CMPSCI520/620

COMPUTER
SCIENCE

17- Software Architecture

Rick Adrion

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE! Al

CONPUTER 0-O System Development

problem
statement RFP

Requirements.
elcitation
morfunctonal fontona . A usccase
requirements model [C|__diagram
Statech®
RN

Requirements
analysis
sequence
diagram

v Ty,
Gass analysis dynamic
diagram object model model

e mmer= vt e > Project 3
system design subsystem
‘ design goals bject model

Object design

‘object design
model

Cass
T diagram

eliverable

system
adapted from Bruegge/Dutoit O-O SW Engr

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER
SCIENCE

But first

=A review of UML software development

UNIVERSITY-OF MASSACRUSETTS AMHERST - DER,

COMPUTER
SCIENCE

0-0O System Development

problem

statement
nonfunctional functional
requirements model

Requirements
analysis

e
@
implementation
PR v T >
System design Subsystem Organizaton Dynamics
‘ design goals object model Padkage, WS} g Case qneion
=
=
Object design N .//-
process doployment
dlass Sbject design e =z

Implementation
Source
————————————————
Geliverable
system

adapted from Bruegge/Dutoit O-O SW Engr

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

AT Adapted from

=Various sources including:

=David Garlan, “Software Architecture: a Roadmap,”
Proceedings of the conference on The future of Software
engineering, Limerick, Ireland, June 04 - 11, 2000

=M. Shaw and P. Clements,"A field guide to boxology:
Preliminary classification of architectural styles for software
systems,” Proceedings of COMPSAC 1997, August 1997

=M. Shaw and D. Garlan, Tutorial Slides on Software
Architecture http://www-2.cs.cmu.edu/afs/cs/project/tinker-
arch/www/html/Tutorial Slides/Soft Arch/quick index.html

=Garlan, David & Shaw, “An Introduction To Software
Architecture,” Technical report, The Software Engineering
Instiute, Carnegie Mellon University

UNIVERSITY: OF M ASSACHUSETTS AMHERST 4 DER;

COMPUTER
)SCIENCE

=architecture of a system describes its gross structure
=illuminates the top level design decisions
=how the system is composed of interacting parts
sthe main pathways of interaction
sthe key properties of the parts
=allows high-level analysis and critical appraisal

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘_

Software Architecture

COMPUTER Roles of Software Architecture

=a bridge between requirements and implementation

=an abstract description of a system,

=exposes certain properties, while hiding others.
=useful for:

=Understanding

=Reuse

=Construction

=Evolution

=Analysis

=Management

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DER)

©Rick Adrion 2003 (except where noted)

COMPUTER
)SCIENCE

= Understanding:
= simplifies the understanding of large
systems using an abstraction
= constraints on system design
= rationale
= Construction
= a partial blueprint for development:
components and dependencies
= Evolution
= dimensions along which a system is
expected to evolve
= "load-bearing walls" -> ramifications of
changes, cost estimation
= separate concerns about the
functionality of a component from the
ways in which that component is
connected to (interacts with) other
components

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

Roles of Software Architecture

= Analysis
= consistency checking
= conformance
= to constraints
= to quality attributes
=dependence analysis
= domain-specific analyses for
architectural styles
=Reuse
=reuse of large components
and frameworks
= Management
=|eads to a much clearer
understanding of requirements,
implementation strategies, and
potential risks

CMPSCI520/620

COMPUTER Architecture was largely ad hoc COMPUTER Example
=what is the nature of the components,
Control and what i% the significance of their s
Process separation? s
(CP) =do they run on separate processors?
. I]
: =do they run at separate times? Popion| [TReven] [Thoes
| | | =do the components consist of woor) | | cioory | | aioony
. processes, programs, or both?
Prop Loss Reverb Noise =do the components represent ways in
Model Model Model which the project labor will be divided,
(MODP) (MODR) (MODN) or do they convey a sense of runtime
separation?
=are they modules, objects, tasks,
o . functions, processes, distributed
=is this an architecture? programs, or something else?

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPfA:

CONPUTER Example CONPUTER Historically
=what is the significance of the links? = Architecture was largely ad hoc affair
=do the links mean the components Control =Designers freely use informal patterns/idioms
communicate with each other, control s =informal with imprecise semantics
each other, senq data to each other, =diagrams + prose, but no rules
use each.othe.r, invoke each other, [=Designers use system-level abstraction
synchronize with each other, or some [Foptoss | [Reven Noise e
combination of these or other sl || e || e = overall organization (styles)
relations? =components and interactions
=what is the significance of the layout? =Designers compose systems from subsystems

=but, tend to think statically
= select structure by default, rather than by design
=Key events

=why is CP on a separate (higher) level?

=does it call the other three
components, and are the others not

allowed to call it? =Parnas recognized the importance of system families and
=was there simply not room enough to architectural decomposition principles based on information

put all four components on the same hiding

row in the diagram? =Dijkstra proposed certain system structuring principles

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

CONPUTER Abstraction techniques in CS

=Programming Languages
=machine language
=symbolic assemblers
"macro processors
=early high-level languages

=Fortran

=data types served primarily as cues for selecting
the proper machine instructions

=Algol and it successors

=data types serve to state the programmer’s
intentions about how data should be used.

slater high-level languages

=separation of a module’s specification
from its implementation

=introduction of abstract data types.

abstraction

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

COMPUTER

seience two trends

=recognition of a shared repertoire of methods,
techniques, patterns and idioms for structuring complex
software systems

=concern with exploiting commonalities in specific
domains to provide reusable frameworks for product
families

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER Abstraction techniques in CS

*ADT

sthe software structure (which included a representation
packaged with its primitive operators)

sspecifications (mathematically expressed as abstract
models or algebraic axioms)

slanguage issues (modules, scope, user-defined types)

mintegrity of the result (invariants of data structures and
protection from other manipulation)

srules for combining types (declarations)

minformation hiding (protection of properties not explicitly
included in specifications)

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

COMPUTER two trends

= recognition of a shared repertoire of methods, techniques, patterns
and idioms for structuring complex software systems

=“Camelot is based on the client-server model and uses remote
procedure calls both locally and remotely to provide communication
among applications and servers.”

=“Abstraction layering and system decomposition provide the
appearance of system uniformity to clients, yet allow Helix to
accommodate a diversity of autonomous devices. The architecture
encourages a client-server model for the structuring of
applications.”

=“We have chosen a distributed, object-oriented approach to
managing information.”

=“The easiest way to make the canonical sequential compiler into a
concurrent compiler is to pipeline the execution of the compiler
phases over a number of processors. . . . A more effective way [is to]
split the source code into many segments, which are concurrently
processed through the various phases of compilation [by multiple
compilerprocesses] before a final, merging pass recombines the
object code into a single program.”

UNIVERSITY- OF MASSACHUSETTS AMHERST 7 DEP/

CMPSCI520/620

CONPUTER two trends

=concern with exploiting commonalities in specific
domains to provide reusable frameworks for product
families; examples include:
= the standard decomposition of a compiler
= standardized communication protocols, e.g., Open
Systems Interconnection Reference Model (a layered
network architecture)
= tools, e.g., NIST/ECMA Reference Model (a generic
software engineering environment architecture based on
layered communication substrates)
= fourth-generation languages
= user interface toolkits and frameworks, e.g., X Window
System (a distributed windowed user interface
architecture based on event triggering and callbacks)

UNIVERSITY: OF MASSACRUSETTS: AMHERST: = DERPARTMENHOFCOMPUTER; SC\E.[‘:

CONPUTER Why Important?

= early design decisions
=software architecture represents the embodiment of the
earliest set of design decisions about a system, and these
early bindings carry weight far out of proportion to their
individual gravity with respect to the system’s remaining
development, its service in deployment, and its maintenance
life.
= architecture
=provides builders with constraints on implementation
=dictates organizational structure for development and
maintenance projects
=permits or precludes the achievement of a system'’s targeted
quality attributes
=Helps in predicting certain qualities about a system
architecture can be the basis for training
=helps in reasoning about and managing change

UNIVERSITY OF MASSACHUSETTS AMHERST: - DEBARTMENT-OF COMBUTER-SE

©Rick Adrion 2003 (except where noted)

CONPUTER Why Important?

=mutual communication.
ssoftware architecture represents a common high-level
abstraction of the system that most, if not all, of the
system’s stakeholders can use as a basis for creating
mutual understanding, forming consensus, and
communicating with each other.

stransferable abstraction of a system.

= software architecture embodies a relatively small,
intellectually graspable model for how the system is
structured and how its components work together; this
model is transferable across systems; in particular, it can
be applied to other systems exhibiting similar
requirements, and can promote large scale reuse.

UNIVERSITY-OF MASSACRUSETTS: AMHERST: - DERARTMENTOF COMRUTER; SC\EN

CONPUTER elements, form, rationale, views

architecture=
=elements

=processing

- data 'semantic
analyzer
=connectors

=form

=rules which constrain
element placement
= style/design

. has
=rationale armctaec
Ghrases

= selection of form

= links to reqmnts & design
has
= functional/non-functional @ coristea
attributes

UNIVERSITY OF MASSACHUSETTS AMHERST- - DEPARTMENT, OF BOMPUTERSE

CMPSCI520/620

CONPUTER architectural styles/idioms

=architectural style =
=Components: locus of computation
=filters, databases, objects, clients, servers, ADTs
=Connectors: mediate interactions of components
=procedure call, pipes, event broadcast
=Properties: specify info for construction & analysis
=Signatures, pre/post conditions, RT specifications
=other
=topology
=underlying structural model?
=underlying computational model?

UNIVERSITY: OF MASSACHUSETTS AMHERST = DERARTMENTHOFC QNP

COMPUTER
oscieNce taxonomy

COMPUTER

implement change
19%

Design

« Clarify intentions

* Make decisions and
implications explicit

* Permit system level
analysis

© David Garlan CMU

UNIVERSITY-OF MASSACHUSETTS AMHERST-DERARTMENT:

Architecture trace logic
5%

“science EXpected Benefits

review document update document
6% 6%

test & debug
28%

define/analyze change
18%

* Reduce maintenance
costs, directly and

Code indirectl

Integration

Test
Accept

Maintenance

QR COMAUTS

COMPUTER ., b
>science “Boxology

= Components and connectors
=primary building blocks of architectures

=abstractions used by designers in defining their architectures
=most of these elements are ultimately implemented in terms of processes (as defined by the
operating system) and procedure calls (as defined by the programming language).

invocation

©Rick Adrion 2003 (except where noted)

UNIVERSITY OF MASSACHUSETTS AMHERST: < DERARTMENT--OF COMEUT R

a-centerec

= Control issues
= Topology
= geometric form of the control flow for the system:
inear (non-branching), acyclic, hierarchical, star,
arbitrary
= Synchronicity
= Interdependency of the component control states:
lockstep (sequential or parallel), synchronous,
asynchronous, opportunistic
= Binding time
= time the identity of a partner in a transfer-of-control
operation is established: write (i.e., source code) time,
compile time, invocation time, run time
= Data issues

= Topology
. Feometric shape of the system’s data flow graph:
inear (non-branching), acyclic, hierarchical, star,
arbitrary
= Continuity
= the flow of data throughout the system: continuous,
sporadic, high-volume (in data-irtensive systems),
low-volume {in compute-intensive systems)

UNIVERSITY- OF MASSACHUSETTS AMHERST. - DEPABIMENT,

= Data issues
= Mode

= data is made available throughout the system:
passed (object style from component to
componend. shared: copyout-copy-in,
broadcast, multicast

= Binding time
= time identity of a partner in a data operation is
established: write (i.e., source code
= Control/data interaction issues
= Shape
= control flow and data flow topologies
isomorphic
= Directionality
= If shapes the same, does control flow in the
same direction as data or the opposite
direction.
= Type of reasoning
= nondeterministic state machine theory,
function composition
= software substructure and analysis
substructure should be compatible.

OF-EONRUE

CMPSCI520/620

CONINE taxonomy:data flow

dataflow

data flow

/‘\\
tap tap taps tap .
II validate 'I sort .I update _m' =batch Sequent|a|
T =

parallelism

data flow (ascii stream)

=pipes & filters

‘ data flow, pipelined

computation

no state persistence

UNIVERSITY: OF MASSACRUSETTS: AMHEF&:

=independent programs,
data transformation dataflow in large chunks, no

st 4 \\m. .
I 4 Igmp I . mincremental, byte stream

“parallelism”, local context,

CONTENE! Analysis: pipes & filters*

=problem decomposition

=advantages: hierarchical decomposition of system
function

=disadvantages: “batch mentality,” interactive apps?,
design

=maintenance & reuse

=advantages: extensibility, reuse, “black box” approach

=disadvantages: lowest common denominator for data
flow

=performance
=advantages: pipelined concurrency

=disadvantages: parsing/un-parsing, queues, deadlock
with limited buffers

*to some extent batch

UNIVERSITY- OF MASSACHUSETTS. AMHEFt

©Rick Adrion 2003 (except where noted)

COMPUTER .
seieice Boxology: dataflow
: : s Ctrl/data
Constituent parts Control issues Data issues . / N
interaction
Style Bind- Bind-|1 -| Fl
Comp- | Conn- | Topo- | Synch- T Topo- |Contin- nd-|isomor. oW
onents ectors logy [ronicity| "8 | oy uity Mode | ing | phic dir-
Y Y| time 24 Y time | shapes | ections
Data flow styles: Styles dominated by motion of data through the system, with no “upstream” content control by recip
Dataflow arbi- arbi-
network [B+88] trary trary
+ Acyclic acyclic acyelic
(A 93] data _ . .
* Fanout stream hier- Lr hier- It
[A+95] trans- archy . archy [eontlvolf
- asynch 2 N passed yes same
« Pipeline ducers or hvol
[DG90,
Se88, A+95] . .
— linear +— lincar —
“Unix pipes e
and filters stream i i
[Ba&6a] o

Synchronicity [asynch (asynchronous)
Binding time |i (invocation-time), r (run-time}
Continuity cont (continuous), hvol (high-volume), Ivol (low-velume)

UNIVERSITY-OF MASSACHUSETTS AMHE! 5

CONTENE! Rules of thumb for dataflow/pipes

= |f your problem can be decomposed into sequential stages,
consider batch sequential or pipeline architectures
=|f in addition each stage is incremental, so that later stages
can begin before earlier stages complete, then consider a
pipelined architecture
= [f your problem involves transformations on continuous
streams of data (or on very long streams) consider a pipeline
architecture
=However, if your problem involves passing rich data
representation, then avoid pipeline architectures restricted to
ASCII
= |f your system involves controlling action, is embedded in a
physical system, and is subject to unpredictable external

perturbation so that preset algorithms go awry, consider a
closed loop architecture

UNIVERSITY- OF MASSACHUSETTS, AMHEFL__

CMPSCI520/620

COMPUTER

Sseienct taxonomy: call/return

call/return

P I
o

B Bl]

=main/sub tign.e e
=hierarchical
decomposition, single
thread of control,
structure implicit,
correctness depends on
subordinates
=layered
=hides lower
layers/services higher
layer, upper="“virtual
machines”/lower =hw,
kernel, scoping
= object-oriented
=encapsulation,
inheritance,
polymorphism

£
G

UNIVERSITY. OF MASSACHUSETTS AMHERST - DERPARTHENTEOR-COME

COMPUTER

Jscience 1axonomy: data-centered

module

=transactional db

=large central data store, control via
transactions

=blackboards

=central shared + app-specific data
representations, control via data state

UNIVERSITY-OF- MASSACHUSETTS AMHERST: - DEBARTMENT- QR B0

©Rick Adrion 2003 (except where noted)

COMPUTER
@ SCIENCE

Analysis: call/return

=layers
=portability, modifiability, reuse

=advantages: each layer is abstract machine, each layer interacts
with < 2 other layers, standard interfaces

=performance, design

=disadvantages: semantic feedback in Ul, deep functionality,
abstractions difficult, bridging layers
= object-oriented

=portability, modifiability, reuse
=advantages: decreased coupling, frameworks -> reuse
=disadvantages: complex structure

=performance, design
=advantages: maps easily to “real world”, inheritance, encapsulation

=disadvantages: design harder, side effects, identity, inheitance
difficult

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTMENT QR CC:]

COMPUTER
@ SCIENCE

Rules of thumb: objects and repositories

=|f a central issue is understanding the data of the
application, its management, and its representation,
consider a repository or ADT architecture; if the data is
long-lived focus on repositories

=|f the representation of data is likely to change over the
lifetime of the program, ADTs or objects can confine the
changes to particular components

=|f you are considering repositories and the input data is
“noisy” and the execution order can not be
predetermined, consider a blackboard

=|f you are considering repositories and the execution
order is determined by a stream of incoming requests
and the data is highly structured, consider a DB system.

UNIVERSITY- OF MASSACHUSETTS AMHERST. - DERPARTMENTOFED

CMPSCI520/620

c"«"’-‘;ﬁﬁ% Taxonomy:independent components

=communicating processes

=independent processes, point-
point message passing,
asynch/synch, RPC layered
on top

=event systems

sinterface define allowable
in/out events, event-procedure
bindings: procedure
“registration”, communiation
by event “announcement”,
implicit action invocation on
event, non-deterministic
Ordenng independent

col ents
A

nicating
es

event systel

implicit e
invocation _invo

UNIVERSITY: OF M ASSACHUSETTS: AMHER!

COMPUTER analysis

=event systems
=portability, modifiability, reuse
=advantages: no “hardwired names”, new objects added
by registration
=disadvantages: nameserver/"yellowpages” needed
=performance, design
=advantages: computation & coordination are separate
objects/more independent, parallel invocations
=disadvantages: no control over order of invocation,
correctness, performance penalty from communication
overhead

UNIVERSITY- OF MASSACHUSETTS AMHER!

©Rick Adrion 2003 (except where noted)

seieNee Boxology: independent components
Constituentparts | Control issues Data issues Clrl/data
Style Comp- ind-[Isomor-| Flow
P phic | dir-
shapes | ections
(Communicating if iso-
any but
processes arb arb any | w, e, r|possibly [morphic
[An9 1. Pa85] s cither
One-way data,
flow, networks linear | asynch inear passed yes | same
of filters
Client/server star synch star assed ves [opposite
request/reply ¥ P i PP
passed
hier or
Heartheat message | hier | ls/par & spor | shared no same
PIOCESSES | tacols T Tval | ciko
Probelecho plete | asynch plete passed yes | same
graph graph
Broadcast arb | asynch Star Bdoast o Same
Token passing
Decentralized arb asynch arb, passed yes same
Replicated hier | synch hier passed yes yes
workers shared

Topology hier (hierarchical). arb (arbitrary), star, linear (ane-way)
Synchronicity [seq (sequential. one thread of contral). s/par (lockstep parallel). synch (synchronous), asynch (asynehro-

nous), opp (opportunistic)

Binding time [w (wr hat is, in © pil b 1 (run-time)
Continuity [spor (sporadic). Ivel (low-volume)
shared, passed. bdcast (brondeast), meast (multicast). cifco (copy-incopy-out)

UNIVERSITY-OF MASSACHUSETTS:AMHERS'

CONPUTER Rules of thumb

=|f your task requires a high degree of flexibility-
configurability, loose coupling between tasks, and
reactive tasks, consider interacting processes
=If you have reason not to bind the recipients of signals to
their originators, consider an event architecture
u|f the task are of a hierarchical nature, consider a
replicated worker or heartbeat style
=|f the tasks are divided between producers and
consumers, consider a client-server style (naive or
sophisticated)
=If it makes sense for all of the tasks to communicate with
each other in a fully connected graph, consider a token-
passing style

UNIVERSITY- OF MASSACHUSETTS AMHERS

CMPSCI520/620

COMPUTER taxonomy: virtual machines

irtual machine

inputs

data
(e =) state program
data

data updates instructions
v =interpreters
outputs selected instr, i H H H i H
morprtaton | SEEEEE it =simulate functionality which is
not native to the run-time
system; execution engine
nputs | working wiggermal e || et “implemented” in software
memory 0ering | mary
& =rule-based systems
rules/facts
data updates =specialization of an interpreter

outputs lected rul
interpretation | gected rules rule/data
engine elected data| Selection

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPARE‘.

COMPUTER Problem and Solution

= Problem:

=Software architecture is too complex to be captured
using a single diagram, and not all aspects of it are
interesting at different moments and to different
stakeholders. How to manage this complexity?
= Solution:

=Represent different aspects and different characteristics
of the architecture through multiple views.

UNIVERSITY OF MASSACHUSETTS AMHERST--+-DER 5

©Rick Adrion 2003 (except where noted)

CONPUTER Analysis: virtual machines

=interpreters
=portability, modifiability, reuse
=disadvantages: map into actual implementation?
=performance, design
=advantages: simulate non-native functionality, can
simulate “disaster” modes for safety analysis
=disadvantages: much slower than actual system,
additional layer of software to be verified
=Rules of thumb: virtual machines
=|f you have designed a computation, but have no
machine on which you can execute it, consider a virtual
interpreter architecture.

UNIVERSITY-OF MASSACRUSETTS AMHERST: - DERARIM

U Views

= What is a view?

=A view is a presentation of a model, which is a complete
description of a system from a particular perspective.

= Proposed views:
=Logical View - captures the object model

=Process View - captures the concurrency and
synchronization aspects

=Development View - captures static organization of the
software in its development environment

=Physical View - captures the way software is mapped on
hardware

*The “4+1” view: these plus scenarios

UNIVERSITY: OF MASSACHUSETTS AMHERST- /- DERA]

10

CMPSCI520/620

COMPUTER
)SCIENCE

4+1

view of software architecture

end users programmers
« functionality - software management
logical development
view view
scenarios
process physical
view view

system engineers

- system topology

« delivery

« installation

« telecommunication

system integrators
« performance

« scalability

« throughput

UNIVERSITY. OF MASSACHUSETTS: AMHERST - DEPARTHENTH

COMPUTER
)SCIENCE

example: logical view

association example: Alcatel PBX

containment,
agregation

usage

. N . P — tr iol
inheritance onversatiol o
instantiation

onnecti

services,

umbering
plan

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ - DERARTI

©Rick Adrion 2003 (except where noted)

COMPTER The Logical Architecture

= Represented by Logical View
=of interest to end-user
ssupports functional requirements

=presents key abstractions mostly from the problem
domain

= Class diagrams show how classes are grouped
together, class’ interface (functionality) and associations
=“close” to the Development Architecture
= usually deduced from Scenario View (or Use-Case
view)
= many case tools support it (UML tools, E-R tools etc.)

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘\TM%F{

COMPUTER The Process Architecture

= Represented by Process View
=of interest to system designer, integrator

=concerned with performance, availability, S/W fault
tolerance, integrity

=presents concurrency and distribution of processes, how
abstractions from Logical View map to processes

= Components:Tasks
=Connectors: rendezvous, broadcasts,...
=Containers: process
=“close” to the Physical Architecture
=tool support: UNAS/SALE, DADS

UNIVERSITY- OF MASSACHUSETTS AMHERST - DERARTM

11

CMPSCI520/620

computeR example: process view
SCIENCE

controller task
(high rate)

UNIVERSITY: OF MASSACRUSETTS AMHERST. = DEPAF‘\TM[_E-.

process

unspecified

» message

p.comonents
ooch (Ada tasking

COMPUTER

mputer interface
al systems

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ - DERART]

©Rick Adrion 2003 (except where noted)

seience €xample: development view

subsystem

CONPUTER The Development Architecture

= Represented by Development View
=of interest to developer, manager
=concerns: organization, reuse, portability, line-of-product
=presents actual software module organization
=subsystems organized in a hierarchy of layers
=“close” to the Logical Architecture
=usually deduced from Logical Architecture
stools: Apex, SoDA

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘\TME—:

COMPUTER The Physical Architecture

= Represented by Physical View
=of interest to system designer
=concerns: scalability, performance, availability, reliability

=presents how processes, objects etc. are mapped onto
processing nodes

= Components:processing nodes

= Connectors: LAN, WAN, bus,...

= Containers: Physical Subsystem
=“close” to the Process Architecture
sstrongly influenced by Process Architecture
=tools: UNAS, DADS

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEPAF‘\TM‘_E_

12

CMPSCI520/620

CONPUTER example: physical view

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPAF‘\TME

processor

other device

comm line
comm line (non-perm)
uni-dir comm line

hi-bw comm line

.comonents
NAS

COMPUTER Scenarios

= Instances of Use-Cases, unify all views
=of interest to end-user, developer
=concerns: understandability

= Textual domain process descriptions, object
diagrams and object interaction diagrams

validation of design
=tools: UML case tools

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DERAR

©Rick Adrion 2003 (except where noted)

scenario

=used as a driver to discover architectural elements,

COMPUTER

seience Physical view (with process allocation)

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘\TM%F{

COMPUTER

SPIENCE Scenarios

(1) off-hook

(2) dial tone'’
>

(3) digit

(4) digit
E—

L (5) open conversation

pnversati

UNIVERSITY- OF MASSACHUSETTS AMHERST - DERARTM

umberin
plan

13

CMPSCI520/620

COMPUIER The Rational 4+1 Views

EN
a

N //i

design implementation
view view

i 7& Components

Dynamics
Interaction
State machine

3

Classes, interfaces,
collaborations

Organization Use cases

Package, subsystem Use -Case

View

ey
a

AN //i
g

process

g deployment
view

view

Active classes

UNIVERSITY: OF MASSACHUSETTS AMHERST: p

c“ﬂ-‘;&%‘é Architectural View Mismatches in UML

=Different UML diagrams present different system views
=redundant information across views

=Key challenge is to ensure inter-view consistency
=Ramifications on round-trip engineering

UNIVERSITY OF MASSACHUSETTS AVMHERST: E

©Rick Adrion 2003 (except where noted)

CONPUIER UML SW Development Life Cycle

=Use-case driven

=use cases are used as a primary artifact for establishing the
desired behavior of the system, for verifying and validating the
system’s architecture, for testing, and for communicating
among the stakeholders of the project

= Architecture-centric

=a system’s architecture is used as a primary artifact for
conceptualizing, constructing, managing, and evolving the
system under development

= [terative
=one that involves managing a stream of executable releases
= Incremental

=one that involves the continuous integration of the system’s
architecture to produce these releases

UNIVERSITY-OF MASSACHUSETTS AMHERST: -

c“ﬂ-‘;&%‘é Round-Trip Software Engineering Using UML

Architecture-based Design environment System generation and
modeling, analysis, and (e.g., Rational Rose®) development environment
evolution environment
(e.g., DRADEL)

Class Diagram

[[Fewcmear] fwewcmes]
— = class Compa extends Window
’

public ...
)

L

Sedhence Dagram

=

State Transition Diagram

Archil in ADL i in UML Design in UML Implementation

Nenad Medvidovic Assessing the Suitability of UML

for Modeling Software Architectures

UNIVERSITY- OF MASSACHUSETTS AMHERS e

14

CMPSCI520/620

COMPUTER Architecture Description Languages

=formal notations for representing and analyzing
architectural designs

=provide both a conceptual framework and a concrete
syntax for characterizing software architectures

=tools for parsing, displaying, compiling, analyzing, or
simulating architectural descriptions.

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

COMPUTER formal architectural specification.

=module interconnection languages
=static aspects of component interaction

=definition and use of types, variables, and functions among
components

=examples: INTERCOL, PIC, CORBA/IDL
=process algebras
=dynamic interplay among components

=concerned with the protocols by which components
communicate

=examples: Wright (based on CSP), Chemical Abstract
Machine (based on term rewriting)

=event languages
=identification and ordering of events
=event is a very flexible, abstract notion
=example: Rapide

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

"4 ADL Examples

= Adage
= supports the description of architectural frameworks for avionics navigation
and guidance
= Aesop
= supports the use of architectural styles
=C2
= supports the description of user interface systems using anevent-based style
= Darwin
= supports the analysis of distributed message-passing systems
= Meta-H
= provides guidance for designers of real-time avionics control software;
= Rapide
= allows architectural designs to be simulated, and has tools for analyzing the
results of those simulations;
= SADL
= provides a formal basis for architectural refinement;
= UniCon
= has a high-level compiler for architectural designs that supports a mixture of
heterogeneous component and connector types;
= Wright
= supports the formal specification and analysis of interactions between
architectural components.

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

COMPUTER Evaluation & analysis

=conduct a formal review with external reviewers
stime the evaluation to best advantage
=choose an appropriate evaluation technique
screate an evaluation contract
=limit the number of qualities to be evaluated
minsist on a system architect

=benefits
=financial

mincreased understanding and documentation of the
system

=detection of problems with the existing architecture
sclarification and prioritization of requirements
=organizational learning

UNIVERSITY- OF MASSACHUSETTS AMHERST 7 DEP/

15

CMPSCI520/620

COMPUTER

SCIENCE Benefits

=examples
sAT&T
=10% reduction in project costs, on projects of 700 staff days
or longer, the evaluation pays for itself.
=consultants
=reported 80% repeat business, customers recognized
sufficientvalue
=where architecture reviews did not occur
=customer accounting system estimated to take two years,
took seven years, re-implemented three times, performance
goals never met
=large engineering relational database system, performance
made integration testing impossible, project was cancelled
after twenty million dollars had been spent.

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER

seieice Frameworks & Class Libraries

=developers often do not even know they are using a
framework, but refer to a “class library”
=frameworks differ from other class libraries by reusing
high-level design
=more to learn before a class can be reused
=can never be reused in isolation; typically a set of
classes must be learned at once
=you can often tell that a class library is a framework if
there are dependencies among its components and if
programmers who are learning it complain about its
complexity.

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER Architecture vs Frameworks
=Frameworks
=an object-oriented reuse technique
=used successfully for some time & are an important
part of the culturé of long-time object-oriented
developers,
=BUT they are not well understood outside the
object-oriented community and are often misused
=Question:
=are frameworks mini-architectures, large-scale
patterns, or they are just another kind of
component?
=Definitions
=a framework is a reusable design of all or part of a
system that is represented bY a set of abstract
classes and the way their instances interact
=a framework is_the skeleton of an application that
can be customized by an application developer

Ralph E. Johnson, (C .C ications of the ACM, October 1997/Vol. 40, No. 10

UNIVERSITY-OF MASSACRUSETT S AMHERST. - -DERAR

CONPTE Frameworks & Class Libraries

= A class is a unit of abstraction
& implementation in an OO
programming language

NVOSATIoNS
| Math | s
- «— FUNCTIONALITY
)«
-
- -
| IPC |

=A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

Framework Architecture

Adapted from Dougl

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

16

CMPSCI520/620

COMPUTER Components & frameworks

=Frameworks
=were originally intended to be reusable
components
=but reusable O-O components have not found a
market
=are a component in the sense that
=venders sell them as products
=an application might use several frameworks.
BUT
=they more customizable than most components
=have more complex interfaces
=must be learned before the framework can be used
=a component represents code reuse, while
frameworks are a form of design reuse

UNIVERSITV: OF MASSACHUSETTS- AMHERST. % -DER/

Lo TE Frameworks & Components

=A framework is an integrated
set of abstract classes that
can be customized for
instances of a family of
applications

=A component is an
encapsulation unit with one
or more interfaces that
provide clients with access to
its services

Component Architecture

Adapted from Douglas

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEP‘

©Rick Adrion 2003 (except where noted)

COMPUTER Components & frameworks

=frameworks
=provide a reusable context for components
=provide a standard way for components to handle
errors, to exchange data, and to invoke operations
on each other
=“component systems” such as OLE, OpenDoc, and Beans,
are really frameworks that solve standard problems that
arise in building compound documents and other composite
objects. make it easier to develop new components
=enable making a new component (such as a user
interface) out of smaller components (such as a
widget)
=provide the specifications for new components and
a template for implementing them.

=a good framework can reduce the amount of
effort to develop customized applications by an
order of magnitude

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DERA

COMPUTER Comparison

Class Libraries Frameworks Components
Micro-level Meso-level Macro-level
Stand-alone “Semi-complete” Stand-alone
language entities applications composition entities

Domain-independent | Domain-specific Domain-specific or
Domain-independent

Borrow caller’s Inversion of Borrow caller’s thread

thread control

UNIVERSITY- OF MASSACHUSETTS AMHERST- [£

17

CMPSCI520/620

CONTE Frameworks as Reusable Design

=Are they like other techniques for reusing high-level
design, e.g., templates or schemas?
=templates or schemas
=usually depend on a special purpose design notation
=require special software tools
=frameworks
=are expressed in a programming language
=»makes them easier for programmers to learn and to
apply
=no tools except compilers
=can gradually change an application into a framework

=because they are specific to a programming language,
some design ideas, such as behavioral constraints,
cannot be expressed well

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER

Frameworks . i
seienee and domain-specific architectures

= A framework is ultimately an object-oriented design, while a
domain-specific architecture might not be.
= A framework can be combined with a domain-specific
language by translating programs in the language into a set
of objects in a framework
=window builders associated with GUI frameworks are
examples of domain-specific visual programming languages
= Uniformity reduces the cost of maintenance
=GUI frameworks give a set of applications a similar look and
feel
=using a distributed object framework ensures that all
applications can communicate with each other.
=maintenance programmers can move from one application to
the next without having to learn a new design

UNIVERSITY-OF MASSACRUSETTS AMHERST: DERA

COMPUTER Overview of Patterns

=Patterns
=present solutions to common software problems
arising within a certain context
=help resolve key software design issues
=Flexibility, Extensibility, Dependability, Predictability,
Scalability,Efficiency
=capture recurring structures & dynamics among
software participants to facilitate reuse of
successful designs
smare | mcodify expert knowledge of design strategies,
- constraints and best practices

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER

seieice Software patterns

=record experience of good designers
=describe general, recurring design structures in a
pattern-like format
=problem, generic solution, usage
=solutions (mostly) in terms of O-O models
scrc-cards; object-, event-, state diagrams
=often not O-O specific
=patterns are generic solutions; they allow for design and
implementation variations
=the solution structure of a pattern must be “adapted” to
your problem design
=*map to existing or new classes, methods, ...
=a pattern is not a concrete reusable piece of software!

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

18

CMPSCI520/620

COMPUTER qualities of a pattern

COMPUTER

=encapsulation and abstraction

=each pattern encapsulates a well-defined problem and its
solution in a particular domain

=serve as abstractions which embody domain knowledge and
experience

=openness and variability

=open for extension or parametrization by other patterns so that
they may work together

= generativity and composability

=generates a resulting context which matches the initial context
of one or more other patterns in a pattern language

=applying one pattern provides a context for the application of
the next pattern.

= equilibrium
=balance among its forces and constraints

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE! Al

seieice Taxonomy of Patterns & Idioms
Type Description Examples
Idioms Restricted to a particular language, system, | Scoped locking
or tool
Design patterns Capture the static & dynamic roles & Active Object, Bridge,
relationships in solutions that occur Proxy, Wrapper
repeatedly Facade, & Visitor
Architectural Express a fundamental structural Half-Sync/Half-Async,
patterns organization for software systems that Layers, Proactor,
provide a set of predefined subsyst s Publist k iber,
specify their relationships, & include the & Reactor
rules and guidelines for organizing the
relationships between them
Optimization Dc t rules for iding common Optimize for common
principle patterns design & implementation mistakes that case, pass
degrade performance information between
layers

UNIVERSITY-OF MASSACRUSETTS AMHERST - DER,

COMPUTER

<cienee Frameworks and Patterns

=frameworks represent a kind of pattern
=e.g., Model/View/Controller is a user-interface framework
often described as a pattern
=applications that use frameworks must conform to the
frameworks’ design and model of collaboration, so the
framework causes patterns in the applications that use it.
=frameworks are at a different level of abstraction than
patterns
=frameworks can be embodied in code, but only examples
of patterns can be embodied in code.
=a strength of frameworks is that they can be written down
in programming languages and not only studied but
executed and reused directly
=in contrast, design patterns have to be implemented each
time they are used.

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER Frameworks and Patterns

= design patterns are smaller architectural elements than frameworks
= a typical framework contains several design patterns but the reverse
is never true
=design patterns are the micro-architectural elements of frameworks.

= e.g., Model/View/Controller can be decomposed into three major design
patterns, and several less important ones

= MVC uses the Observer pattern to ensure the view’s picture of the model is
up-to-date, the Composite pattern to nest views, and the Strategy pattern
to cause views to delegate responsibility for handling user events to their
controller.
= design patterns are less specialized than frameworks.

=frameworks always have a particular application domain.

=design patterns can be used in nearly any kind of application.

=more specialized design patterns are certainly possible, even these

wouldn't dictate an application architecture

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

19

CMPSCI520/620

CONPUTE Frameworks

=are firmly in the middle of reuse techniques.
=are more abstract and flexible than components,

=are more concrete and easier to reuse than a pure
design (but less flexible and less likely to be applicable)

=are more like techniques that reuse both design and
code, such as application generators and templates.

=can be thought of as a more concrete form of a pattern

=patterns are illustrated by programs, but a framework is
a program

UNIVERSITY: OF M ASSACHUSETTS AMHERST 4 DER;

COMPUTER Using Frameworks Effectively

=Frameworks are powerful, but hard to develop & use
effectively by application developers

=lt’s often better to use & customize COTS frameworks
than to develop in-house frameworks

=Components are easier for application developers to
use, but aren’t as powerful or flexible as frameworks

=Successful projects are often organized using the
“funnel” model

PROJECT APPLICATION
COMPONENTS, SCRIPTING, & MODELING TECHNOLOGIES, DEVELOPERS
COMPONENT MIDDLEWARE
TECHNOLOGIES PROJECT
INFRASTRUCTURE

CUSTOMIZED FRAMEWORK DEVELOPERS

TECHNOLOGIES

COTS FRAMEWORK
TECHNOLOGIES

COTS FRAMEWORK
DEVELOPERS

Adapted from Douglas C. Schmid, “Patierns, Fi & Mi Their Synergistic
UNIVERSITY OF MASSACHUSETTS AMHERST: < DER

©Rick Adrion 2003 (except where noted)

CONPTE Framework Characteristics

Application-specific functionality sFrameworks exhibit

“inversion of control” at
runtime via callbacks
*Frameworks provide
» integrated domain-

Sciel
\ isualizatiol SpeCifiC structures &
functionality

-Frameworks are “semi-
&) C complete” applications

Adapted from Douglas
UNIVERSITY-OF MASSACHUSETTS:AMHERST -DER

CONPUTER Relation to Middleware

=one of the strengths of frameworks is that they are
represented by traditional object-oriented programming
languages.
=BUT, this is also a weakness of frameworks, however,
and it is one that the other design-oriented reuse
techniques do not share.
=Middleware
*COM, CORBA, etc. address this problem, since they let
programs in one language interoperate with programs in
another
=Other approaches
=some frameworks have been implemented twice so that

users of two different languages can use them, such as
the SEMATECH CIM framework

UNIVERSITY- OF MASSACHUSETTS AMHERST 7 DEP/

20

CMPSCI520/620

CONPUTER Evolution of Middleware

[Anplications] = Historically, mission-critical apps were
s built directly atop hardware & OS
Domain-Spe =tedious, error-prone, & costly over

c
Services lifecycles
_ = There are layers of middleware, just like
there are layers of networking protocols
Distribution = Standards-based COTS middleware
w =Control end-to-end resources & QoS
=Leverage hardware & software
technology advances
=Evolve to new environments &
& Protocols .
requirements

Hardware =Provide a wide array of reuseable, off-

the-shelf developer-oriented services

Adapted from Douglas C. Schmid,

atierns, Fi i Their Syn

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

CONPUTER Middleware

= Common middleware services
= augments the distribution middleware by defining domain-independent
services, such as event notifications, logging, multimedia streaming,
persistence, security, transactions, fault tolerance, and distributed
concurrency control
= applications can reuse these services to perform common distribution tasks
that would otherwise be implemented manually.
= Domain-specific Services
= tailored to the requirements of particular domains, such as
telecommunications, e-commerce, health-care, or process automation
= are generally reusable, and thus are the least mature of the middleware layers
today
= embody domain-specific knowledge, however, they have the most potential to
increase system quality and decrease the cycle-time and effort required to
develop particular types of networked applications

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

CONPUTER Middleware

= Infrastructure middleware.
=encapsulates core OS communication and concurrency services to
eliminate many tedious, error-prone, and non-portable aspects of
developing and maintaining distributed applications using low-level
network programming mechanisms, such as sockets
=Examples: the Java Virtual Machine (JVM) and the ADAPTIVE
Communication Environment (ACE).
= Distribution middleware

=builds upon the lower-level infrastructure middleware to automate
common network programming tasks, such as parameter
marshaling/demarshaling, socket and request demultiplexing, and
fault detection/recovery

=Examples: Object Management Group's (OMG's) Common Object
Request Broker Architecture (CORBA), Microsoft's Distributed COM
(DCOM), and JavaSoft's Remote Method Invocation (RMI).

UNIVERSITY-OF MASSACHUSETTS AMHERST 3-DE

COMPUTER Progress

= significant progress in QoS-
enabled middleware,

i stemming in large part from () s *Toowomwn] (coms
Real-ime CCM @) 9 g TR ey | sewcss
Web Services@) the following trends: ==
omgs .
o »years of iteration, O
. . refinement, & successful
;omponen
Models (EJB) use
Real-time @) =maturation of middleware
COR& standards
CORBA & DCOM
@ = NET, J2EE, CCM
Py PYe =Real-time CORBA
Micro-kernels = Real-time Java
@ rec =SOAP & Web Services
@ ARPAnet =maturation of component
1970 Year 2005 Middleware frameworks &
patterns
Adapted from Douglas C. Schmidt, “Patterns, Fi & Mi Their Synergistic

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

21

