CMPSCI520/620

COMPUTER
)SCIENCE

& Software Architecture

Rick Adrion

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

16 - Requirements Analysis (cont.)

COMPUTER

=Develop questionnaires
=Pick the subset
=Design questions

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

scienee How shall we manage the interviews?

c"ﬂ;‘;{'ﬂﬁ% How shall we manage the interviews?

=Stakeholders to be interviewed
=*November 10
=Department staff & associate chair
=OIT
*TBA
=Registrar
=Bursar
=Yourselves
=Develop questionnaires
=Pick the subset
=Groups 1-4 “Records and enrollment”
=Group 5 “ Bursar”
=each group email me the subset

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

COMPUTER Administrative Staff

= Core Activities — Discuss these and identify other functions &
interactions
= Course Scheduling
= Entering/deleting courses (and “course offerings”) in advance, as situations
change (demand, instructor availability, etc.)
= Notification of cancellations, schedule changes
= Setting a semesters schedule (faculty assignments, room assignments,
time assignments), access and display
= Advising & Enrollment
= Assigning PINs for access
= Managing add/drop/exchange courses.
= Enrollment minimums, maximums, wait lists, overrides
= Supporting advising (providing records, audits, schedules, requirements,
alternatives at the 5-colleges)
= Grading and Grade Reporting, Transcripts and Certifications
= Entering/changing/correcting grades
= Maintaining course records (grade sheets, etc.)
= Audits, accessing transcripts, maintaining student records
= Managing withdrawals, leaves, student-year-abroad
= Determining student status
= Certifying eligibility for graduation

UNIVERSITY- OF MASSACHUSETTS AMHERST 7 DEP/

CMPSCI520/620

COMPUTER Administrative Staff

=Non-functional requirements — what do you expect based on
your experience?

=Ease of Use — User-friendliness, user interface, access
controls

=Reliability
=Frequency of Use
= Communication — with whom do you interact?
=Students
=Faculty
=Department Administration
=Other Offices: Registrar, Classroom Scheduling Office, etc.
=Peers
=Personal View
=Good Experiences
=Negative Experiences

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

CONPUTER Dynamic Modeling with UML

=Diagrams for dynamic modeling

=Interaction diagrams describe the dynamic behavior between
objects

=Statecharts describe the dynamic behavior of a single object
= Interaction diagrams
=Sequence Diagram:
=Dynamic behavior of a set of objects arranged in time sequence.
=Good for real-time specifications and complex scenarios
=Collaboration Diagram :
=Shows the relationship among objects. Does not show time
= State Charts:

= A state machine that describes the response of an object of a
given class to the receipt of outside stimuli (Events).

= Activity Diagram:
=Special type of statechart where all states are action states

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

c"ﬂ;‘;{'ﬂﬁ% How shall we manage the interviews?

=Develop questionnaires
=Pick the subset
=Design questions
=Email them to me
=Plan and carry out interviews
=30-40 minutes/stakeholder-group

= Tasks:

=Each group to email me “subset” by October 31

=Each group to email me 2-3 categories with 2-5 “questions” for
November 10 interview by November 3

=Groups 1-4 email me 2-3 categories with 2-5 “questions” for
Registrar interview by November 5

=Group 5 email me 2-3 categories with 2-5 “questions” for
Bursar interview by November 5

UNIVERSITY-OF MASSACRUSETTS AMHERST: DERA

COMPUTER Start with Flow of Events

=Get events from Use Case
*What is an Event?
=something that happens at a point in time
=Relation of events to each other:
=causally related: Before, after,
=causally unrelated: concurrent
=An event sends information from one object to another

=Events can be grouped in event classes with a
hierarchical structure.

=Event is often used in two ways:
=|nstance of an event class
s Attribute of an event class

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

480 Example

Enroll in
; Drop seminar ¥
Student Attend seminar Registrar

Finish seminar

MNotify students of
schedule changes

Again, adapted from www.agilemodeling.com

UNIVERSITY: OF MASSACHUSETTS AMHERST 41!

COMPUTER Enroll in seminar Use-Case

Basic Course of Action:

1. The student wants to enroll in a seminar.

2. The student inputs her name and student number into the system
via “Ul23 Security Login Screen.”

3. The system verifies the student is eligible to enroll in seminars at
the university, according to business rule “BR129 Determine
Eligibility to Enroll.”

4. The system displays “UI32 Seminar Selection Screen,” which
indicates the list of available seminars.

5. The student indicates the seminar in which she wants to enroll.

6. The system validates the student is eligible to enroll in the
seminar, according to the business rule “BR130 Determine
Student Eligibility to Enroll in a Seminar.”

7. The system validates the seminar fits into the existing schedule of
the student, according to the business rule “BR143 Validate
Student Seminar Schedule.”

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[A

©Rick Adrion 2003 (except where noted)

COMPUTER Enroll in seminar Use-Case

Name: Enroll in Seminar
Identifier: UCxx

Description: Enroll an existing student in a seminar for
which she is eligible.

Preconditions: The Student is registered at the
University.

Postconditions: The Student will be enrolled in the
course she wants if she is eligible and room is available.

Extends:

Includes:

Inherits From:

Basic Course of Action:

= see full Use-Case description

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DER‘;

COMPUTER Business Rule

=Name
sclear idea of topic, e.g., Determine Eligibility to Enroll
=Description
stext, flow charts, UML activity diagrams, Object
Constraint Language (OCL), Business Rules Markup
Language (BRML)
=Example (optional)
=Source (optional)
=Related rules (optional)
=Revision history (optional)

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

CMPSCI520/620

COMPUTER Enroll in seminar Use-Case

Basic Course of Action:

1. ts to enroll in

2. e studentinputs her name and student number into the system
via “Ul23 Security Login Screen.”

3. The systerr‘ verifies the student is eligjble(to enroll in seminars at
the univers i i “BR129 Determine

Eligibility to Enroll.”
4. The system displays “UI32 Seminar Selection Screen,” which
indicates the list of available seminars.
5. The student indicates the seminar in which she wants to enroll.
6. The system validates the student is eligible to enroll in the

seminar, according to the business rule “BR130 Determine
Student Eligibility to Enroll in a Seminar.”

the student, according to the business rule “BR143 Validate
Student Seminar Schedule.”

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

7. The system validates the seminar fits into the existing schedule of

COMPUTER Class diagram

Enroliment

Student 1 enroled 1. Warks Received L. n L Seminar

Name Get Average To Date Name
Address Get Final Mark Seminar Number
Phone Number Sersi-EiFG Fees
Email Address g ordered, FIFO} on waiting list 0.
Student Number Add Student
Average Mark - |Drop Student
Is Eligible To Enroll
Get Seminars Taken Professor

Name instructs

Address

Phone Number

Email Address

Salary

?Some seminars may
not have an
instructor?

CONPUTER Specifying message sequences

=Useful to distinguish between
ssignals
=asynchronous inter-object communication
=often shown with “half-arrow notation”
=Calls

=synchronous inter-object communication control returns to
caller (usually)

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPfA:

COMPUTER Sequence Diagram

=From the flow of events in the use case or scenario
proceed to the sequence diagram
=A sequence diagram is a graphical description of
objects participating in a use case or scenario using a
DAG notation
=Relation to object identification:
=Many objects/classes have already been identified
during object modeling
=More objects are identified as a result of dynamic
modeling
=Heuristic:
=An event always has a sender and a receiver. Find them
for each event => These are the objects participating in
the use case

UNIVERSITY- OF MASSACHUSETTS AMHERST- [

CMPSCI520/620

CONPUTER Enroll in seminar Use-Case

Basic Course of Action:
1. The student wants to enroll in @ seminar.

2. The studentinputs her name and student nugher into the system via
“UI23 Secu

3.

4. [The system displays “UI32 Seminar Selection Screen,” which indicates

the list of available seminars. event

5. The student indicates the seminar in which she wants to enroll.

6. The system validates the student is eligible to enroll in the seminar,
according to the business rule “BR130 Determine Student Eligibility to
Enroll in a Seminar.”

7. The system validates the seminar fits into the existing schedule of the
student, according to the business rule “BR143 Validate Student Seminar
Schedule.”

UNIVERSITY: OF MASSACHUSETTS: AMHERST .

CONPUTER Defining Operations

=A public interface of a class consists of
operations that offer services to entities
external to the class
=operations are best discovered from sequence
diagrams, since every message must be
serviced by an operation
=Other operations can be found using the
CRUD (create, read, update, delete)
paradigm; classes need to provide these
services regardless of their domain specific
functionality

UNIVERSITY- OF MASSACHUSETTS AMHERST--+

©Rick Adrion 2003 (except where noted)

COMPUTER

seieice Sequence Diagram

Student EnrollinSeminar | [SecurityLogin Seminar
<actor> <controller>
wish to enroll
<<create>>
>
>
provides name
provides student i(z
>

isValid(name, number) | theStudent
—_—
:Student

<destroy>>
D getAvailableSeminar():vector

!

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

COMPUTER

<cienee Example 4.17 — Maciaszek

X

Data ﬁnlry
Petson

L

addistd crs sem) |

[aCoursenftering

CourgeOffering

Program aStudent aCourse
EntryWVindow Student Course

|

areYouWalid{out s_check’ }

[s_check="no"]destroy ‘
|

areYoquen(uLll c_check) 1

| DareYqupen(uut c_check)

[cicheck:”nn"]destmy: g
! |
|
|
) |

|
addCourse(crsOIDY |

J

\
\
addStudentq.;tdOID) ‘

addStudent(stdOID:

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

CMPSCI520/620

COMPUTER

seienee Example 4.17 — Maciaszek

aStudent ‘

i Program
Student

aCourse
Course

aCourseOffering
CourseOft

Data Etr
ol | |

add(std crs,sem) | |
reYouValid(out s_check
[5_check="no"Jdestroy

|

areYouOpen(aut ¢_check)

|

|

|

|

|

1

[c;heck:“nn“]desuny‘ ‘J =1

| |
addCourse(crsOD)_ | | |
| |
| |

addStudent(stdoID)

747eYouOpen(out c_check) "\

]
Course \
<<PK>>course_code:stri
<<CK>>course_name:string M~
credit_points: integer
crs_off: set<CourseOffering>
areYouOpen(out c_check)
addStudent(stdOID)

| 4

UNIVERSITY: OF MASSACRUSETTS AMHERST 5

CourseOffering

year:Date
semester:integer
enroliment_quota:integer
std: list<Student>

crs: Course
areYouOpen(out c_check)
addStudent(stdOID)

COMPUTER

<cienee Is this a good sequence diagram?

=X

Diata Entr;
Petean ‘ boundary
T agent?
addistd crs sem) |

[s_check="no"]destroy

|
areYoquen(uLll c_check)

Program aStudent aCourse [aCoursenftering
Entry’Vindow Student Course CourgeOffering

'
areYouValid(out s_check) | obje

[cicheck:”nn"]destmy:

]

|
addCourse(crsOIDY |

addStudentq.;tdOID)

areYouDpen{out c_check)

E—

UNIVERSITY OF MASSACHUSETTS AVMHERST:

|
|
|
addStudent(stdoin) |

©Rick Adrion 2003 (except where noted)

COMPUTER Heuristics for Sequence Diagrams

= Layout:
= 1st column: Should correspond to the actor who initiated the use
case
= 2nd column: Should be a boundary object

= 3rd column: Should be the control object that manages the rest of
the use case

= Creation:
= Control objects are created at the initiation of a use case
= Boundary objects are created by control objects
= Access:
= Entity objects are accessed by control and boundary objects,

= Entity objects should never call boundary or control objects: This
makes it easier to share entity objects across use cases and
makes entity objects resilient against technology-induced changes
in boundary objects.

UNIVERSITY-OF M ASSACHUSETTS-AMHERST::

CONPUTER Perhaps better ...

boundary
agent?

Student EnrollinSeminar | |SecurityLogin Seminar
<actor> <controller> _|
|
wish to enroll }

<<create>>
T control
provides name object?

provides student i

o]

isValid(name, number) | theStudent
—_—p
¢ — = — — — — :Student

A

UNIVERSITY- OF MASSACHUSETTS AMHERST- -

CMPSCI520/620

COMPUTER Perhaps even better ...

1 St il ish oot

3 Sysiem veriies styeort
actor

. Syt s pys s .

marm,

| [
[Pt | ! object?-| |
D anirs |
|

st |

I
|
T
T
|
I
|
t
| -
|
| wtat
I
T
|
|
|

§ Sttt s s
Sy e el o el

|
|
|
|
|
:
|
4
|
i
|
|
1, Syt olmings o |
1
0

Syl s o I
0.5y dgys s

10 Sytmsaes st s o el
St s .

12 Syl it e

|
|
|
T
|
|
|
|
|
|
|
|

|

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER Statechart Diagrams

=Graph whose nodes are states and whose directed arcs
are transitions labeled by event names.
=Distinguish between two types of operations:
=Activity: Operation that takes time to complete
= associated with states
=Action: Instantaneous operation
=associated with events
=associated with states (reduces drawing complexity)
=Entry, Exit, Internal Action
= A statechart diagram relates events and states for one
class -> an object model with a set of objects has a set
of state diagrams

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

CONPUTER Modeling behavior

=An object model describes the possible patterns of
objects, attribute values and links that can existin a
system.

=A dynamic model describes the possible patterns of
states, events and actions that can exist in a system.
=Over time, the objects stimulate each other, resulting in
a series of changes to their states.
=An individual stimulus from one object to another is
called an event.
=Events can be organized into classes.

=Events can be error conditions as well as normal
occurences.

=Some events are only signals (OK),
=Others have attributes associated with them

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPfA::,

c"ﬂ;‘;&%‘é Example of a StateChart Diagram

Final

Enrollment
Exams

canceled student dropped closed

[seminar size > 0]
[seminar size = 0]

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

COMPUTER Nested State Diagram

= Structure

=Activities in states are composite items denoting other lower-
level state diagrams

=A lower-level state diagram corresponds to a sequency of
lower-level states and events that are invisible in the higher-
level diagram.

=Sets of substates in a nested state diagram denoting a

superstate are enclosed by a large rounded box, also called
contour.

=Nested state diagrams are useful:
=As a solution to cope with the complexity in your design:
=Abstraction

= A state is actually more complex and leads to a finite state

automaton itself. On the top level we don’t model all the complex
states.

= Modularization
= Each state diagram has up to 7+-2 states.
=Apply the “ Consist of” association!

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

COMPUTER Details of the Nested Statechart

student enroled
[seat avallable)
adastudent))

' Open For Enrolimant

scheduled
.—)[Proposed J—)[Scheduled

cancelled cancelled student enroliad
Ino seat avaiiable]
addToWaitingList()

serminar spit [~ envoll stucent 1

addTaWaitingList():

student dropped considerSplili)

[no seat avaiaie]

stusent dropped
[seat available] /
enrolFromWaitingLisi()

cancelled|
cancelled

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER Nested Statechart Diagram

Enrollment

Open For
Enroliment
student dropped
[seminar size > 0]
classes
Ful Closed to] Being Tend (Final }

EnrollmentJ term L Taught J L Exams
started

student dropped
| cancelled [seminar size = 0]

[Sohedu led

closed

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

CONPUIER Superstates

=Goal:
=Avoid spaghetti models
=Reduce the number of lines in a state diagram

=Transitions from other states to the superstate enter the
first substate of the superstate.

=Transitions to other states from a superstate are
inherited by all the substates (state inheritance)

UNIVERSITY- OF MASSACHUSETTS AMHERST 7 DEP/

CMPSCI520/620

COMPUTER Modeling Concurrency

Two types of concurrency
1. System concurrency

= State of overall system as the aggregation of state
diagrams, one for each object. Each state diagram is
executing concurrently with the others.

2. Object concurrency

=An object can be partitioned into subsets of states
(attributes and links) such that each of them has its own
subdiagram.

=The state of the object consists of a set of states: one
state from each subdiagram.

=State diagrams are divided into subdiagrams by dotted
lines.

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

CONPUTER Concurrency within an object

= Concurrency might be detected within a single object

= overall decomposition of the system or initial object
identification was too coarse grain?
= |f there is concurrency ask
=What objects are hidden in the currently modeled single
objects?
=May lead to new insights in the application or result in a better
taxonomy or object model.
=In some cases, the object is inherently not further
decomposable
= ramifications during system design, e.g., mapping to multiple
processors due to data parallelism

= implementation, e.g., choice of programming language that
supports lightweight threads instead of heavweight processes

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER Concurrency within an Object

Emitting

Cash taken
Cash \
_____________________ Ready
p) Ready to reset

Card

- J

Splitting control Synchronization

* Card taken

UNIVERSITY-OF MASSACRUSETTS AMHERST: DERA

COMPUTER StateCharts vs Sequence Diagram

=State chart diagrams help to identify:
=Changes to objects over time

=Sequence diagrams help to identify
=The temporal relationship of between objects over time

=Sequence of operations as a response to one ore more
events

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

COMPUTER
SCIENCE

Practical Tips

=Construct dynamic models only for classes with
significant dynamic behavior

=couple of hundred objects not lead to 100’s of dynamic
models

=define dynamic model for one that object that can be
used to describe behavior of other ojects

=Consider only relevant attributes
=Use abstraction if necessary

=L ook at the granularity of the application when deciding
on actions and activities

=Reduce notational clutter

=Try to put actions into state boxes (look for identical
actions on events leading to the same state)

UNIVERSITV: OF MASSACHUSETTS- AMHERST. % -DER/

COMPUTER
SCIENCE

Software Architecture

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DER)

©Rick Adrion 2003

(except where noted)

CONPUTER Summary: Requirements Analysis

=What are the transformations?
=Create scenarios and use case diagrams

Functional =Talk to client, observe, get historical records, do thought
Modeling experiments

=What is the structure of the system?
=Create class diagrams
Object . !dentify obje_ctg._What are the associations between them? What
Modeling is their muIt|pI|C|ty? .
=What are the attributes of the objects?
=\What operations are defined on the objects?
=3. What is its control structure?
=Create sequence diagrams
Dynamic = |dentify senders and receivers

Modeling = Show sequence of events exchanged between objects. Identify
event dependencies and event concurrency.

=Create state diagrams
= Only for the dynamically interesting objects.
UNIVERSITY-OF MASSACHUSETTS AMHERST 3-DE

CONPUTER Abstraction techniques in CS

=Programming Languages
=machine language;
=symbolic assemblers
"macro processors
=early high-level languages
=Fortran

=data types served primarily as cues for selecting the proper machine
instructions

=Algol and it successors

=data types serve to state the programmer’s intentions about how data should
be used.

slater high-level languages

=separation of a module’s specification from its
implementation

=introduction of abstract data types.

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

10

CMPSCI520/620

COMPUTER Abstraction techniques in CS

=ADT
sthe software structure (which included a representation
packaged with its primitive operators)

sspecifications (mathematically expressed as abstract
models or algebraic axioms)

slanguage issues (modules, scope, user-defined types)

mintegrity of the result (invariants of data structures and
protection from other manipulation)

srules for combining types (declarations)

minformation hiding (protection of properties not explicitly
included in specifications)

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

COMPUTER Other software architectures

=Open Systems Interconnection Reference Model (a
layered network architecture)

=NIST/ECMA Reference Model (a generic software
engineering environment architecture based on layered
communication substrates)

=X Window System (a distributed windowed user
interface architecture based on event triggering and
callbacks)

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER Software Architecture

= the theory of abstract data types
=not the only way to organize a software system
=many have developed informally over time:
= “Camelot is based on the client-server model and uses remote procedure
calls both locally and remotely to provide communication among applications
and servers.”
= “Abstraction layering and system decomposition provide the appearance of
system uniformity to clients, yet allow Helix to accommodate a diversity of
autonomous devices. The architecture encourages a client-server model for
the structuring of applications.”
= “We have chosen a distributed, object-oriented approach to managing
information.”
= “The easiest way to make the canonical sequential compiler into a concurrent
compiler is to pipeline the execution of the compiler phases over a number of
processors. . . . A more effective way [is to] split the source code into many
segments, which are concurrently processed through the various phases of
compilation [by multiple compiler processes] before a final, merging pass
recombines the object code into a single program.”

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

U8 Example
Control
Process
(CP)
| ! |
Prop Loss Reverb Noise
Model Model Model
(MODP) (MODR) (MODN)

=is this an architecture?

UNIVERSITY- OF MASSACHUSETTS AMHERST 7 DEP/

11

CMPSCI520/620

480 Example

=what is the nature of the components,
and what is the significance of their s
separation? ey
=do they run on separate processors?
=do they run at separate times? o ReLm NI
=do the components consist of woor) | | cwoory | | aioony
processes, programs, or both?
=do the components represent ways in
which the project labor will be divided,
or do they convey a sense of runtime
separation?
=are they modules, objects, tasks,
functions, processes, distributed
programs, or something else?

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER Observations

=Designers freely use informal patterns/idioms
minformal with imprecise semantics
=diagrams + prose, but no rules

=Designers use system-level abstraction
=overall organization (styles)
=components and interactions

=Designers compose systems from subsystems
=but, tend to think statically
sselect structure by default, rather than by design

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

480 Example

=what is the significance of the links?
=do the links mean the components Control
communicate with each other, control e
each other, send data to each other,
use each other, invoke each other, [
synchronize with each other, or some [Foptoss | [Reven Noise
combination of these or other v W o M| e,
relations?

=what is the significance of the layout?

=why is CP on a separate (higher) level?

=does it call the other three
components, and are the others not
allowed to call it?

=was there simply not room enough to
put all four components on the same
row in the diagram?

UNIVERSITY-OF MASSACRUSETTS AMHERST: DERA

COMPUTER Why Important?

=mutual communication.

ssoftware architecture represents a common high-level
abstraction of the system that most, if not all, of the
system’s stakeholders can use as a basis for creating
mutual understanding, forming consensus, and
communicating with each other.

=early design decisions.

ssoftware architecture represents the embodiment of the
earliest set of design decisions about a system, and
these early bindings carry weight far out of proportion to
their individual gravity with respect to the system’s
remaining development, its service in deployment, and
its maintenance life.

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

12

CMPSCI520/620

COMPUTER Why Important?

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

stransferable abstraction of a system.

ssoftware architecture embodies a relatively small,
intellectually graspable model for how the system is
structured and how its components work together; this
model is transferable across systems; in particular, it can
be applied to other systems exhibiting similar
requirements, and can promote large scale reuse.

=processing

=form

COMPUTER elements, form, rationale, views
architecture= Process View
=elements

annotated

correlated correlated
phrases / \ phrases

- d t phrases correlated,
ata chars tokens. semantic P55/ code
analyzer generator
=connectors

=rules which constrain
element placement

= style/design Data View
=rationale
= selection of form

=links to reqgmnts & design ; semantic

X A ey parser nas Yralvzer/” has
-fun9t|onaI/non—functlonal phrases | (orlated
attributes

code
generator

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

c"ﬂ;ﬁé‘[‘ Embodies the Earliest Design Decisions

=architecture provides builders with constraints on
implementation

=the architecture dictates organizational structure for
development and maintenance projects

=an architecture permits or precludes the achievement of
a system’s targeted quality attributes

=it is possible to predict certain qualities about a system
by studying its architecture

=architecture can be the basis for training

=an architecture helps to reason about and manage
change

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPfA::,

COMPUTER architectural styles/idioms

=architectural style =
=Components: locus of computation
=filters, databases, objects, clients, servers, ADTs
=Connectors: mediate interactions of components
=procedure call, pipes, event broadcast
=Properties: specify info for construction & analysis
=Signatures, pre/post conditions, RT specifications
=other
=topology
=underlying structural model?
=underlying computational model?

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

13

CMPSCI520/620

COMPUTER
)SCIENCE

Expected Benefits

Fevlew documiear 8%

Requirements

Architecture

Design

‘ draee logic ([Z3%)

Reduce maintenance
costs, directly and
indirectly

Test Aveept l
¢ Permit system-level)

a“a]}'ﬁ is Maintenance

© David Garlan CMU

CodefTntes

Clarify intentions

* Make decisions and
implications explicit

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEPAF‘\TM:E

CONPUTER taxonomy:data flow
dataflow
/ \A
seZifaCnrlial pipes & filters

tap tap: tap! tap report stdi stdou
4>| validateF;I sort 74 update 7q report F» —.‘| sed Fpl grep Fb| awk —>

\/\

data transformation

=batch sequential

=independent programs, dataflow in large chunks, no
parallelism

=pipes & filters

mincremental, byte stream data flow, pipelined
“parallelism”, local context, no state persistence

computation

UNIVERSITY-OF- MASSACHUSETTS AMHERST: - DEBARME]

©Rick Adrion 2003 (except where noted)

COMPUTER
seiEnee taxonomy
dataflow call/return
‘/\A ‘/L\‘
batch f y main prog. Bered opject—
sequential TSI & subroutine v oriented
independent
. . A
“processes | oveniaggems
implicit explicit
invocation invocation
virtual machine data-centered
rule-based interpreter repository blackboard
system

UNIVERSITY-OF MASSACHUSETTS AMHERST - DERARTIN

COMPUTER :
G analysis

=pipes & filters (to some extent batch)
=problem decomposition

=advantages: hierarchical decomposition of system
function

=disadvantages: “batch mentality”,interactive apps?,
design

*maintenance & reuse
=advantages: extensibility, reuse, “black box” approach

=disadvantages: lowest common denominator for data
flow

=performance
=advantages: pipelined concurrency

=disadvantages: parsin/unparsing, queues, deadlock with
limited buffers

UNIVERSITY- OF MASSACHUSETTS AMHERST - DERARTM

14

CMPSCI520/620

CONPUTER Rules of thumb

=for dataflow
=|f your problem can be decomposed into sequential stages,
consider batch sequential of pipeline architectures
=If in addition each stage is incremental, so that later stages can
begin before earlier stages complete, then consider a pipelined
architecture
=If your problem involves transformations on continuous
streams of data (or on very long streams) consider a pipeline
architecture
=However, if your problem involves passing rich data representation,
then avoid pipeline architectures restricted to ASCII
=|f your system involves controlling action, is embedded in a
physical system, and is subject to unpredictable external
perturbation so that preset algorithms go awry, consider a
closed loop architecture

UNIVERSITY: OF MASSACHUSETTS: AMHERST . DEP:A:-

COMPUTER analysis

=layers
=portability, modifiability, reuse
=advantages: each layer is abstract machine, each layer interacts
with < 2 other layers, standard interfaces
=performance, design
=disadvantages: semantic feedback in Ul, deep functionality,
abstractions difficult, bridging layers
= object-oriented
=portability, modifiability, reuse
=advantages: decreased coupling, frameworks -> reuse
=disadvantages: complex structure
=performance, design
=advantages: maps easily to “real world”, inheritance, encapsulation

=disadvantages: design harder, side effects, identity, inheitance
difficult

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

COMPUTER taxonomy: call/return

call/return

main Prog. |ayered opject—
& subroutine oriented

Cmain |
T
BT Em B

ey | v [ey (TS ey ey
ey | s [ey

=main/sub
= hierarchical decomposition, single thread of control, structure implicit,
correctness depends on subordinates
= layered
=hides lower layers/services higher layer, upper="virtual
machines”/lower =hw, kernel, scoping
= object-oriented
=encapsulation, inheritance, polymorphism

UNIVERSITY-OF MASSACHUSETTS AMHERST:S-DER)

15

