
CMPSCI520/620

”Rick Adrion 2003 (except where noted) 1

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

15 - Requirements Analysis

Rick Adrion

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

But first, let’s discuss Project 2
ßGoal - Develop a Software Requirements Specification using

the RUP template
ßVision Document
ßSRS
ß Introduction Section 1: Purpose, Scope, Definitions, Acronyms

and Abbreviations, and provide References
ßOverall Description Section 2: a list of names and brief

descriptions of all use cases and actors, along with applicable
diagrams and relationships
ß In Section 3, for each use case diagram in Section 2 define a use-

case report, making sure that each feature or requirement is
clearly labeled and traceable to the Vision document.
ßAppendices, including: a) Table of contents, b) Index, and c) use-

case storyboards or user-interface prototypes, if needed.
ßProcess
ßDevelop questionnaires
ßPlan and carry out interviews
ßFor selected subset, define Vision Document
ßFor selected subset, define Use-Cases
ßComplete the SRS

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

How shall we do this?
ßPick the subset
ßCommon or different for each group?
ßProject 2 prelim: each group email me the subset

ßDevelop questionnaires
ßAt present, 4 groups have “registration & records” and one has

“bursar”
ßStakeholders to be interviewed
ßDepartment staff & associate chair
ßOIT
ßRegistrar
ß Bursar
ß Yourselves

ßSample “portal” questions/interview outline
ßPlan and carry out interviews
ß30 minutes/stakeholder-group
ß In class -- 1st weeks of November?
ßAt another scheduled time

ßFor selected subset, define Vision Document
ßAssign one member of the group for this?

ßFor selected subset, define Use-Cases
ßAssign rest of the group for this?

ßComplete the SRS

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

SIS

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 2

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Credits [Reuse is good]

ßMany of the following are derived from:
ßKenneth M. Anderson © University of Colorado, 2003

ßLeszek Maciaszek Requirements Analysis and
System Design © Addison Wesley, 2000

ßBernard Bruegge and Allan Dutoit, Object-Oriented
Software Engineering (2nd Edition) © Prentice Hall,
2003

The last lecture was class-ick!

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

O-O Sytem Development
problem

statement

Requirements
elicitation

Requirements
analysis

System design

system design
object model

design goals subsystem
decomposition

functional
model

nonfunctional
requirements

use case
diagram

analysis
object model

class
diagram

dynamic
model

statechart
diagram

sequence
diagram

adapted from Bruegge/Dutoit O-O SW Engr

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

O-O System Development

System design

system design
object modeldesign goals

subsystem
decomposition

Implementation

source
code

Test

deliverable
system

Object design

object design
model

class
diagram

adapted from Bruegge/Dutoit O-O SW Engr

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Object Modeling

ßMain goal: Find the important abstractions
ßWhat happens if we find the wrong abstractions?
ßIterate and correct the model

ßSteps during object modeling
ßClass identification
ßBased on the fundamental assumption that we can find

abstractions

ßFind the attributes
ßFind the associations between classes
ßFind the methods

ßOrder of steps
ßGoal: get the desired abstractions
ßOrder of steps secondary, only a heuristic
ßIteration is important

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 3

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Class Identification

ßIdentify the boundaries of the system

ßIdentify the important entities in the system

ßClass identification is crucial to object-oriented modeling

ßApproaches:
ßfind the classes for a new software system (Forward
Engineering)

ßidentify the classes in an existing system (Reverse
Engineering)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

An ancient problem

ßObjects are not just found by taking a picture of a scene
or domain

ßThe application domain has to be analyzed.

ßDepending on the purpose of the system different
objects might be found
ßHow can we identify the purpose of a system?

ßScenarios and use cases

ßAnother important problem: Define system boundary.
ßWhat object is inside, what object is outside?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Pieces of an Object Model

ßClasses

ßAssociations (Relations)
ßPart of- Hierarchy (Aggregation)

ßKind of-Hierarchy (Generalization)

ßAttributes

ßDetection of attributes

ßApplication specific

ßAttributes in one system can be classes in another system

ßTurning attributes to classes

ßMethods
ßDetection of methods

ßGeneric methods: General world knowledge, design patterns

ßDomain Methods: Dynamic model, Functional model

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Object vs Class

ßObject (instance): Exactly one thing
ß The lecture on September 7 on Software Engineering
from 9:05 -10:20

ßA class describes a group of objects with similar
properties
ßAuthor, Corrosion, Work order
ßObject diagram: A graphic notation for modeling objects,
classes and their relationships ("associations"):
ßClass diagram: Template for describing many instances
of data. Useful for taxonomies, patters, schemata...
ßInstance diagram: A particular set of objects relating to
each other. Useful for discussing scenarios, test cases
and examples

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 4

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Operation, Signature or Method?

ßOperation: A function or
transformation applied to
objects in a class. All objects
in a class share the same
operations (Analysis Phase)
ßSignature: Number & types

of arguments, type of result
value. All methods of a class
have the same signature
(Object Design Phase)
ßMethod: Implementation of

an operation for a class
(Implementation Phase)

 Polymorphic operation: The
same operation applies to
many different classes.

Workorder

File_name: String
Size_in_bytes: integer
Last_update: date
Stickies: array[max]

print()
delete()
open()
close()
write()
read()

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Discovering Classes

ßLearn about problem domain: Observe your client

ßApply general world knowledge and intuition

ßTake the flow of events and find participating objects in
use cases

ßApply design patterns

ßTry to establish a taxonomy

ßDo a textual analysis of scenario or flow of events

ß Four Approaches(discussed last time)
ß Noun Phrase Approach

ß Common Class Patterns

ß Use Case Driven

ß CRC (Class-Responsibility-Collaboration)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Mapping parts of speech
 Part of speech Model component Example

 Proper noun object Jim Smith

 Improper noun class Toy, doll

 Doing verb method Buy, recommend

 being verb inheritance is-a (kind-of)

 having verb aggregation has an

 modal verb constraint must be

 adjective attribute 3 years old

 transitive verb method enter

 intransitive verb method (event) depends on

Abbot 1983

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Maciaszek’s Guidelines

ß Each class must have a statement of purpose in the
system

ß Each class is a template for a set of objects
ß avoid singleton classes

ß Each class must house a set of attributes

ß Each class should be distinguished from an attribute
ße.g. Color may be an attribute of a Car class, but may be
needed as a full class in a paint program

ß Each class houses a set of operations that represents
the interface of the class
ßoperations can be derived from the statement of
purpose

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 5

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

University Enrolment - Maciaszek

ßA course can be part of any number of majors

ßEach major specifies minimum total credits required

ßStudents may combine course offerings into programs
of study suited to their individual needs and leading to
the degree/major in which enrolled

ßA student's choice of courses may be restricted by
timetable clashes and by limitations on the number of
students who can be enrolled in the current course
offering.

ßA student's proposed program of study is entered on on-
line enrollment system via the SPIRE interface

class class

attribute

association

attribute attribute

method

method

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

class

method

attribute

association

University Enrolment - Maciaszek

ßThe system checks the program's consistency and reports
any problems
ßThe problems need to be resolved with the help of an

academic adviser
ßThe final program of study is subject to academic approval by

the Department head (or delegate) and it is then forwarded to
the Registrar
ßThe student's academic record to be available on demand
ßThe record to include information about the student’s grades

in each course that the student enrolled in (and has not
withdrawn without penalty)
ßEach course has one professor in charge of a course, but

additional professors (inc instructors) may also teach in it
ßThere may be a different professor in charge of a course

each semester
ßThere may be professor for each course each semester

class

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

University Enrolment - Maciaszek

AcademicRecord

Professor -> ProfessorinCharge

CourseOffering

Student

Major

Course

Relevant classes

<-StudyProgram

ElectiveCourse

CompulsoryCourse

Fuzzy classes

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Specifying Attributes

ßAttributes are specified in parallel with classes
ßinitial set of attributes will be “obvious”

ß important to initially select attributes that help to
determine the states of the class

ß additional attributes can be added in subsequent
iterations

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 6

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

AcademicRecord

course_code : String
year : Date
semester : Integer
grade : String

Course
<<PK>> course_code : String
<<CK>> course_name : String
credit_points : Integer

ProfessorinCharge

Student
<<PK>> student_id : String
student_name : String
current_fees : Money

CourseOffering

year : Date
semester : Integer
enrolment_quota : Integer

0..1

Maciaszek Solution

StudyProgram
year : Date
semester : Integer

Major
<<PK>> major_iname : String
total_credit_points : Integer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Specifying Associations

ß Associations connect objects in the
system
ß they facilitate collaboration between

objects
ß Specifying associations involves
ß naming them
ß naming the roles
ß especially useful in

self associations
ß note, a role name becomes an attribute

in the class on the opposite end of the
association

ß determining multiplicity

ß What associations might we put into
the University example?

AcademicRecord

course_code : String
year : Date
semester : Integer
grade : String

Student
<<PK>> student_id : String
student_name : String
current_fees : Money

0..*0..*

*
Student and AcademicRecord
participate in a composition
relationship

ProfessorinCharge

Student
<<PK>> student_id : String
student_name : String
current_fees : Money

CourseOffering
year : Date
semester : Integer
enrolment_quota : Integer

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Specifying Aggregation/Composition

ß “Whole-part” relationships
between composite and
component classes
ß UML models aggregation
as a constrained form of
association

ß Maciaszek suggests
additional power
ß ExclusiveOwns and Owns

ß Has and Member

ß Litmus test: “has” or “is-part-
of” is needed to
explain relationship

Course
<<PK>> course_code : String
<<CK>> course_name : String
credit_points : Integer

CourseOffering

year : Date
semester : Integer
enrolment_quota : Integer

0..*0..*

**

a Course aggregates its
various CourseOfferings

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

AcademicRecord

course_code : String
year : Date
semester : Integer
grade : String

Course
<<PK>> course_code : String
<<CK>> course_name : String
credit_points : Integer

ProfessorinCharge

Student

<<PK>> student_id : String
student_name : String
current_fees : Money

0..*0..*
CourseOffering

year : Date
semester : Integer
enrolment_quota : Integer

0..*0..*

0..*

0..1

0..*

0..1

*

* takes

*

*

takes_crsoff

has_stud

Maciaszek Solution

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 7

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Specifying Generalizations

ß Looking for common features among classes
ß Move common features up a class hierarchy and

specialized features down

ß Apart from inheritance, generalization has
two objectives
ß substitutability and polymorphism

ß Litmus test: “can be” and “is-a-kind-of” required to explain
relationship
ß Are there any generalizations that we can make in the University

example?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Behavior Specification

ßBehavior of a system, as it appears to an outside user,
is specified in use cases
ßDuring analysis, use cases specify “what” a system
needs to do (not “how”)

ßUse cases require computations to be performed

ßComputations are divided into activities
ßcan be modeled using activity diagrams

ßActivities are carried out by interacting objects
ßinteractions are modeled using sequence diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Behavior Specification

ßProvide an operational view of the system

ßMain Tasks
ßDefine use cases and determine which classes are used
to execute a use case

ßIdentify operations on classes

ßState specifications in analysis typically reveal entity
classes

ßBehavior specifications will often reveal controller
classes and boundary classes (user interface classes)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Maciaszek’s Take: Use Cases

ßA use case represents
ßa complete piece of functionality
ß including main and alternate flows of logic

ßa piece of externally visible functionality

ßan orthogonal piece of functionality
ßuse cases can share objects but execute independently
from each other

ßa piece of functionality initiated by an actor

ßa piece of functionality that delivers value to an
actor

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 8

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Finding Use Cases

ßUse cases are discovered via analysis of
ßrequirements in the requirements documents

ßactors and their purpose

ßJacobson suggests asking the following questions
concerning actors to help identify use cases
ßWhat are the main tasks performed by the actor

ßWill an actor access or modify information in the system

ßWill an actor inform the system about changes in other
systems?

ßShould an actor be informed about unexpected changes in
the system?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Use Case Relationships

ßAssociation
ßa communication path

ßGeneralization
ßa specialized use case can change any aspect of the base
use case

ß Include
ßdirectly includes steps of another use case

ßExtend
ßcustomize an extension point

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example 4.12

Provide Enrolment Instructions

Student Office

Provide Examination Results

Student

Pre-enrolment activities
ßMail-outs of

ßLast semester's examination grades to
students
ßEnrolment instructions

<<extend>>

Data Entry
Person

Enter Program of Study

Registrar Office

Validate Program of Study

ßDuring enrolment
ßAccept students'
proposed programs of
study
ßValidate

<<include>>

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Better Example

Enroll Student

Student

<<extend>>

<<include>>

Enroll in CourseOffering

Enroll Family MemberEnroll International Student
International Student

invokes, not dataflow

logic included

logic may be included
generalization

generalization

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 9

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling Activities

ßActivities capture the flow of logic within a system
ßboth sequential and parallel control can be modeled

ßSince activities do not reference classes, they can be
created without the need for a class diagram

ßMost often used to graphically represent the steps of
a use case
ßcan show main flow and extensions at once

ßActivities are best discovered by analyzing the action
steps of use cases, with verbs indicating candidate
activities

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

University enrollment example

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

Fill out
forms

Enroll in
University

[correct]

[incorrect]

Enrolling in
University for
first time

Obtain help

on forrms

Attend
University
Overview

Enroll in
Seminar

Pay Tuition

& Fees

[trivial problem]

[otherwise]

[help available]

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Object Modeling in Practice

• Naming is important!

• Encourage Brainstorming!

Foo

Balance

CustomerId

Deposit()
Withdraw()
GetBalance()

MaryChecking

Balance

CustomerId

Deposit()
Withdraw()
GetBalance()

Account

Balance

CustomerId

Deposit()
Withdraw()
GetBalance()

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Object Modeling in Practice

Account

Balance
CustomerId

Deposit()
Withdraw()
GetBalance()

Customer

Name
CustomerId

Bank

Name

• Find New Objects
• Iterate on Names, Attributes and Methods
• Find Associations between Objects
• Label the associations
• Determine the multiplicity of the associations

Has
*

AccountId

*

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 10

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Object Modeling in Practice:

Customer

Name

CustomerId

Account

Balance
AccountId

Deposit()
Withdraw()
GetBalance()

Bank

Name Has
**

Savings
Account

Withdraw()

Checking
Account

Withdraw()

Mortgage
Account

Withdraw()

• Categorize!

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Using packages

ßAvoid Ravioli Models -- don’t put too many classes into
the same package:
ßRule: 7+-2 (or even 5+-2)

Package Schedule

CourseOffering Course

Time

Location

Enrollment

1 … *

1 … *

0 … *

1

1

1

held at

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Using packages

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Using packages with Use Cases

Scott W. Ambler

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 11

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Using packages with Use Cases

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Heuristics

ßExplicitly schedule meetings for object identification
ßTry to differentiate between entity, boundary and control
objects
ßFind associations and their multiplicity
ßUnusual multiplicities usually lead to new objects or
categories

ßIdentify Aggregation
ßIdentify Inheritance: Look for a Taxonomy, Categorize
ßAllow time for brainstorming , Iterate, iterate

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling Interactions

ßOne level of abstraction below activities

ß Interaction models require at least one iteration of
state specification to be performed

ßSince we need to have classes to which each object belongs

ß Interaction diagrams do not model object state
changes; however they may show the actions that
lead to a state change

ß Interactions can help determine operations; any
message to an object in a interaction must be
handled by an operation (actually a method)
ßRecall that a method implements an operation; indeed there
may be many methods available for a single operation

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Dynamic Modeling with UML

ßDiagrams for dynamic modeling
ßInteraction diagrams describe the dynamic behavior between
objects
ßStatecharts describe the dynamic behavior of a single object

ß Interaction diagrams
ßSequence Diagram:
ßDynamic behavior of a set of objects arranged in time sequence.
ßGood for real-time specifications and complex scenarios

ßCollaboration Diagram :
ßShows the relationship among objects. Does not show time

ßState Charts:
ßA state machine that describes the response of an object of a
given class to the receipt of outside stimuli (Events).

ßActivity Diagram:
ßSpecial type of statechart where all states are action states

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 12

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Start with Flow of Events

ßGet events from Use Case

ßWhat is an Event?
ßsomething that happens at a point in time

ßRelation of events to each other:
ßcausally related: Before, after,

ßcausally unrelated: concurrent

ßAn event sends information from one object to another

ßEvents can be grouped in event classes with a
hierarchical structure.

ßEvent is often used in two ways:
ßInstance of an event class

ßAttribute of an event class

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Specifying message sequences

ßUseful to distinguish between
ßsignals
ßasynchronous inter-object communication

ßoften shown with “half-arrow notation”

ßCalls
ßsynchronous inter-object communication control returns to
caller (usually)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sequence Diagram

ßFrom the flow of events in the use case or scenario
proceed to the sequence diagram

ßA sequence diagram is a graphical description of
objects participating in a use case or scenario using a
DAG notation

ßRelation to object identification:
ßObjects/classes have already been identified during
object modeling

ßObjects are identified as a result of dynamic modeling

ßHeuristic:
ßAn event always has a sender and a receiver. Find them
for each event => These are the objects participating in
the use case

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Sequence Diagram

Student
<actor>

EnrollinSeminar
<controller>

SecurityLogIn
<UI>

Seminar

theStudent
:Student

provides name

<<create>>
wish to enroll

provides student id

<<destroy>>

isValid(name, number)

yes

getAvailableSeminar():vectorX

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 13

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Defining Operations

ßA public interface of a class consists of
operations that offer services to entities
external to the class
ßoperations are best discovered from sequence
diagrams, since every message must be
serviced by an operation

ßOther operations can be found using the
CRUD (create, read, update, delete)
paradigm; classes need to provide these
services regardless of their domain specific
functionality

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example 4.17 – Maciaszek

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example 4.17 – Maciaszek

 Course
<<PK>>course_code:string
<<CK>>course_name:string
credit_points: integer
crs_off: set<CourseOffering>
areYouOpen(out c_check)
addStudent(stdOID)

 CourseOffering
year:Date
semester:integer
enrollment_quota:integer
std: list<Student>
crs: Course
areYouOpen(out c_check)
addStudent(stdOID)

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Heuristics for Sequence Diagrams

ß Layout:
ß 1st column: Should correspond to the actor who initiated the use

case
ß 2nd column: Should be a boundary object
ß 3rd column: Should be the control object that manages the rest of

the use case
ß Creation:

ß Control objects are created at the initiation of a use case
ß Boundary objects are created by control objects

ß Access:
ß Entity objects are accessed by control and boundary objects,
ß Entity objects should never call boundary or control objects: This

makes it easier to share entity objects across use cases and
makes entity objects resilient against technology-induced changes
in boundary objects.

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 14

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Is this a good sequence diagram?

actor

boundary
agent? control

object?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Perhaps better ….

actor

boundary
agent?

control
object?

Student
<actor>

EnrollinSeminar
<controller>

SecurityLogIn
<UI>

Seminar

theStudent
:Student

provides name

<<create>>
wish to enroll

provides student id

<<destroy>>

isValid(name, number)

yes

getAvailableSeminar():vectorX

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Perhaps even better ….

actor

boundary
agent?

control
object?

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Fix after this!

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 15

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

UML Statechart Diagram Notation

State2State1 Event1(attr) [condition]/action

entry /action
exit/action

ßNotation based on work by Harel

ßAdded are a few object-oriented modifications

ßA UML statechart diagram can be mapped into a finite state
machine

do/Activity

Also: internal transition
and deferred events

Event trigger
With parameters

Guard
condition

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Statechart Diagrams

ßGraph whose nodes are states and whose directed arcs
are transitions labeled by event names.

ßDistinguish between two types of operations:
ßActivity: Operation that takes time to complete
ß associated with states

ßAction: Instantaneous operation
ßassociated with events

ßassociated with states (reduces drawing complexity): Entry,
Exit, Internal Action

ßA statechart diagram relates events and states for one
class
ßAn object model with a set of objects has a set of state
diagrams

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

State

ßAn abstraction of the attribute of a class
ßState is the aggregation of several attributes a class

ß Basically an equivalence class of all those attribute
values and links that do no need to be distinguished as
far as the control structure of the system is concerned
ßExample: State of a bank
ßA bank is either solvent or insolvent

ßState has duration

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example of a StateChart Diagram

Idle
Collect Money

coins_in(amount) / add to balance

do: test item and compute change

do: make changedo: dispense item

[change=0] [change>0]

[item empty] [select(item)] [change<0]

coins_in(amount) / set balance

cancel / refund coins

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 16

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Nested State Diagram

ßActivities in states are composite items denoting other
lower-level state diagrams

ßA lower-level state diagram corresponds to a sequency
of lower-level states and events that are invisible in the
higher-level diagram.

ßSets of substates in a nested state diagram denoting a
superstate are enclosed by a large rounded box, also
called contour.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example of a Nested Statechart
Diagram

Superstate

Idle
Collect Money

coins_in(amount) / add to balance

do: test item and compute change

do: make changedo: dispense item

[change=0] [change>0]

[item empty] [select(item)] [change<0]

coins_in(amount) / set balance

cancel / refund coins

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Expanding activity “do:dispense
item”

do: move arm
to row

do: move arm
to column

do: push item
off shelf

Arm
ready

‘Dispense item’ as
an atomic activity:

‘Dispense item’ as a composite activity:

do: dispense item

[change=0]

Arm
ready

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Superstates

ßGoal:

ßAvoid spaghetti models

ßReduce the number of lines in a state diagram
ßTransitions from other states to the superstate enter the
first substate of the superstate.

ßTransitions to other states from a superstate are
inherited by all the substates (state inheritance)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 17

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Modeling Concurrency

Two types of concurrency

1. System concurrency
ß State of overall system as the aggregation of state
diagrams, one for each object. Each state diagram is
executing concurrently with the others.

2. Object concurrency
ßAn object can be partitioned into subsets of states
(attributes and links) such that each of them has its own
subdiagram.

ßThe state of the object consists of a set of states: one
state from each subdiagram.

ßState diagrams are divided into subdiagrams by dotted
lines.

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Example of Concurrency within
an Object

Emitting

Setting Ready
Up to reset

Do: Dispense
 Cash

Do: Eject
 Card

 Ready

 Cash taken

 Card taken

SynchronizationSplitting control

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

State Chart Diagram vs Sequence
Diagram

ßState chart diagrams help to identify:
ßChanges to objects over time

ßSequence diagrams help to identify
ßThe temporal relationship of between objects
over time

ßSequence of operations as a response to one
ore more events

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Practical Tips for Dynamic
Modeling

ßConstruct dynamic models only for classes with significant
dynamic behavior
ßAvoid “analysis paralysis”

ßConsider only relevant attributes
ßUse abstraction if necessary

ßLook at the granularity of the application when deciding on
actions and activities

ßReduce notational clutter
ßTry to put actions into state boxes (look for identical actions
on events leading to the same state)

CMPSCI520/620

”Rick Adrion 2003 (except where noted) 18

UUNIVERSITYNIVERSITY OFOF M MASSACHUSETTS ASSACHUSETTS AAMHERSTMHERST •• D DEPARTMENTEPARTMENT OF OF CCOMPUTER OMPUTER SSCIENCE CIENCE •• CCMPMPSSCI 520/620 CI 520/620 FFALL 2003ALL 2003

Summary: Requirements Analysis
ß 1. What are the transformations?

ß Create scenarios and use case diagrams
ß Talk to client, observe, get historical records, do thought experiments

ß 2. What is the structure of the system?
ß Create class diagrams

ß Identify objects. What are the associations between them? What is their
multiplicity?

ß What are the attributes of the objects?
ß What operations are defined on the objects?

ß 3. What is its control structure?
ß Create sequence diagrams

ß Identify senders and receivers
ß Show sequence of events exchanged between objects. Identify event

dependencies and event concurrency.

ß Create state diagrams
ß Only for the dynamically interesting objects.

Dynamic Modeling

Functional Modeling

Object Modeling

