
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

16 - Requirements Analysis (cont.)
 & Software Architecture

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How shall we manage the interviews?

ßStakeholders to be interviewed
ßNovember 10
ßDepartment staff & associate chair
ßOIT

ßTBA
ßRegistrar
ßBursar
ßYourselves

ßDevelop questionnaires
ßPick the subset
ßGroups 1-4 “Records and enrollment”
ßGroup 5 “ Bursar”
ßeach group email me the subset

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How shall we manage the interviews?

ßDevelop questionnaires
ßPick the subset

ßDesign questions

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Administrative Staff

ßCore Activities – Discuss these and identify other functions &
interactions
ßCourse Scheduling
ß Entering/deleting courses (and “course offerings”) in advance, as situations

change (demand, instructor availability, etc.)
ßNotification of cancellations, schedule changes
ß Setting a semesters schedule (faculty assignments, room assignments,

time assignments), access and display
ßAdvising & Enrollment
ß Assigning PINs for access
ßManaging add/drop/exchange courses.
ß Enrollment minimums, maximums, wait lists, overrides
ß Supporting advising (providing records, audits, schedules, requirements,

alternatives at the 5-colleges)
ßGrading and Grade Reporting, Transcripts and Certifications
ß Entering/changing/correcting grades
ßMaintaining course records (grade sheets, etc.)
ß Audits, accessing transcripts, maintaining student records
ßManaging withdrawals, leaves, student-year-abroad
ßDetermining student status
ßCertifying eligibility for graduation

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Administrative Staff

ßNon-functional requirements – what do you expect based on
your experience?
ßEase of Use – User-friendliness, user interface, access
controls
ßReliability
ßFrequency of Use

ßCommunication – with whom do you interact?
ßStudents
ßFaculty
ßDepartment Administration
ßOther Offices: Registrar, Classroom Scheduling Office, etc.
ßPeers

ßPersonal View
ßGood Experiences
ßNegative Experiences

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How shall we manage the interviews?

ßDevelop questionnaires
ßPick the subset
ßDesign questions
ßEmail them to me

ßPlan and carry out interviews
ß30-40 minutes/stakeholder-group

ßTasks:
ßEach group to email me “subset” by October 31
ßEach group to email me 2-3 categories with 2-5 “questions” for
November 10 interview by November 3
ßGroups 1-4 email me 2-3 categories with 2-5 “questions” for
Registrar interview by November 5
ßGroup 5 email me 2-3 categories with 2-5 “questions” for
Bursar interview by November 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Dynamic Modeling with UML

ßDiagrams for dynamic modeling
ßInteraction diagrams describe the dynamic behavior between
objects
ßStatecharts describe the dynamic behavior of a single object

ß Interaction diagrams
ßSequence Diagram:
ßDynamic behavior of a set of objects arranged in time sequence.
ßGood for real-time specifications and complex scenarios

ßCollaboration Diagram :
ßShows the relationship among objects. Does not show time

ßState Charts:
ßA state machine that describes the response of an object of a
given class to the receipt of outside stimuli (Events).

ßActivity Diagram:
ßSpecial type of statechart where all states are action states

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Start with Flow of Events

ßGet events from Use Case

ßWhat is an Event?
ßsomething that happens at a point in time

ßRelation of events to each other:
ßcausally related: Before, after,

ßcausally unrelated: concurrent

ßAn event sends information from one object to another

ßEvents can be grouped in event classes with a
hierarchical structure.

ßEvent is often used in two ways:
ßInstance of an event class

ßAttribute of an event class

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example

Again, adapted from www.agilemodeling.com

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Enroll in seminar Use-Case

Name: Enroll in Seminar
Identifier: UCxx
Description: Enroll an existing student in a seminar for
which she is eligible.

Preconditions: The Student is registered at the
University.

Postconditions: The Student will be enrolled in the
course she wants if she is eligible and room is available.

Extends:
Includes:
Inherits From:
Basic Course of Action:
ß see full Use-Case description

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Enroll in seminar Use-Case

Basic Course of Action:
1. The student wants to enroll in a seminar.
2. The student inputs her name and student number into the system

via “UI23 Security Login Screen.”
3. The system verifies the student is eligible to enroll in seminars at

the university, according to business rule “BR129 Determine
Eligibility to Enroll.”

4. The system displays “UI32 Seminar Selection Screen,” which
indicates the list of available seminars.

5. The student indicates the seminar in which she wants to enroll.
6. The system validates the student is eligible to enroll in the

seminar, according to the business rule “BR130 Determine
Student Eligibility to Enroll in a Seminar.”

7. The system validates the seminar fits into the existing schedule of
the student, according to the business rule “BR143 Validate
Student Seminar Schedule.”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Business Rule

ßName
ßclear idea of topic, e.g., Determine Eligibility to Enroll

ßDescription
ßtext, flow charts, UML activity diagrams, Object
Constraint Language (OCL), Business Rules Markup
Language (BRML)

ßExample (optional)

ßSource (optional)

ßRelated rules (optional)

ßRevision history (optional)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Enroll in seminar Use-Case

Basic Course of Action:
1. The student wants to enroll in a seminar.
2. The student inputs her name and student number into the system

via “UI23 Security Login Screen.”
3. The system verifies the student is eligible to enroll in seminars at

the university, according to business rule “BR129 Determine
Eligibility to Enroll.”

4. The system displays “UI32 Seminar Selection Screen,” which
indicates the list of available seminars.

5. The student indicates the seminar in which she wants to enroll.
6. The system validates the student is eligible to enroll in the

seminar, according to the business rule “BR130 Determine
Student Eligibility to Enroll in a Seminar.”

7. The system validates the seminar fits into the existing schedule of
the student, according to the business rule “BR143 Validate
Student Seminar Schedule.”

method

classclass

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class diagram

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Specifying message sequences

ßUseful to distinguish between
ßsignals
ßasynchronous inter-object communication

ßoften shown with “half-arrow notation”

ßCalls
ßsynchronous inter-object communication control returns to
caller (usually)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sequence Diagram

ßFrom the flow of events in the use case or scenario
proceed to the sequence diagram
ßA sequence diagram is a graphical description of
objects participating in a use case or scenario using a
DAG notation
ßRelation to object identification:
ßMany objects/classes have already been identified
during object modeling
ßMore objects are identified as a result of dynamic
modeling

ßHeuristic:
ßAn event always has a sender and a receiver. Find them
for each event => These are the objects participating in
the use case

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Enroll in seminar Use-Case

Basic Course of Action:

1. The student wants to enroll in a seminar.

2. The student inputs her name and student number into the system via
“UI23 Security Login Screen.”

3. The system verifies the student is eligible to enroll in seminars at the
university, according to business rule “BR129 Determine Eligibility to
Enroll.”

4. The system displays “UI32 Seminar Selection Screen,” which indicates
the list of available seminars.

5. The student indicates the seminar in which she wants to enroll.

6. The system validates the student is eligible to enroll in the seminar,
according to the business rule “BR130 Determine Student Eligibility to
Enroll in a Seminar.”

7. The system validates the seminar fits into the existing schedule of the
student, according to the business rule “BR143 Validate Student Seminar
Schedule.”

event

event

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sequence Diagram

Student
<actor>

EnrollinSeminar
<controller>

SecurityLogIn
<UI>

Seminar

theStudent
:Student

provides name

<<create>>
wish to enroll

provides student id

<<destroy>>

isValid(name, number)

yes

getAvailableSeminar():vectorX

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Defining Operations

ßA public interface of a class consists of
operations that offer services to entities
external to the class
ßoperations are best discovered from sequence
diagrams, since every message must be
serviced by an operation

ßOther operations can be found using the
CRUD (create, read, update, delete)
paradigm; classes need to provide these
services regardless of their domain specific
functionality

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example 4.17 – Maciaszek

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example 4.17 – Maciaszek

 Course
<<PK>>course_code:string
<<CK>>course_name:string
credit_points: integer
crs_off: set<CourseOffering>
areYouOpen(out c_check)
addStudent(stdOID)

 CourseOffering
year:Date
semester:integer
enrollment_quota:integer
std: list<Student>
crs: Course
areYouOpen(out c_check)
addStudent(stdOID)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Heuristics for Sequence Diagrams

ß Layout:
ß 1st column: Should correspond to the actor who initiated the use

case
ß 2nd column: Should be a boundary object
ß 3rd column: Should be the control object that manages the rest of

the use case
ß Creation:

ß Control objects are created at the initiation of a use case
ß Boundary objects are created by control objects

ß Access:
ß Entity objects are accessed by control and boundary objects,
ß Entity objects should never call boundary or control objects: This

makes it easier to share entity objects across use cases and
makes entity objects resilient against technology-induced changes
in boundary objects.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Is this a good sequence diagram?

actor

boundary
agent? control

object?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Perhaps better ….

actor

boundary
agent?

control
object?

Student
<actor>

EnrollinSeminar
<controller>

SecurityLogIn
<UI>

Seminar

theStudent
:Student

provides name

<<create>>
wish to enroll

provides student id

<<destroy>>

isValid(name, number)

yes

getAvailableSeminar():vectorX

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Perhaps even better ….

actor

boundary
agent?

control
object?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling behavior

ßAn object model describes the possible patterns of
objects, attribute values and links that can exist in a
system.
ßA dynamic model describes the possible patterns of
states, events and actions that can exist in a system.
ßOver time, the objects stimulate each other, resulting in
a series of changes to their states.
ßAn individual stimulus from one object to another is
called an event.
ßEvents can be organized into classes.
ßEvents can be error conditions as well as normal
occurences.
ßSome events are only signals (OK),
ßOthers have attributes associated with them

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statechart Diagrams

ßGraph whose nodes are states and whose directed arcs
are transitions labeled by event names.

ßDistinguish between two types of operations:
ßActivity: Operation that takes time to complete
ß associated with states

ßAction: Instantaneous operation
ßassociated with events

ßassociated with states (reduces drawing complexity)
ßEntry, Exit, Internal Action

ßA statechart diagram relates events and states for one
class -> an object model with a set of objects has a set
of state diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example of a StateChart Diagram

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Nested State Diagram

ßStructure
ßActivities in states are composite items denoting other lower-
level state diagrams
ßA lower-level state diagram corresponds to a sequency of
lower-level states and events that are invisible in the higher-
level diagram.
ßSets of substates in a nested state diagram denoting a
superstate are enclosed by a large rounded box, also called
contour.

ßNested state diagrams are useful:
ßAs a solution to cope with the complexity in your design:
ßAbstraction
ßA state is actually more complex and leads to a finite state

automaton itself. On the top level we don’t model all the complex
states.

ß Modularization
ß Each state diagram has up to 7+-2 states.

ßApply the “ Consist of” association!

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Nested Statechart Diagram

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Details of the Nested Statechart

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Superstates

ßGoal:
ßAvoid spaghetti models

ßReduce the number of lines in a state diagram

ßTransitions from other states to the superstate enter the
first substate of the superstate.

ßTransitions to other states from a superstate are
inherited by all the substates (state inheritance)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling Concurrency

Two types of concurrency

1. System concurrency
ß State of overall system as the aggregation of state
diagrams, one for each object. Each state diagram is
executing concurrently with the others.

2. Object concurrency
ßAn object can be partitioned into subsets of states
(attributes and links) such that each of them has its own
subdiagram.

ßThe state of the object consists of a set of states: one
state from each subdiagram.

ßState diagrams are divided into subdiagrams by dotted
lines.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Emitting

Setting Ready
Up to reset

Do: Dispense
 Cash

Do: Eject
 Card

 Ready

 Cash taken

 Card taken

SynchronizationSplitting control

Concurrency within an Object

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Concurrency within an object

ßConcurrency might be detected within a single object
ß overall decomposition of the system or initial object
identification was too coarse grain?

ß If there is concurrency ask
ßWhat objects are hidden in the currently modeled single
objects?

ßMay lead to new insights in the application or result in a better
taxonomy or object model.

ß In some cases, the object is inherently not further
decomposable
ß ramifications during system design, e.g., mapping to multiple
processors due to data parallelism

ß implementation, e.g., choice of programming language that
supports lightweight threads instead of heavweight processes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

StateCharts vs Sequence Diagram

ßState chart diagrams help to identify:
ßChanges to objects over time

ßSequence diagrams help to identify
ßThe temporal relationship of between objects over time

ßSequence of operations as a response to one ore more
events

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Practical Tips

ßConstruct dynamic models only for classes with
significant dynamic behavior
ßcouple of hundred objects not lead to 100’s of dynamic
models
ßdefine dynamic model for one that object that can be
used to describe behavior of other ojects

ßConsider only relevant attributes
ßUse abstraction if necessary
ßLook at the granularity of the application when deciding
on actions and activities
ßReduce notational clutter
ßTry to put actions into state boxes (look for identical
actions on events leading to the same state)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Dynamic
 Modeling

Functional
 Modeling

Object
Modeling

Summary: Requirements Analysis

ßWhat are the transformations?
ßCreate scenarios and use case diagrams
ßTalk to client, observe, get historical records, do thought

experiments

ßWhat is the structure of the system?
ßCreate class diagrams
ß Identify objects. What are the associations between them? What

is their multiplicity?
ßWhat are the attributes of the objects?
ßWhat operations are defined on the objects?

ß3. What is its control structure?
ßCreate sequence diagrams
ß Identify senders and receivers
ßShow sequence of events exchanged between objects. Identify

event dependencies and event concurrency.

ßCreate state diagrams
ßOnly for the dynamically interesting objects.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Architecture

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Abstraction techniques in CS

ßProgramming Languages
ßmachine language;
ßsymbolic assemblers
ßmacro processors
ßearly high-level languages
ßFortran
ßdata types served primarily as cues for selecting the proper machine
instructions

ßAlgol and it successors
ßdata types serve to state the programmer’s intentions about how data should
be used.

ßlater high-level languages
ßseparation of a module’s specification from its
implementation
ß introduction of abstract data types.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Abstraction techniques in CS

ßADT
ßthe software structure (which included a representation
packaged with its primitive operators)

ßspecifications (mathematically expressed as abstract
models or algebraic axioms)

ßlanguage issues (modules, scope, user-defined types)

ßintegrity of the result (invariants of data structures and
protection from other manipulation)

ßrules for combining types (declarations)

ßinformation hiding (protection of properties not explicitly
included in specifications)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Software Architecture

ß the theory of abstract data types
ßnot the only way to organize a software system

ßmany have developed informally over time:
ß “Camelot is based on the client-server model and uses remote procedure

calls both locally and remotely to provide communication among applications
and servers.”
ß “Abstraction layering and system decomposition provide the appearance of

system uniformity to clients, yet allow Helix to accommodate a diversity of
autonomous devices. The architecture encourages a client-server model for
the structuring of applications.”
ß “We have chosen a distributed, object-oriented approach to managing

information.”
ß “The easiest way to make the canonical sequential compiler into a concurrent

compiler is to pipeline the execution of the compiler phases over a number of
processors. . . . A more effective way [is to] split the source code into many
segments, which are concurrently processed through the various phases of
compilation [by multiple compiler processes] before a final, merging pass
recombines the object code into a single program.”

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Other software architectures

ßOpen Systems Interconnection Reference Model (a
layered network architecture)

ßNIST/ECMA Reference Model (a generic software
engineering environment architecture based on layered
communication substrates)

ßX Window System (a distributed windowed user
interface architecture based on event triggering and
callbacks)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example

ßis this an architecture?

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

Example

ßwhat is the nature of the components,
and what is the significance of their
separation?
ßdo they run on separate processors?
ßdo they run at separate times?
ßdo the components consist of
processes, programs, or both?
ßdo the components represent ways in
which the project labor will be divided,
or do they convey a sense of runtime
separation?
ßare they modules, objects, tasks,
functions, processes, distributed
programs, or something else?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Control
Process

(CP)

Prop Loss
Model

(MODP)

Reverb
Model

(MODR)

Noise
Model

(MODN)

Example

ßwhat is the significance of the links?
ßdo the links mean the components
communicate with each other, control
each other, send data to each other,
use each other, invoke each other,
synchronize with each other, or some
combination of these or other
relations?

ßwhat is the significance of the layout?
ßwhy is CP on a separate (higher) level?
ßdoes it call the other three
components, and are the others not
allowed to call it?
ßwas there simply not room enough to
put all four components on the same
row in the diagram?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Observations

ßDesigners freely use informal patterns/idioms
ßinformal with imprecise semantics

ßdiagrams + prose, but no rules

ßDesigners use system-level abstraction
ßoverall organization (styles)

ßcomponents and interactions

ßDesigners compose systems from subsystems
ßbut, tend to think statically

ßselect structure by default, rather than by design

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why Important?

ßmutual communication.
ßsoftware architecture represents a common high-level
abstraction of the system that most, if not all, of the
system’s stakeholders can use as a basis for creating
mutual understanding, forming consensus, and
communicating with each other.

ßearly design decisions.
ßsoftware architecture represents the embodiment of the
earliest set of design decisions about a system, and
these early bindings carry weight far out of proportion to
their individual gravity with respect to the system’s
remaining development, its service in deployment, and
its maintenance life.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Why Important?

ßtransferable abstraction of a system.
ßsoftware architecture embodies a relatively small,
intellectually graspable model for how the system is
structured and how its components work together; this
model is transferable across systems; in particular, it can
be applied to other systems exhibiting similar
requirements, and can promote large scale reuse.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Embodies the Earliest Design Decisions

ßarchitecture provides builders with constraints on
implementation

ßthe architecture dictates organizational structure for
development and maintenance projects

ßan architecture permits or precludes the achievement of
a system’s targeted quality attributes

ßit is possible to predict certain qualities about a system
by studying its architecture

ßarchitecture can be the basis for training

ßan architecture helps to reason about and manage
change

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

elements, form, rationale, views

architecture=

ßelements
ßprocessing

ßdata

ßconnectors

ß form
ß rules which constrain

element placement

ßstyle/design

ß rationale
ßselection of form

ß links to reqmnts & design

ß functional/non-functional
attributes

lexer parser
semantic
analyzer

code
generator

optimizer

chars tokens phrases
correlated
phrases

correlated
phrases

annotated
correlated
phrases

lexer parser
semantic
analyzer

code
generator

optimizer

has
tokens

has
phrases

has
correlated
phrases

has
annotated
correlated
phrases

code
generator

Process View

Data View

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

architectural styles/idioms

ßarchitectural style =
ßComponents: locus of computation
ßfilters, databases, objects, clients, servers, ADTs

ßConnectors: mediate interactions of components
ßprocedure call, pipes, event broadcast

ßProperties: specify info for construction & analysis
ßSignatures, pre/post conditions, RT specifications

ßother
ßtopology

ßunderlying structural model?

ßunderlying computational model?

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Expected Benefits

” David Garlan CMU

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

independent
components

communicating
processes

event systems

implicit
invocation

explicit
invocation

dataflow

batch
sequential

pipes & filters

virtual machine

rule-based
system

interpreter

data-centered

repository blackboard

call/return

main prog.
& subroutine

object-
oriented

layered

taxonomy

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

dataflow

batch
sequential

pipes & filters

validate sort update report

tape reporttapetapetape

data transformation

data flow

 sed grep awk

stdin stdout

computation

data flow (ascii stream)

taxonomy:data flow

ßbatch sequential
ßindependent programs, dataflow in large chunks, no
parallelism

ßpipes & filters
ßincremental, byte stream data flow, pipelined
“parallelism”, local context, no state persistence

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

analysis

ßpipes & filters (to some extent batch)
ßproblem decomposition
ßadvantages: hierarchical decomposition of system
function
ßdisadvantages: “batch mentality”,interactive apps?,
design

ßmaintenance & reuse
ßadvantages: extensibility, reuse, “black box” approach
ßdisadvantages: lowest common denominator for data
flow

ßperformance
ßadvantages: pipelined concurrency
ßdisadvantages: parsin/unparsing, queues, deadlock with
limited buffers

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Rules of thumb

ß for dataflow
ßIf your problem can be decomposed into sequential stages,
consider batch sequential of pipeline architectures
ß If in addition each stage is incremental, so that later stages can

begin before earlier stages complete, then consider a pipelined
architecture

ßIf your problem involves transformations on continuous
streams of data (or on very long streams) consider a pipeline
architecture
ßHowever, if your problem involves passing rich data representation,

then avoid pipeline architectures restricted to ASCII

ßIf your system involves controlling action, is embedded in a
physical system, and is subject to unpredictable external
perturbation so that preset algorithms go awry, consider a
closed loop architecture

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

call/return

main prog.
& subroutine

object-
oriented

layered

main

sub sub sub
sub sub sub sub sub sub

sub sub sub

obj

obj

obj

obj obj

core
basic utility

useful system

user interface

taxonomy: call/return

ßmain/sub
ßhierarchical decomposition, single thread of control, structure implicit,

correctness depends on subordinates
ß layered
ßhides lower layers/services higher layer, upper=“virtual

machines”/lower =hw, kernel, scoping
ßobject-oriented
ßencapsulation, inheritance, polymorphism

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

analysis

ß layers
ßportability, modifiability, reuse
ßadvantages: each layer is abstract machine, each layer interacts

with ≤ 2 other layers, standard interfaces

ßperformance, design
ßdisadvantages: semantic feedback in UI, deep functionality,

abstractions difficult, bridging layers

ßobject-oriented
ßportability, modifiability, reuse
ßadvantages: decreased coupling, frameworks -> reuse
ßdisadvantages: complex structure

ßperformance, design
ßadvantages: maps easily to “real world”, inheritance, encapsulation
ßdisadvantages: design harder, side effects, identity, inheitance

difficult

