CMPSCI520/620

COMPUTER
)SCIENCE

15 - Requirements Analysis

Rick Adrion

UNIVERSITY. OF MASSACHUSETTS: AMHERST +-DERART

CONPUTER How shall we do this?

= Pick the subset

= Common or different for each group?

= ProH'ect 2 prelim: each group email me the subset
= Develop questionnaires

= Stakeholders to be interviewed
= Department staff & associate chair

=OIT
= Registrar
= Bursar
= Yourselves
= Sample “portal” questions/interview outline
=Plan and carry out interviews
=30 minutes/stakeholder-group
=In class -- 1st weeks of November?
= At another scheduled time
= For selected subset, define Vision Document
= Assign one member of the group for this?
= For selected subset, define Use-Cases
= Assign rest of the group for this?
= Complete the SRS

UNIVERSITY OF MASSACHUSETTS AMHERST--~-DERAI

©Rick Adrion 2003 (except where noted)

-A-gﬁgeésrgnt, 4 groups have “registration & records” and one has

CONPUTER But first, let’s discuss Project 2

=Goal - Develop a Software Requirements Specification using
the RUP template
=Vision Document
=SRS

= Introduction Section 1: Purpose, Scope, Definitions, Acronyms
and Abbreviations, and provide References

= Overall Description Section 2: a list of names and brief
descriptions of all use cases and actors, along with applicable
diagrams and relationships

=|n Section 3, for each use case diagram in Section 2 define a use-
case relport maklr(\jg sure that each feature or requirement is
clearly abeled and traceable to the Vision document.

= Appendices, including: a) Table of contents, b) Index, and c) use-
case storyboards or User-interface prototypes, if needed.

=Process
=Develop questionnaires
=Plan and carry out interviews
=For selected subset, define Vision Document
=For selected subset, define Use-Cases
=Complete the SRS

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAVS‘_\‘:

e Sis

UNIVERSITY- OF MASSACHUSETTS AMHERST-+-DER 3]

CMPSCI520/620

COMPUTER Credits [Reuse is good]

=Many of the following are derived from:
=Kenneth M. Anderson © University of Colorado, 2003
=Leszek Maciaszek Requirements Analysis and
System Design © Addison Wesley, 2000

=Bernard Bruegge and Allan Dutoit, Object-Oriented
Software Engineering (2nd Edition) © Prentice Hall,
2003

UNIVERSITY. OF MASSACHUSETTS: AMHERST +-DERART

CONPUTER 0-O System Development

System design

system design
object model

subsystem
decomposition

| design goals

Object design
\ 4

class object design
diagram model

Implementation

code
deliverable
system

UNIVERSITY OF MASSACHUSETTS AMHERST--~-DERAI

©Rick Adrion 2003 (except where noted)

CONPUTER 0-O Sytem Development

problem
statement

Requirements
elicitation

& =5

nonfunctional functional use case
model diagram

requirements

== =
~o -

Requirements
analysis

v - R statechart

" " diagram

class analysis dynamic
diagram object model model

T PEd sequence
| - - diagram

System design

system design
object model

subsystem
decomposition

| design goals

adapted from Bruegge/Dutoit O-O SW Engr

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAVS‘_\‘:

CONPUTER Object Modeling

=Main goal: Find the important abstractions
=What happens if we find the wrong abstractions?
=|terate and correct the model
= Steps during object modeling
=Class identification

=Based on the fundamental assumption that we can find
abstractions

=Find the attributes
=Find the associations between classes
=Find the methods

= Order of steps
=Goal: get the desired abstractions
=Order of steps secondary, only a heuristic
=|teration is important

UNIVERSITY- OF MASSACHUSETTS AMHERST-+-DER 3]

CMPSCI520/620

COMPUTER
SCIENCE

Class Identification

=|dentify the boundaries of the system
=|dentify the important entities in the system
=Class identification is crucial to object-oriented modeling
= Approaches:
=find the classes for a new software system (Forward
Engineering)
sidentify the classes in an existing system (Reverse
Engineering)

UNIVERSITV: OF MASSACHUSETTS- AMHERST. % -DER/

COMPUTER
SCIENCE

Pieces of an Object Model

=Classes
= Associations (Relations)
=Part of- Hierarchy (Aggregation)
=Kind of-Hierarchy (Generalization)
= Attributes
=Detection of attributes
=Application specific
=Attributes in one system can be classes in another system
=Turning attributes to classes
= Methods
=Detection of methods
=Generic methods: General world knowledge, design patterns
=Domain Methods: Dynamic model, Functional model

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEP;_

©Rick Adrion 2003 (except where noted)

COMPUTER An ancient problem

=Objects are not just found by taking a picture of a scene
or domain

=The application domain has to be analyzed.
=Depending on the purpose of the system different
objects might be found
*How can we identify the purpose of a system?
=Scenarios and use cases
= Another important problem: Define system boundary.
=\What object is inside, what object is outside?

UNIVERSITY-OF MASSACRUSETTS-AMHERST - ERA

COMPUTER Object vs Class

=Object (instance): Exactly one thing
= The lecture on September 7 on Software Engineering
from 9:05 -10:20
= A class describes a group of objects with similar
properties
= Author, Corrosion, Work order
=Object diagram: A graphic notation for modeling objects,
classes and their relationships ("associations"):
=Class diagram: Template for describing many instances
of data. Useful for taxonomies, patters, schemata...
=Instance diagram: A particular set of objects relating to
each other. Useful for discussing scenarios, test cases
and examples

UNIVERSITY- OF MASSACHUSETTS AMHERST- - DEF?

CMPSCI520/620

COMPUTER Operation, Signatur

= Operation: A function or
transformation applied to

e or Method?

objects in a class. All objects
in a class share the same

Workorder

operations (Analysis Phase)
= Signature: Number & types

of arguments, type of result

value. All methods of a class

File name: String
Size_in_bytes: integer
Last_update: date
Stickies: array[max]

have the same signature
(Object Design Phase)

= Method: Implementation of
an operation for a class
(Implementation Phase)
Polymorphic operation: The

print ()
delete ()
open ()
close ()
write ()
read()

same operation applies to
many different classes.

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER

Proper noun object

Improper noun class

Doing verb method
being verb inheritance
having verb aggregation
modal verb constraint
adjective attribute

transitive verb method

intransitive verb method (event)

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

seieice Mapping parts of speech

Part of speech Model component Example

Jim Smith

Toy, doll

Buy, recommend
is-a (kind-of)

has an

must be

3 years old

enter

depends on
Abbot 1983

CONPUTER Discovering Classes

=|earn about problem domain: Observe your client
= Apply general world knowledge and intuition

=Take the flow of events and find participating objects in
use cases

=Apply design patterns
=Try to establish a taxonomy
=Do a textual analysis of scenario or flow of events
= Four Approaches(discussed last time)
= Noun Phrase Approach
= Common Class Patterns
= Use Case Driven
= CRC (Class-Responsibility-Collaboration)

UNIVERSITY-OF MASSACRUSETTS AMHERST: DERA

COMPUTER Maciaszek’s Guidelines

= Each class must have a statement of purpose in the
system

= Each class is a template for a set of objects
= avoid singleton classes
= Each class must house a set of attributes
= Each class should be distinguished from an attribute
=e.g. Color may be an attribute of a Car class, but may be
needed as a full class in a paint program
= Each class houses a set of operations that represents
the interface of the class
=operations can be derived from the statement of
purpose

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

CMPSCI520/620

COMPUTER
SCIENCE

University Enrolment - Maciaszek

=A course can be part of any number o majgagss

=Each major specifies minimum totdl credits refjuired

attribute

=Students magy combine [course offefings into pragrams
method association |~

of study suitedto theirindividual nee ing to
the degree/major in which enrolled

=A student's choice of courses may be restricted b

timetaplg,dlashes and by limitations on the numg‘gbn;‘pr
students who can be enrolled in the current course
offering.

=A student's proposed program of study n on-

line enrollment system via the SPIRE interface

UNIVERSITV: OF MASSACHUSETTS- AMHERST. % -DER/

COMPUTER
SCIENCE

University Enrolment - Maciaszek
Relevant classes Fuzzy classes

Course CompulsoryCourse
Major ElectiveCourse

Student

CourseOffering

<-StudyProgram

Professor -> ProfessorinCharge

AcademicRecord

UNIVERSITY- OF MASSACHUSETTS AMHERST--+ DEP‘

©Rick Adrion 2003 (except where noted)

CONPUTER University Enrolment - Maciaszek

=The syste program's consistency and reports
any prob|

=The problems need to be resolved with the help of an

acadenpic adviser
=The fi study is subject to academic approval by

the Department head (or delegate) and it is then forwarded to
the Registrar

= The student's academic record to be available on demand

=The record to |nclude information about the student’s grades
in that the student enrolled in (and h
withdrawn without penalty)

=Each course has one professor in charge of a course, but
additional professors (inc instructors) may also teach in it

= There may be a different professor in charge of a course
each semester

= There may be professpr for each dourse each semester
association

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DERA

CONPUTER Specifying Attributes

= Attributes are specified in parallel with classes
sinitial set of attributes will be “obvious”
= important to initially select attributes that help to
determine the states of the class
= additional attributes can be added in subsequent
iterations

UNIVERSITY- OF MASSACHUSETTS AMHERST- [£

CMPSCI520/620

COMPUTER
)SCIENCE

Maciaszek Solution

Student

Course

<<PK>> student_id : String
student_name : String
current_fees : Money

<<PK>> course_code : String
<<CK>> course_name : String|
credit_points : Integer

AcademicRecord

StudyProgram

CourseOffering

course_code : String| | year : Date
year : Date semester : Integer

year : Date
semester : Integer

COMPUTER
)SCIENCE

semester : Integer

enrolment_quota : Integer

grade : String

total_credit_points : Integer

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

Mjor
<<PK>> major_iname : String ProfessorinChai

= Associations connect objects in the

system

= they facilitate collaboration between

objects

= Specifying associations involves

= naming them
= naming the roles

Specifying Associations

Student

<<PK>> student_id : String
student_name : String
current_fees : Money

participate in a composition

= especially useful in | relationship

self associations

Student and AcademicRecord g

= note, a role name becomes an attribute
in the class on the opposite end of the

association

= determining multiplicity
= What associations might we put into
the University example?

Student

<<PK>> student_id : String

CourseOffering

year : Date

student_name : String
current_fees : Money

0.*

AcademicRecord

course_code : String
year : Date
semester : Integer
grade : String

 Integer Professori
; —
enrolment_quota : Integer

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPfA:

COMPUTER

= “Whole-part” relationships
between composite and
component classes
= UML models aggregation
as a constrained form of

association a Course aggregates its
various CourseOfferings

seience Specifying Aggregation/Composition

Course

<<PK>> course_code : String
<<CK>> course_name : String|
credit_points : Integer

0.*

CourseOffering

= Maciaszek suggests
additional power
= ExclusiveOwns and Owns
= Has and Member
= Litmus test: “has” or “is-part-
of” is needed to
explain relationship

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

year : Date
semester : Integer
enrolment_quota : Integel

COMPUTER Maciaszek

Solution

Student

student_name : String
current_fees : Money

<<PK>> student_id : String

has_stud

0.*

course_code : String
year : Date
semester : Integer
grade : String

AcademicRecord

takes

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

Course

<<PK>> course_code : String
<<CK>> course_name : String|
credit_points : Integer

takes_crsoff 0.*

CourseOffering
year : Date
semester : Integer
enrolment_quota : Integel

0.*

0.1

ProfessorinChar%e

CMPSCI520/620

COMPUTER Specifying Generalizations

= Looking for common features among classes

= Move common features up a class hierarchy and
specialized features down

= Apart from inheritance, generalization has
two objectives

= substitutability and polymorphism
= Litmus test: “can be” and “is-a-kind-of” required to explain

relationship
= Are there anv aeneralizations that we can make in the University
example? Porson ‘Address
Name Street
Phone Number 0.1 livesat 1Sy
Email Address
Postal Code
Purchase Parking Pass Country
Validate
Output As Label
Student [Professor |
Student Number Salary

Average Mark

Is Eligible To Enroll
Get Seminars Taken

UNIVERSITY: OF M ASSACHUSETTS AMHERST 4 DER;

CONPUTER Behavior Specification

=Provide an operational view of the system
=Main Tasks

=Define use cases and determine which classes are used
to execute a use case

=|dentify operations on classes
= State specifications in analysis typically reveal entity
classes
=Behavior specifications will often reveal controller
classes and boundary classes (user interface classes)

UNIVERSITY- OF MASSACHUSETTS AMHERST--+-DER)

©Rick Adrion 2003 (except where noted)

CONPUTER Behavior Specification

=Behavior of a system, as it appears to an outside user,
is specified in use cases

=During analysis, use cases specify “what” a system
needs to do (not “how”)

=Use cases require computations to be performed
=Computations are divided into activities
=can be modeled using activity diagrams
= Activities are carried out by interacting objects
minteractions are modeled using sequence diagrams

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAF‘_

COMPUTER Maciaszek’s Take: Use Cases

=A use case represents
=a complete piece of functionality
=including main and alternate flows of logic
=a piece of externally visible functionality
=an orthogonal piece of functionality

=use cases can share objects but execute independently
from each other

=a piece of functionality initiated by an actor

=a piece of functionality that delivers value to an
actor

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

CMPSCI520/620

Lo HE! Finding Use Cases

=Use cases are discovered via analysis of
=requirements in the requirements documents
=actors and their purpose
=Jacobson suggests asking the following questions
concerning actors to help identify use cases
=What are the main tasks performed by the actor
=Will an actor access or modify information in the system

=Will an actor inform the system about changes in other
systems?

=Should an actor be informed about unexpected changes in
the system?

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE! Al

CONPUTER Example 4.12

Pre-enrolment activities
=Mail-outs of

=Last semester's examination grades to
students

=Enrolment instructions

Provide Examination Results

F<extend>>

Student Office
Student

Provide Enrolment Instructions

=During enrolment

=Accept students'
<<include>>

=Validate validate Program of Study

Data Entry
Person

Registrar Office
UNIVERSITY OF MASSACHUSETTS AMHERST: <-DE

©Rick Adrion 2003 (except where noted)

CONPUTER Use Case Relationships

= Association
=a communication path
= Generalization

=a specialized use case can change any aspect of the base
use case

=Include

=directly includes steps of another use case
= Extend

=customize an extension point

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEP--

COMPUTER Better Example

logic included

invokes, not d

Enroll in CourseOffering

nroll International Student

nroll Family Member

International Student

generalization logic may be included

generalization

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

CMPSCI520/620

CONPUTER Modeling Activities

““ﬂ-‘;ﬁ'ﬂﬁ'ﬁ University enroliment example

= Activities capture the flow of logic within a system
=both sequential and parallel control can be modeled
=Since activities do not reference classes, they can be
created without the need for a class diagram
=Most often used to graphically represent the steps of
a use case
=can show main flow and extensions at once
= Activities are best discovered by analyzing the action
steps of use cases, with verbs indicating candidate
activities

[correct]

Fill out
forms

Enrollin | «———
University |«

[otherwise]

[incorrect]

[trivial probl|

lem]

Attend

Overview

University

[help available] | Obtain help

on forrms

Enrolling in
University for
first time

Enroll in
Seminar

Pay Tuition
& Fees

UNIVERSITY. OF MASSACHUSETTS: AMHERST +-DEP

CONPUTER Object Modeling in Practice

UNIVERSITY- OF MASSACHUSETTS AMHERST--+[

©Rick Adrion 2003 (except where noted)

Mar ing
Balance Balance
Customerld Customerld
Deposit() Deposit()
Withdraw() Withdraw()
GetBalance() GetBalance() Account
Balance
. L. Customerld
* Naming is important! _
K i Deposit()
* Encourage Brainstorming! Withdraw()
GetBalance()

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UNIVERSITY-OF MASSACRUSETTS:AMHERST 3Dt

CONPUTER Object Modeling in Practice

Account
Bank Balance * Customer
* | Gustorerld Has
Name / Accountld Name
Deposit() Customerld
Withdraw()
GetBalance()

* Find New Objects

« Iterate on Names, Attributes and Methods

* Find Associations between Objects

* Label the associations

* Determine the multiplicity of the associations

UNIVERSITY- OF MASSACHUSETTS AMHERST- - D.g

CMPSCI520/620

COMPUTER : P H P COMPUTER P
<eienee Object Modeling in Practice: seienee Using packages
Account =Avoid Ravioli Models -- don’t put too many classes into
Bank Customer the same package:
Balance *
Name / Accountld Has [Name =Rule: 7+-2 (or even 5+-2)
Deposit() Package Schedule
Withdraw()
GetBalance() Customerld
J\ CourseOffering = ! Course
* Categorize! T p 4 DN\geldat
Savings Checking Mortgage o+ ‘\‘
Account Account Account \ 1] Location
Enroliment \“
Time
Withdraw() Withdraw() Withdraw()

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEPAVS‘_\‘:

UNIVERSITY. OF MASSACHUSETTS: AMHERST +-DERART

COMPUTER
)SCIENCE

Using packages

©Rick Adrion 2003 (except where noted)

UNIVERSITY OF MASSACHUSETTS AMHERST--~-DERAI

Obtain student Pay fees

Obtain student Inform student
loan of grades

Produce fee
schedule

&

Student

course fees

Enroll in
seminar

Scott W. Ambler

Drop seminar

Input marks

Produce teaching
schedule

Teach seminar

Apply for
grant

COMPUTER Using packages with Use Cases

&

Grade
administrator

&

Instructor

&

Researcher

Drop out of
school Attend seminar

Graduate from Finish seminar

Notify students of
schedule changes

&

UNIVERSITY- OF MASSACHUSETTS AMHERST-+-DER 3]

10

CMPSCI520/620

COMPUTER Using packages with Use Cases

Drop out of i
S'C’hml Input marks
Grade
administrator
Student
Graduate from Apply for grant
school

Researcher

Manage loan
and grants

Manage seminar

Instruct seminars Manage fees registration

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER Modeling Interactions

=One level of abstraction below activities
= Interaction models require at least one iteration of

state specification to be performed

=Since we need to have classes to which each object belongs

= Interaction diagrams do not model object state

changes; however they may show the actions that

lead to a state change
= Interactions can help determine operations; any

message to an object in a interaction must be

handled by an operation (actually a method)

=Recall that a method implements an operation; indeed there
may be many methods available for a single operation

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

COMPUTER Heuristics

=Explicitly schedule meetings for object identification

=Try to differentiate between entity, boundary and control
objects

=Find associations and their multiplicity

=Unusual multiplicities usually lead to new objects or
categories

=|dentify Aggregation
=|dentify Inheritance: Look for a Taxonomy, Categorize
=Allow time for brainstorming , Iterate, iterate

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPfA::,

CONPUTER Dynamic Modeling with UML

= Diagrams for dynamic modeling

=Interaction diagrams describe the dynamic behavior between
objects

=Statecharts describe the dynamic behavior of a single object
= Interaction diagrams
=Sequence Diagram:
= Dynamic behavior of a set of objects arranged in time sequence.
=Good for real-time specifications and complex scenarios
=Collaboration Diagram :
= Shows the relationship among objects. Does not show time
= State Charts:

=A state machine that describes the response of an object of a
given class to the receipt of outside stimuli (Events).

= Activity Diagram:
=Special type of statechart where all states are action states

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

11

CMPSCI520/620

COMPUTER Start with Flow of Events

=Get events from Use Case
*What is an Event?
=something that happens at a point in time
=Relation of events to each other:
=causally related: Before, after,
=causally unrelated: concurrent
=An event sends information from one object to another

=Events can be grouped in event classes with a
hierarchical structure.

=Event is often used in two ways:
=|nstance of an event class
s Attribute of an event class

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE!

COMPUTER Sequence Diagram

=From the flow of events in the use case or scenario
proceed to the sequence diagram

= A sequence diagram is a graphical description of
objects participating in a use case or scenario using a
DAG notation

=Relation to object identification:

=Objects/classes have already been identified during
object modeling

=Objects are identified as a result of dynamic modeling
=Heuristic:

=An event always has a sender and a receiver. Find them
for each event => These are the objects participating in
the use case

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

CONPUTER Specifying message sequences

=Useful to distinguish between
ssignals
=asynchronous inter-object communication
=often shown with “half-arrow notation”
=Calls

=synchronous inter-object communication control returns to
caller (usually)

UNIVERSITY-OF MASSACRUSETTS AMHERST: DEPfA::,

COMPUTER Sequence Diagram

Student EnrollinSeminar | [SecurityLogin Seminar
<actor> <controller>
wish to enroll

<<create>>

provides name

provides student i

isValid(name, number) | theStudent
—_—p
:Student

<destroy>>
D getAvailableSeminar():vector

!

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UNIVERSITY- OF MASSACHUSETTS AMHERST - DE

12

CMPSCI520/620

CONPUTER Defining Operations

=A public interface of a class consists of
operations that offer services to entities
external to the class
=operations are best discovered from sequence
diagrams, since every message must be
serviced by an operation
=Other operations can be found using the
CRUD (create, read, update, delete)
paradigm; classes need to provide these
services regardless of their domain specific
functionality

UNIVERSITY: OF MASSACHUSETTS AMHERST: p

CONPUTER Example 4.17 — Maciaszek
aStudent ‘

i Program
Student

Data Etr
ol | |

add(std crs sem) | | |
areYouvalidout s_check |

s _checke="no" jdestro |

|

areYouOpen(aut ¢_check)

aCourseOffering
Course CourseOft

aCourse ‘

| are YouOpen(out c_check)
fechack=ne deteoy

1
addCourse(ersOID] _|
addStudemgstdO\D) ‘
! \ H 1 CourseOffering
Course year:Date
<<PK>>course_codés'§trt:1“§L\ semester:integer
<<CK>>course_name:string_| | enrollment_quota:integer
» credit_points: integer " std: list<Student>
crs_off: set<CourseOffering> crs: Course
areYouOpen(out c_check) areYouOpen(out ¢_check)
addStudent(stdOID) addStudent(stdOID)

UNIVERSITY OF MASSACHUSETTS AVMHERST: E

©Rick Adrion 2003 (except where noted)

CONPUTER Example 4.17 — Maciaszek

i Program aStudent aCourse [aCoursenftering
EntryWVindow Student Course CourgeOffering
Data ﬁnlry
Petson ‘ | ‘
rh add(std cre sem) | i | \
areYouWalid{out s_check’ ‘
[s_check="no"]destroy ‘
|
areYoquen(uLll c_check) 1

| DareYqupen(uut c_check)

[cicheck:”nn"]destmy: g
! |
|
|
y |

|
addCourse(crsOIDY |

J

\
\
addStudentq.;tdOID) ‘

addStudent(stdOID:

UNIVERSITY-OF MASSACHUSETTS AMHERST: -

COMPUTER Heuristics for Sequence Diagrams

= Layout:

= 1st column: Should correspond to the actor who initiated the use
case

= 2nd column: Should be a boundary object

= 3rd column: Should be the control object that manages the rest of
the use case

= Creation:
= Control objects are created at the initiation of a use case
= Boundary objects are created by control objects
= Access:
= Entity objects are accessed by control and boundary objects,

= Entity objects should never call boundary or control objects: This
makes it easier to share entity objects across use cases and
makes entity objects resilient against technology-induced changes
in boundary objects.

UNIVERSITY- OF MASSACHUSETTS AMHERS e

13

CMPSCI520/620

COMPUTER |s this a good sequence diagram?

actor |~ % _ Program aStudent aCourse [aCoursenftering
Student

Entry’Vindow Course CourgeOffering

Diata Entr;
Pe . ‘
agent
rh add(std crs serm) | 9 |

areYouWalid{out s_check’

[s_check="no"]destroy

|
areYoquen(uLll c_check)

areYouDpen{out c_check)

E—

|
|
|
y |

[cicheck:”nn"]destmy:

]

|
addCourse(crsOIDY | ‘
\
addStudentq.;tdOID) ‘

addStudent(stdOID:

UNIVERSITY: OF MASSACHUSETTS: AMHERST % DE! Al

COMPUTER Perhaps even better ...

marm,

et
) it

e

3 Sysiem veriies styeort
[actor

. Syt s pys s .

§ Sttt s s i

Sy e el o el

St i st

B Systom calculedes faes.

0 Sy gl s
10y e st tas ol
1 St s .
12 Syt sttt st

wtat

UNIVERSITY OF MASSACHUSETTS AMHERST---DE!

©Rick Adrion 2003 (except where noted)

CNINE Perhaps better ...

boundary
agent?

Student EnrollinSeminar | [SecurityLogin Seminar
<actor> <controller> _|
Il
wish to enroll }

<<create>>
= (RER
[ac!or provides name object’
provides student i(z
#71| isValid(name, number)| theStudent
—’
:Student
€ =z — —

T
L
T
I
1
f
[
f
I
I
I
: §destroy>>

: getAvailableSeminar():vector

A

UNIVERSITY-OF M ASSACHUSETTS-AMHERST:: DEP--

COMPUTER
)SCIENCE

Fix after this!

UNIVERSITY- OF MASSACHUSETTS AMHERST.-DER,

14

CMPSCI520/620

Event trigger
With parameters

Statel Eventl(attr) [condi@n]/action
do/Activity

Guard
condition

entry laction
exitlaction

g)

and deferred events

= Notation based on work by Harel
=Added are a few object-oriented modifications

machine

COMPUTER UML Statechart Diagram Notation

= A UML statechart diagram can be mapped into a finite state

State2

UNIVERSITY: OF MASSACHUSETTS AMHERST. ~

U State

=An abstraction of the attribute of a class

=Example: State of a bank
=A bank is either solvent or insolvent

=State has duration

=State is the aggregation of several attributes a class
= Basically an equivalence class of all those attribute
values and links that do no need to be distinguished as
far as the control structure of the system is concerned

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

CONPUTER Statechart Diagrams

=Graph whose nodes are states and whose directed arcs
are transitions labeled by event names.
=Distinguish between two types of operations:
=Activity: Operation that takes time to complete
= associated with states
=Action: Instantaneous operation
=associated with events
=associated with states (reduces drawing complexity): Entry,
Exit, Internal Action
= A statechart diagram relates events and states for one
class
=An object model with a set of objects has a set of state
diagrams

UNIVERSITY-OF MASSACHUSETTS AMHERST: ~

c"e";'ﬁ%'é Example of a StateChart Diagram

coins_in(amount) / set balance
> Collect Money

Idle

coms _in(amount) / add to balapce
cancel / refund coins J

[item empty] [select(item)] hange<0]

do test item and compute change]

[change=0] [change>0]
v

(do: dispense item) .\@o: make change)

UNIVERSITY- OF MASSACHUSETTS AMHERS

15

CMPSCI520/620

COMPUTER Nested State Diagram

Example of a Nested Statechart
AHINGE Diagram

=Activities in states are composite items denoting other coins_in(amount) / set bal
lower-level state diagrams Idle Collect Money

i coms _in(amount) / add to balance

=A lower-level state diagram corresponds to a sequency ° -
of lower-level states and events that are invisible in the
higher-level diagram.

cancel / refund coins

t t; lect(it h: 0
=Sets of substates in a nested state diagram denoting a Diteen empty) [select(item)] / [change<0]
superstate are enclosed by a large rounded box, also

called contour. Superstate

do test item and compute change

, [change=0] , [change>0]
Y \i
(do: dispense item)<—@o: make change)

UNIVERSITY: OF MASSACHUSETTS! AMHE}R

UNIVERSITY-OF MASSACHUSETTS: AMH.E}f{_

weyreg <Panding activity “do:dispense
SCIENCE item

compuTeR Superstates
SCIENCE

N =Goal:
T 3 b

Dispense item’ as =Avoid spaghetti models
an atomic activity: [change=0]

=Reduce the number of lines in a state diagram

=Transitions from other states to the superstate enter the
first substate of the superstate.

=Transitions to other states from a superstate are
inherited by all the substates (state inheritance)
do: move arm do: move arm do: push 1tenj‘

do: dispense item j«—

‘Dispense item’ as a composite activity:

to row to column off shelf

Arm

ready ready

UNIVERSITY- OF MASSACHUSETTS. AMHéR

UNIVERSITY- OF MASSACHUSETTS ANH|

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

CONPUIER Modeling Concurrency

Two types of concurrency
1. System concurrency

= State of overall system as the aggregation of state
diagrams, one for each object. Each state diagram is
executing concurrently with the others.

2. Object concurrency

=An object can be partitioned into subsets of states
(attributes and links) such that each of them has its own
subdiagram.

=The state of the object consists of a set of states: one
state from each subdiagram.

=State diagrams are divided into subdiagrams by dotted
lines.

UNIVERSITY. OF MASSACHUSETTS: AMHERST D)

State Chart Diagram vs Sequence
COMPUTER .
scieNce Diagram

=State chart diagrams help to identify:
=Changes to objects over time

=Sequence diagrams help to identify
=The temporal relationship of between objects
over time

sSequence of operations as a response to one
ore more events

UNIVERSITY OF MASSACHUSETTS AVMHERST:

©Rick Adrion 2003 (except where noted)

Example of Concurrency within
COMPUTER -
scinct an Object

Splitting control

Synchronization

(Emitting

Setting | b1 . h Ready
Up) x| N to reset

UNIVERSITY-OF MASSACHUSETTS AMHERST:

Practical Tips for Dynamic
COMPUTER -
scieNce Modeling

=Construct dynamic models only for classes with significant
dynamic behavior

=Avoid “analysis paralysis”
=Consider only relevant attributes
=Use abstraction if necessary

=L ook at the granularity of the application when deciding on
actions and activities

=Reduce notational clutter

=Try to put actions into state boxes (look for identical actions
on events leading to the same state)

UNIVERSITY- OF MASSACHUSETTS AMHERST:

17

CMPSCI520/620

= Create scenarios and use case diagrams

= 2. What is the structure of the system?
= Create class diagrams

multiplicity?
= What are the attributes of the objects?
= What operations are defined on the objects?
= 3. What is its control structure?
= Create sequence diagrams
= I|dentify senders and receivers

dependencies and event concurrency.
= Create state diagrams
= Only for the dynamically interesting objects.

UNIVERSITY: OF MASSACHUSETTS AMHERST:

©Rick Adrion 2003 (except where noted)

COMPUTER Summary: Requirements Analysis
.. i

@B Functional Modeling

= Talk to client, observe, get historical records, do thought experiments

= I|dentify objects. What are the associations.een(mﬁjma Whaldkilgeir

Dynamic Modeling

= Show sequence of events exchanged between objects. Identify event

18

