate)

controller task
(high rate)

controller task
(Main)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Development Architecture

ß Represented by Development View
ßof interest to developer, manager

ßconcerns: organization, reuse, portability, line-of-product

ßpresents actual software module organization

ßsubsystems organized in a hierarchy of layers

ß“close” to the Logical Architecture
ßusually deduced from Logical Architecture

ßtools: Apex, SoDA

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

components

module

style: layered
notation: Booch

layer

connectors

subsystem

dependency

example: Alcatel PBX

layer1

layer3

layer4

layer5

layer2

human-computer interface
external systems

.

.

.

.

bindings

example: development view

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

The Physical Architecture

ß Represented by Physical View
ßof interest to system designer

ßconcerns: scalability, performance, availability, reliability

ßpresents how processes, objects etc. are mapped onto
processing nodes

ß Components:processing nodes

ß Connectors: LAN, WAN, bus,…

ß Containers: Physical Subsystem
ß“close” to the Process Architecture

ßstrongly influenced by Process Architecture

ßtools: UNAS, DADS

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

components

processor

style: indep.comonents
notation: UNAS

hi-bw comm line

comm line

connectors

other device

comm line (non-perm)

uni-dir comm line

example: Alcatel PBX

KK

C

F F F F

C

KK KK KK KK KK

primary

backupprimary primary

backup

backup

example: physical view

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Physical view (with process allocation)
example: Alcatel PBX

C

F F

primary

backupprimar
y

K K K

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Scenarios

ß Instances of Use-Cases, unify all views
ßof interest to end-user, developer

ßconcerns: understandability

ß Textual domain process descriptions, object scenario
diagrams and object interaction diagrams
ßused as a driver to discover architectural elements,
validation of design

ßtools: UML case tools

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

controller terminal numbering
plan

conversation

(1) off-hook

(2) dial tone

(3) digit

(4) digit

(5) open conversation

Scenarios

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

design
view

deployment
view

process
view

implementation
view

Use -Case
View

Use cases

Components

Classes, interfaces,
collaborations

Active classes Nodes

Organization
Package, subsystem

Dynamics
Interaction

State machine

The Rational 4+1 Views

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

UML SW Development Life Cycle

ßUse-case driven
ßuse cases are used as a primary artifact for establishing the
desired behavior of the system, for verifying and validating the
system’s architecture, for testing, and for communicating
among the stakeholders of the project

ßArchitecture-centric
ßa system’s architecture is used as a primary artifact for
conceptualizing, constructing, managing, and evolving the
system under development

ß Iterative
ßone that involves managing a stream of executable releases

ß Incremental
ßone that involves the continuous integration of the system’s
architecture to produce these releases

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architectural View Mismatches in UMLArchitectural View Mismatches in UML

ßDifferent UML diagrams present different system views

ßredundant information across views

ßKey challenge is to ensure inter-view consistency

ßRamifications on round-trip engineering

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Round-Trip Software Engineering Using UMLRound-Trip Software Engineering Using UML

Nenad Medvidovic Assessing the Suitability of UMLAssessing the Suitability of UML
for Modeling Software Architecturesfor Modeling Software Architectures

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architecture Description Languages

ßformal notations for representing and analyzing
architectural designs

ßprovide both a conceptual framework and a concrete
syntax for characterizing software architectures

ßtools for parsing, displaying, compiling, analyzing, or
simulating architectural descriptions.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

ADL Examples
ß Adage
ß supports the description of architectural frameworks for avionics navigation

and guidance
ß Aesop
ß supports the use of architectural styles

ß C2
ß supports the description of user interface systems using anevent-based style

ß Darwin
ß supports the analysis of distributed message-passing systems

ßMeta-H
ß provides guidance for designers of real-time avionics control software;

ß Rapide
ß allows architectural designs to be simulated, and has tools for analyzing the

results of those simulations;
ß SADL
ß provides a formal basis for architectural refinement;

ß UniCon
ß has a high-level compiler for architectural designs that supports a mixture of

heterogeneous component and connector types;
ßWright
ß supports the formal specification and analysis of interactions between

architectural components.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

formal architectural specification.

ßmodule interconnection languages
ßstatic aspects of component interaction
ßdefinition and use of types, variables, and functions among
components
ßexamples: INTERCOL, PIC, CORBA/IDL

ßprocess algebras
ßdynamic interplay among components
ßconcerned with the protocols by which components
communicate
ßexamples: Wright (based on CSP), Chemical Abstract
Machine (based on term rewriting)

ßevent languages
ß identification and ordering of events
ßevent is a very flexible, abstract notion
ßexample: Rapide

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Evaluation & analysis

ßconduct a formal review with external reviewers
ßtime the evaluation to best advantage
ßchoose an appropriate evaluation technique
ßcreate an evaluation contract
ßlimit the number of qualities to be evaluated
ßinsist on a system architect
ßbenefits
ßfinancial
ßincreased understanding and documentation of the
system
ßdetection of problems with the existing architecture
ßclarification and prioritization of requirements
ßorganizational learning

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Benefits

ßexamples
ßAT&T
ß10% reduction in project costs, on projects of 700 staff days
or longer, the evaluation pays for itself.

ßconsultants
ßreported 80% repeat business, customers recognized
sufficientvalue

ßwhere architecture reviews did not occur
ßcustomer accounting system estimated to take two years,
took seven years, re-implemented three times, performance
goals never met

ß large engineering relational database system, performance
made integration testing impossible, project was cancelled
after twenty million dollars had been spent.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Architecture vs Frameworks
ßFrameworks
ßan object-oriented reuse technique
ßused successfully for some time & are an important
part of the culture of long-time object-oriented
developers,
ßBUT they are not well understood outside the
object-oriented community and are often misused

ßQuestion:
ßare frameworks mini-architectures, large-scale
patterns, or they are just another kind of
component?

ßDefinitions
ßa framework is a reusable design of all or part of a
system that is represented by a set of abstract
classes and the way their instances interact
ßa framework is the skeleton of an application that
can be customized by an application developer

Ralph E. Johnson, “Frameworks= (Components+Patterns).”Communications of the ACM, October 1997/Vol. 40, No. 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks & Class Libraries

ßdevelopers often do not even know they are using a
framework, but refer to a “class library”

ßframeworks differ from other class libraries by reusing
high-level design
ßmore to learn before a class can be reused

ßcan never be reused in isolation; typically a set of
classes must be learned at once

ßyou can often tell that a class library is a framework if
there are dependencies among its components and if
programmers who are learning it complain about its
complexity.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Framework Architecture

Class Library Architecture

ADTs

Strings

Locks
IPC

Math

LOCAL
INVOCATIONS APPLICATION-

SPECIFIC
FUNCTIONALITY

GLUE
CODE

Files

GUI
EVENT
LOOP

Frameworks & Class Libraries

ßA class is a unit of abstraction
& implementation in an OO
programming language

ßA framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Components & frameworks

ßFrameworks
ßwere originally intended to be reusable
components
ßbut reusable O-O components have not found a
market

ßare a component in the sense that
ßvenders sell them as products
ßan application might use several frameworks.

ßBUT
ßthey more customizable than most components
ßhave more complex interfaces
ßmust be learned before the framework can be used

ßa component represents code reuse, while
frameworks are a form of design reuse

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Components & frameworks
ßframeworks
ßprovide a reusable context for components
ßprovide a standard way for components to handle
errors, to exchange data, and to invoke operations
on each other
ß“component systems’’ such as OLE, OpenDoc, and Beans,
are really frameworks that solve standard problems that
arise in building compound documents and other composite
objects. make it easier to develop new components

ßenable making a new component (such as a user
interface) out of smaller components (such as a
widget)
ßprovide the specifications for new components and
a template for implementing them.

ßa good framework can reduce the amount of
effort to develop customized applications by an
order of magnitude

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

 Middleware Bus

Component Architecture

Naming

LockingLogging

Events

Framework Architecture

ADTs

Locks

Strings

Files

INVOKES

Reactor

GUI

DATABASE

NETWORKING

APPLICATION-
SPECIFIC
FUNCTIONALITY CALLBACKS

Frameworks & Components

ßA framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

ßA component is an
encapsulation unit with one
or more interfaces that
provide clients with access to
its services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Comparison

Class Libraries Frameworks
Macro-levelMeso-levelMicro-level

Borrow caller’s threadInversion of
control

Borrow caller’s
thread

 Domain-specific or

 Domain-independent

Domain-specificDomain-independent

Stand-alone
composition entities

“Semi-complete”
applications

Stand-alone
language entities

Components

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 18

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks as Reusable Design

ßAre they like other techniques for reusing high-level
design, e.g., templates or schemas?
ßtemplates or schemas
ßusually depend on a special purpose design notation
ßrequire special software tools
ßframeworks
ßare expressed in a programming language
ßmakes them easier for programmers to learn and to
apply
ßno tools except compilers
ßcan gradually change an application into a framework
ßbecause they are specific to a programming language,
some design ideas, such as behavioral constraints,
cannot be expressed well

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks
and domain-specific architectures

ßA framework is ultimately an object-oriented design, while a
domain-specific architecture might not be.

ßA framework can be combined with a domain-specific
language by translating programs in the language into a set
of objects in a framework
ßwindow builders associated with GUI frameworks are
examples of domain-specific visual programming languages

ßUniformity reduces the cost of maintenance

ßGUI frameworks give a set of applications a similar look and
feel

ßusing a distributed object framework ensures that all
applications can communicate with each other.

ßmaintenance programmers can move from one application to
the next without having to learn a new design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Overview of Patterns

ßPatterns
ßpresent solutions to common software problems
arising within a certain context

ßhelp resolve key software design issues
ßFlexibility, Extensibility, Dependability, Predictability,
Scalability,Efficiency

ßcapture recurring structures & dynamics among
software participants to facilitate reuse of
successful designs

ßcodify expert knowledge of design strategies,
constraints and best practices

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

software patterns

ßrecord experience of good designers
ßdescribe general, recurring design structures in a
pattern-like format
ßproblem, generic solution, usage
ßsolutions (mostly) in terms of O-O models
ßcrc-cards; object-, event-, state diagrams
ßoften not O-O specific
ßpatterns are generic solutions; they allow for design and
implementation variations
ßthe solution structure of a pattern must be “adapted” to
your problem design
ßmap to existing or new classes, methods, ...
ßa pattern is not a concrete reusable piece of software!

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 19

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

qualities of a pattern

ßencapsulation and abstraction
ßeach pattern encapsulates a well-defined problem and its
solution in a particular domain
ßserve as abstractions which embody domain knowledge and
experience

ßopenness and variability
ßopen for extension or parametrization by other patterns so that
they may work together

ßgenerativity and composability
ßgenerates a resulting context which matches the initial context
of one or more other patterns in a pattern language
ßapplying one pattern provides a context for the application of
the next pattern.

ßequilibrium
ßbalance among its forces and constraints

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Active Object, Bridge,
Proxy, Wrapper
Façade, & Visitor

Capture the static & dynamic roles &
relationships in solutions that occur
repeatedly

Design patterns

Half-Sync/Half-Async,
Layers, Proactor,
Publisher-Subscriber,
& Reactor

Express a fundamental structural
organization for software systems that
provide a set of predefined subsystems,
specify their relationships, & include the
rules and guidelines for organizing the
relationships between them

Architectural
patterns

Optimize for common
case, pass
information between
layers

Document rules for avoiding common
design & implementation mistakes that
degrade performance

Optimization
principle patterns

Scoped lockingRestricted to a particular language, system,
or tool

Idioms

ExamplesDescriptionType

Taxonomy of Patterns & Idioms

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks and Patterns

ßframeworks represent a kind of pattern
ße.g., Model/View/Controller is a user-interface framework
often described as a pattern
ßapplications that use frameworks must conform to the
frameworks’ design and model of collaboration, so the
framework causes patterns in the applications that use it.

ßframeworks are at a different level of abstraction than
patterns
ßframeworks can be embodied in code, but only examples
of patterns can be embodied in code.
ßa strength of frameworks is that they can be written down
in programming languages and not only studied but
executed and reused directly
ßin contrast, design patterns have to be implemented each
time they are used.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks and Patterns

ßdesign patterns are smaller architectural elements than frameworks
ßa typical framework contains several design patterns but the reverse

is never true
ßdesign patterns are the micro-architectural elements of frameworks.
ß e.g., Model/View/Controller can be decomposed into three major design

patterns, and several less important ones
ßMVC uses the Observer pattern to ensure the view’s picture of the model is

up-to-date, the Composite pattern to nest views, and the Strategy pattern
to cause views to delegate responsibility for handling user events to their
controller.

ßdesign patterns are less specialized than frameworks.
ß frameworks always have a particular application domain.
ßdesign patterns can be used in nearly any kind of application.
ßmore specialized design patterns are certainly possible, even these

wouldn't dictate an application architecture

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 20

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Frameworks

ßare firmly in the middle of reuse techniques.

ßare more abstract and flexible than components,

ßare more concrete and easier to reuse than a pure
design (but less flexible and less likely to be applicable)

ßare more like techniques that reuse both design and
code, such as application generators and templates.

ßcan be thought of as a more concrete form of a pattern
ßpatterns are illustrated by programs, but a framework is
a program

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Application-specific functionality

Framework Characteristics

ßFrameworks exhibit
“inversion of control” at
runtime via callbacks

ßFrameworks provide
integrated domain-
specific structures &
functionality

ßFrameworks are “semi-
complete” applications

Networking Database
GUI

Mission
Computing

Scientific
VisualizationE-commerce

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Using Frameworks Effectively

ßFrameworks are powerful, but hard to develop & use
effectively by application developers
ßIt’s often better to use & customize COTS frameworks
than to develop in-house frameworks
ßComponents are easier for application developers to
use, but aren’t as powerful or flexible as frameworks
ßSuccessful projects are often organized using the
“funnel” model

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Relation to Middleware

ßone of the strengths of frameworks is that they are
represented by traditional object-oriented programming
languages.
ßBUT, this is also a weakness of frameworks, however,
and it is one that the other design-oriented reuse
techniques do not share.
ßMiddleware
ßCOM, CORBA, etc. address this problem, since they let
programs in one language interoperate with programs in
another

ßOther approaches
ßsome frameworks have been implemented twice so that
users of two different languages can use them, such as
the SEMATECH CIM framework

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 21

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

Evolution of Middleware

ßHistorically, mission-critical apps were
built directly atop hardware & OS
ßtedious, error-prone, & costly over
lifecycles

ßThere are layers of middleware, just like
there are layers of networking protocols
ßStandards-based COTS middleware

helps:
ßControl end-to-end resources & QoS
ßLeverage hardware & software
technology advances
ßEvolve to new environments &
requirements
ßProvide a wide array of reuseable, off-
the-shelf developer-oriented services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Middleware

ß Infrastructure middleware.
ßencapsulates core OS communication and concurrency services to

eliminate many tedious, error-prone, and non-portable aspects of
developing and maintaining distributed applications using low-level
network programming mechanisms, such as sockets
ßExamples: the Java Virtual Machine (JVM) and the ADAPTIVE

Communication Environment (ACE).
ßDistribution middleware
ßbuilds upon the lower-level infrastructure middleware to automate

common network programming tasks, such as parameter
marshaling/demarshaling, socket and request demultiplexing, and
fault detection/recovery
ßExamples: Object Management Group's (OMG's) Common Object

Request Broker Architecture (CORBA), Microsoft's Distributed COM
(DCOM), and JavaSoft's Remote Method Invocation (RMI).

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Middleware

ß Common middleware services
ß augments the distribution middleware by defining domain-independent

services, such as event notifications, logging, multimedia streaming,
persistence, security, transactions, fault tolerance, and distributed
concurrency control

ß applications can reuse these services to perform common distribution tasks
that would otherwise be implemented manually.

ß Domain-specific Services
ß tailored to the requirements of particular domains, such as

telecommunications, e-commerce, health-care, or process automation

ß are generally reusable, and thus are the least mature of the middleware layers
today

ß embody domain-specific knowledge, however, they have the most potential to
increase system quality and decrease the cycle-time and effort required to
develop particular types of networked applications

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Progress

ßsignificant progress in QoS-
enabled middleware,
stemming in large part from
the following trends:
ßyears of iteration,
refinement, & successful
use
ßmaturation of middleware
standards
ß .NET, J2EE, CCM
ßReal-time CORBA
ßReal-time Java
ßSOAP & Web Services

ßmaturation of component
middleware frameworks &
patterns

Year1970 2005

ARPAnet

RPC

Micro-kernels

CORBA & DCOM

Real-time
CORBA

 Component
 Models (EJB)

CORBA Component
Model (CCM)

Real-time CCM

DCE

Web Services

Adapted from Douglas C. Schmidt, “Patterns, Frameworks, & Middleware: Their Synergistic Relationships”

