CMPSCI520/620

COMPUTER
SCIENCE

13 - Requirements Specifications

Rick Adrion

UNIVERSITY:OF MASSACHUSETTS AMRERST: '

CONPUTER Audience

=Users, Purchasers
=Most interested in system requirements

=Not generally interested in detailed software
requirements

=Systems Analysts, Requirements Analysts
=\Write various specifications that interrelate
=Developers, Programmers
=Have to implement the requirements
=Testers
=Determine that the requirements have been met
=Project Managers

=Measure and control the analysis and development
processes

UNIVERSITY, OF MASSACHUSETTSIAMHERST 345

©Rick Adrion 2003 (except where noted)

““ﬂ-ﬂ'ﬁﬁ'ﬁ Software Requirements Specification

=How do we communicate the Requirements to others?
=|t is common practice to capture them in an SRS
=But an SRS doesn’t need to be a single paper document
=Purpose
=Communicates an understanding of the requirements

=explains both the application domain and the system to be
developed

= Contractual
=May be legally binding!
=Expresses an agreement and a commitment
=Baseline for evaluating subsequent products
=supports system testing, verification and validation activities

=should contain enough information to verify whether the
delivered system meets requirements

=Baseline for change control
=requirements change, software evolves

UNIVERSITY: OF-MASSACHUSETTS AMRERST: '

COMPUTER Appropriate Specification

=Consider two different projects:
=Tiny project, 1 programmer, 2 months work

=Programmer talks to customer, then writes up a 5-page
memo

=Large project, 50 programmers, 2 years work

=Team of analysts model the requirements, then document
them in a 500-page SRS

Project A Project B

Purpose of spec? | Crystalizes programmer’s Build-to document; must
understanding; feedback to | contain enough detail for all
customer the programmers

Management Spec is irrelevant; have Will use the spec to estimate

view? already allocated resource needs and plan the
resources development

Readers? Primary: Spec author; Primary: programmers,
Secondary: Customer testers, managers;

Secondary: customers

UNIVERSITY-OF MASSACHUSETTS-AMHERST: 1




CMPSCI520/620

CONPUTER What about the SIS RFP/RFB?

=*RFP = ‘SRS’ written by the procurer (or by an
independent RE contractor)

=general enough to yield a good selection of bids
sspecific enough to exclude unreasonable bids
=Bidders response to the RFP

=specific enough to demonstrate feasibility and technical
competence

=general enough to avoid over-commitment
=Selected developer — more detailed ‘SRS’

=developer’s understanding of the customers needs

=basis for evaluation of contractual performance

=|EEE Standard recommends SRS jointly developed by
procurer and developer

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE

CONPUTER Hints & Guidelines

= Validity (or “correctness”) = Ambiquity
= expresses only the real needs of = every statement can be read in
the stakeholders (customers, exactly one way
users,...) = defines confusing terms
= Completeness * eg.in aglossary
= specifies all the things the system = Verifiablility
must do and all the things it must =includes a process exists to test
not do! satisfaction of each requirement
= Conceptual Completeness = every requirement is specified
= e.g. responses to all classes of input behaviorally

= Structural Completeness
= e.g. no “to be determined” functions

= Consistency

= Understandabilility (Clarity)
= e.g. by non-computer specialists
= technical notations should only be

= not self-contradictory used as backup (e.g. in an
= satisfiable appendix)
= all terms used consistently Ll Modifiability

= inconsistency can be hard to
detect especially in timing aspects
and business logic

= easy to change and modify
= good structure and cross-
referencing

= Necessary = must be kept up to date!
= doesn’t contain anything that isn’t

‘required see IEEE-STD-830-1993

UNIVERSITY; OF MASSACHUSETTS-AMHERST =

©Rick Adrion 2003 (except where noted)

COMPUTER When to issue RFP/RFB?

=Early (conceptual stage)
=Can only evaluate bids on apparent competence &
ability

=Late (detailed specification stage)
= ots of work for the procurer

sthe appropriate RE expertise may not be available
in-house!

UNIVERSITY. OF MASSACHUSETTS-AMHERST: 4D

COMPUTER There is no Perfect SRS

condense

expand

expand

formalize

sistent |

reduce

resolve
not

standable

© Steve Easterbrook 2000-2002

UNIVERSITY. OF MASSACHUSETTS-AMHERST




CMPSCI520/620

COMPUTER Typical mistakes

= Noise
= text that carries no relevant

information to any feature of the
problem.

= Silence
= a feature that is not covered by
any text.
= Over-specification
= text that describes a feature of the
solution, rather than the problem.
= Contradiction
= text that defines a single feature in
a number of incompatible ways.
= Ambiguity
= text that can be interpreted in at
least two different ways.
= Forward reference
= text that refers to a terms or
features yet to be defined.
= Wishful thinking
= text that defines a feature that
cannot possibly be validated.

UNIVERSITY OF MASSACHUSETTS AMRERST++:DER/

= Jigsaw puzzles

= distributing key information across
a document and then cross-
referencing

= Duckspeak requirements

= requirements that are only there to
conform to standards

= Unnecessary invention of terminology

= e.g. ‘user input presentation
function’

= e.g. ‘airplane reservation data
validation function’

= Inconsistent terminology

= inventing and then changing
terminology

= Putting the onus on the development
staff

= i.e. making the reader work hard to
decipher the intent
= Writing for the hostile reader

= fewer of these than friendly
readers

from Steve Easterbrook © 2000-2002; he Adapted from Kovitz, 1999

COMPUTER

seienee SRS using a UML “package” construct

=may include a single document, multiple documents, use
case specifications and even the graphical use case model
which describes relationships amongst the use cases.

=controls the evolution of the system throughout the
development and release phases of the project

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DE+__

Adifacts Requirement "Types"
User Nesds
Vision Festures
SRE ‘ l
iil = Soft were
Stakeholder = Requirements
e quesis e taee supplsent ey
Todel pesification
b 3 Design /et 1 0o
E Quirem ents
Probasco and Leffingwell \L!
3 End-User Documentation
Rational Software Desgn Madzl Test Model Materizls and

=
Trairing Materizls

©Rick Adrion 2003 (except where noted)

CONPUTER Use Appropriate Notations

=Natural Language?
=“The system shall report to the operator all faults that
originate in critical functions or that occur during
execution of a critical sequence and for which there is no
fault recovery response.”
=(adapted from a real NASA spec for the international space
station)

= A decision table?

Originate in critical functions FIT|IF|T|F|TIF[T
Occur during critical segeunce FIF|IT|T|F|F|T|T
No fault recovery response FIF|IF|F|T|T|T|T
Report to operator?

=Use cases?

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

““ﬂ;ﬂ'ﬁﬁ% SRS using a UML “package” construct

=the following use the SRS Package:

=The system analyst creates and maintains the Vision, the use-
case model overview and supplementary specifications, which
serve as input to the SRS and are the communication medium
between the system analyst, the customer, and other
developers.

=The use-case specifier creates and maintains the individual
use cases of the use-case model and other components of the
SRS package,

=Designers use the SRS Package as a reference when
defining responsibilities, operations, and attributes on classes,
and when adjusting classes to the implementation
environment.

=Implementers refer to the SRS Package for input when
implementing classes.

=The project manager refers to the SRS Package for input
when planning iterations.

=The testers use the SRS Package to verify system
UNIVERSITY OF "ia%i0.0

SAMHERST DE_



CMPSCI520/620

COMPUTER
SCIENCE

SRS format and style

=Modifiability
swell-structured, indexed, cross-referenced, etc.

sredundancy should be avoided or must be clearly
marked as such

=*An SRS is not modifiable if it is not traceable...
=Traceability
=*Need a way of referring to each requirement
=Backwards - the specification must be “traced”
=each requirement traces back to a source or authority
=e.g. a requirement in the system spec; a stakeholder; etc
=Forward - the specification must be “traceable”

=each requirement will eventually trace forwards to parts of
the design that satisfy it

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE;R‘?-“

COMPUTER
SCIENCE

IEEE Standard for S2<

Identifies the product

& application domain

Describes contents and
structure of the remainder

Introduction of the SRS

Describes all external interfaces:
system, user, hardware, software

. Definitions, acronym: ;also operations and site adaptation,
o Referenct and hardware constraints
. Overview

Overrall Description
Product perspective

Summary of major functions,
e.gd. use cases

. Product functions

. User characteristics
. Constraints
Assumptions and Dependencies

Specific Requirermagnts

Anything that will limit the
developer’s options (e.g. regs,
reliability, criticality, hardware
limitations, parallelism, etc)

Appendices

All the requirements go in here
(i.e.this is the body of the document)
IEEE STD provides 8 different

Index

UNIVERSITY; OF MASSACHUSETTS-AMHERST - &

©Rick Adrion 2003 (except where noted)

COMPUTER SRS format and style

=Traceability links are two-way
=other documents will be traced into the SRS
=every requirement must have a unique label.

=a given term, acronym, or abbreviation means the same
thing in all documents

=a given item or concept is referred to by the same name
or description in the documents

=|n short:

=demonstration of completeness, necessity and
consistency

sclear allocation/flowdown path (down through the
document hierarchy)

=a clear derivation path (up through the document
hierarchy)

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

COMPUTER |EEE std offers different templates

= External stimulus or external situation

=e.g., for an aircraft landing system, each different type of landing
situation: wind gusts, no fuel, short runway, etc

= System feature

=e.g., for a telephone system: call forwarding, call blocking,
conference call, etc

= System response
=e.g., for a payroll system: generate pay-cheques, report costs, print
tax info;
= External object
=e.g. for a library information system, organize by book type
= User type
=e.g. for a project support system: manager, technical staff,
administrator, etc.

= Mode
=e.g. for word processor: page layout mode, outline mode, text editing
mode, etc
= Object
=e.g., in a patient monitorng system, objects include patients, sensors,
nurses, rooms, physicians, medicines, etc.

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'



CMPSCI520/620

COMPUTER
SCIENCE

Template of SRS 3 organized by object

3. Specific requirements

3.1 External interface requirements
3.1.1 User interfaces

3.1.2 Hardware interfaces

3.1.3 Software interfaces

3.1.4 Communications interfaces

3.2 Classes/Objects

3.2.1 Class/Object 1

3.2.1.1 Attributes (direct or inherited)
3.2.1.1.1 Attribute 1

3.2.1.1.n Attribute n
3.2.1.2 Functions (services, methods, direct or inherited)
3.2.1.2.1 Functional requirement 1.1

3.2.1.2.m Functional requirement 1.m
3.2.1.3 Messages (communications received or sent)
3.2.2 Class/Object 2

3.2.p Class/Object p

3.3 Performance requirements
3.4 Design constraints

3.5 Software system attributes
3.6 Other requirements

UNIVERSITY:OF MASSACHUSETTS AMRERS:

COMPUTER
SCIENCE

Requirements Negotiation & Validation

=Negotiation
=Based on draft of document
=Validation

=Based on (almost) complete document

=|ssues
=Scope
=Dependencies
=Risks
=Priorities

UNIVERSITY, OF MASSACHUSETTS:AMHERS

©Rick Adrion 2003 (except where noted)

COMPUTER Maciaszek vs. IEEE

Requirements Document
Table of Contents

1. Project Preliminaries 1.
1.1  Purpose and Scope of the Product
1.2 Business Context
1.3 Stakeholders
1.4 Ideas for Solutions
1.5 Document Overview
2. System Services
2.1 The Scope of the System
2.2  Function Requirements 2
2.3 Data Requirements .
3. System Constraints
3.1 Interface Requirements
3.2  Performance Requirements
3.3 Seccurity Requirements
3.4 Operational Requirements
3.5 Political and Legal Requirements
3.6 Other Constraints
4. Project Matters 3.
4.1 Open Issues

Introduction

. Purpose

. Scope

. Definitions, acronyms, abbreviations
. Reference documents

. Overview

Overrall Description

. Product perspective

. Product functions

. User characteristics

. Constraints
. Assumptions and Dependencies

Specific Requirements

42 Preliminary Schedule Appendices

4.3 Preliminary Budget Ind
Appendices naex

Glossary

Business Documents and Forms

References g —

UNIVERSITY: OF-MASSACHUSETTS AMHER:

CONHTE! System scope model

Campaign
Database
Campaign
Details
Telemarketing
Supporter
Details
Supporter
Database

UNIVERSITY- OF MASSACHUSETTS-AMHER!

Conversation

v

Supporter

Ticket Placement

Order
Processing

Order




CMPSCI520/620

COMPUTER Business use case model

Schedule Phone
Conversation

PA

Telemarketer

CRUD* Campaign
and Supporter Details

CRUD* - create, read,

update, delete Enter Conversation
Outcome

UNIVERSITY:OF MASSACHUSETTS AMHERS?’

A~

Supporter

CONPUTE Requirements dependency matrix

Requirem ent R1 Rz R3 R4
K1 X X k4 X
Rz Conflict X k4 X
R3 X X
R4 Owedap Crretlap X

CONPUTER Requirements risks

=Technical
=Performance
=Database integrity
=Development process
=Political

=l egal

=Volatility

UNIVERSITY, OF MASSACHUSETTS AMHERSi’

©Rick Adrion 2003 (except where noted)

UNIVERSITY: OFMASSACHUSETTS, AMHERS%["

COMPUTER Credits

=Many of the following are derived from:
=sKenneth M. Anderson © University of Colorado, 2003

="Maciaszek Requirements Analysis and System
Design © Addison Wesley, 2000

UNIVERSITY-OF MASSACHUSETTS AMHERS'}:’




CMPSCI520/620

COMPUTER Requirements Specification

=Three types of models
=State Models

=Use Cases (some actors become classes)
=Class Diagrams
=Behavior Models
=Activity Diagram
=Interaction Diagrams
=State Change Models
=State Chart Diagrams

= Models are developed iteratively

during requirements elicitation
=each representing a view into the system

perspectives

UNIVERSITY.-OF MASSACHUSETTS AMRERST+:- DEF

=accounting for use cases and constraints developed

staken together, the models allow developers and
customers to view the system from multiple

COMPUTER State Specification

=Define entity classes
=Persistent classes in the application domain
=Process is highly dependent on the analyst’s
= knowledge of class modeling
= understanding of the application domain

willingness to revise the model iteratively

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DE;_P

©Rick Adrion 2003 (except where noted)

= experience with similar and successful designs
= ability to think forward and predict consequences

CONPUTER State specifications

=The state of an object is determined by the values of its
attributes and associations
=A BankAccount may be “overdrawn” when its balance is
negative
=Since object states are determined from data structures,
the models of the data structures (e.g. classes) are
called state specifications
= State specifications provide a static view of the system
=The attributes and associations of classes do not
change dynamically

=The main task is to specify the classes of an application
domain

=only attributes and associations; operations are derived
from the behavior specification

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

CONPUTER Discovering Classes

= Four Approaches
= Noun Phrase Approach
= Common Class Patterns
= Use Case Driven
= CRC (Class-Responsibility-Collaboration)

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'



CMPSCI520/620

COMPUTER Noun Phrase Approach

= Each noun is a candidate class
= Divide list of candidate classes into
= Relevant Classes

= Irrelevant Classes
= Qutside of application domain
= Fuzzy Classes

additional analysis

generating irrelevant classes

UNIVERSITY. OF MASSACHUSETTS AMRERST: - -DEBAR

= Examine the requirements and underline each noun

= Part of the application domain; occur frequently in reqs

= Unable to be declared relevant with confidence; require

= Experience will eventually enable designers to avoid

COMPUTER

=More requirements:

the degree/major in which enrolled

<eienee University Enrolment - Maciaszek

=A course can be part of any number of majors
=Each major specifies minimum total credits required

=Students may combine course offerings into programs
of study suited to their individual needs and leading to

Relevant classes Fuzzy classes
Course CompulsoryCourse
Major ElectiveCourse
Student Sudyprogram
CourseOffering

UNIVERSITY; OF MASSACHUSETTS AMHERST ;D5 PARTMED

©Rick Adrion 2003 (except where noted)

COMPUTER Find Classes from requirements

=Consider Maciaszek’s University Enroliment

system:
=each university
(compulsory(courses and a number of

courses.

has a number of

Course

CompulsoryCourse

Major

ElectiveCourse

UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I:‘(

COMPUTER Noun Phrase Approach

=may help in identifying domain objects
=not good at identifying objects that live in the
application domain
=Thus, it can help at the beginning of analysis, but you
will not return to it as you move into design
=Finding good objects during design means identifying
abstractions that are part of your application domain and
its execution machinery
=Objects that are part of your application domain will have
a tenuous connection, at best, to real-world things

=e.g. what’s the correspondence of a scrollbar to the real
world

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE&_:'




CMPSCI520/620

FMHEs Common Class Patterns FMHEs Common Class Patterns
= Derive classes from the generic classification = Rumbaugh proposes a different scheme
theory of objects = Physical Class (Airplane)
= Concept class = Business Class (Reservation)
=a notion shared by a large community = Logical Class (FlightTimeTable)
= Events class = Application Class (ReservationTransaction)

=captures an event that demarks intervals within a system
= Organization class

=a collection or group within the domain
=People class

=roles people can play
=Places class

=a physical location relevant to the
system

= Computer Class (Index)
= Behavioral Class (ReservationCancellation)

= These taxonomies are meant to help a designer think of
classes, however it is difficult to be systematic

= Probably only useful during early analysis

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER:?; UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I:‘(

COMPUTER Use Case Diagram CONPUTER Sequence Diagram

=Use case diagrams are created to visualize the = A sequence diagram displays object interactions

relationships between actors and use cases o arranged in a time sequence

- Student registration registration math 101 math 101
: — form manager section 1
— section 1

1: fill in infe

Request Course Roster Prof. il in info

rofessor
Student 2: submit
© 3| add course(mary, math 01)

Maintain Schedule 4: are you open?
% —) © 5: are you open?|

. N 6: add (mary.
Maintain Curriculum

7: add (mal
Registrar (mary)

Billing System

UNIVERSITY.OF MASSACRUSETTS ANHERST KR UNIVERSITY. OF MASSACHUSETTS ANHERST /- DEPARTHE

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

COMPUTER Classes

registration. math 101 math 101
manager section 1

3| add course(mary, frath 01)

P \,\
5: arg you ofler ScheduleAlgorithm)|

6: add (joe),

7: add (ma

1 scourse

PRegistrationForm| »Regis\l(ationManager

»Student

Professor

»CourseOffering

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE

COMPUTER CRC Cards

= CRC = Candidates, Responsibilities, Collaborators

= Meant primarily as a brainstorming tool for analysis and
design

= |In place of use diagrams = use index cards

® |n place of attributes and methods = record
responsibilities

=See Object Design by Wirfs-Brock and McKean, ©
2003

UNIVERSITY; OF MASSACHUSETTS-AMHERST =

©Rick Adrion 2003 (except where noted)

COMPUTER Maciaszek’s Guidelines

= Each class must have a statement of purpose in the
system

= Each class is a template for a set of objects
= avoid singleton classes
= Each class must house a set of attributes
= Each class should be distinguished from an attribute
=e.g. Color may be an attribute of a Car class, but may be
needed as a full class in a paint program
= Each class houses a set of operations that represents
the interface of the class
=operations can be derived from the statement of
purpose

UNIVERSITY. OF MASSACHUSETTS-AMHERST: 4D

UNIVERSITY. OF MASSACHUSETTS-AMHERST

COMPUTER
<eieice INdex Cards
= On the unlined side of the ~ =On the lined side of the
index card index card
=write an informal =identify responsibilities and
description of each collaborators
candidate class’ purpose
and role
<«candidate
Document Document
Purpose: A Document acts Knows contents TextFlow
as a container for graphics B S It
and text = 7
ROIE: Container nserts and removes
Pattern: Composite text graphics, other
elements
responsibilities collaborators

10



CMPSCI520/620

COMPUTER Not Just Index Cards COMPUTER Why index cards?
= Post-It Notes can be used for even less “structure”; = Forces you to be concise and clear and focus on major
*might be easier when brainstorming responsibilities since you must fit everything onto one
index card

Document = Inherent Advantages

Purpose: A document = cheap, portable, readily available, and familiar

Represents a container = Affords Spatial Semantics...

that holds text and/or = Close collaborators can be overlapped

graphics that the user = Vertical dimension can be assigned meanings

can enter and visually = Abstract classes and specializations can form piles

arrange on pages ...which provides benefits
= Beck and Cunningham report that they have seen
designers talk about a new card by pointing at where it
will be placed

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE;R‘?-“

CONPUTER University Enrolment - Maciaszek CONPUTER University Enrolment - Maciaszek

= A student's choice of courses may be restricted by timetable clashes and by .
limitations on the number of students who can be enrolled in the current =More requirements:
course offering.

= A student's proposed program of study is entered on on-line enrolment
system SPIRE

= The system checks the program's consistency and reports any problems

= The problems need to be resolved with the help of an academic adviser

= The final program of study is subject to academic approval by the
Department head (or delegate) and it is then forwarded to the Registrar
= The student's academic record to be available on demand

= The record to include information about the student’s grades in each course
that the student enrolled in (and has not withdrawn without penalty)

= Each course has one professor in charge of a course, but additional Relevant classes Fuzzy classes
professors (inc |n§tructors) may aIsz? teach in it Course CompulsoryCourse
= There may be a different professor in charge of a course each semester - -
= There may be professor for each course each semester Major ElectiveCourse
Student Studyprogram
CourseOffering

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'

UNIVERSITY; OF MASSACHUSETTS-AMHERST - &

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

CONPUTER Specifying Attributes

= Attributes are specified in parallel with
classes
initial set of attributes will be “obvious”
important to initially select attributes that help to
determine the states of the class
additional attributes can be added in subsequent
iterations

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER}“

COMPUTER Specifying Associations

= Associations connect objects in the system
= they facilitate collaboration between objects
= Specifying associations involves
= naming them
= naming the roles
= especially useful in self associations

= note, a role name becomes an attribute in the class on
the opposite end of the association

= determining multiplicity
= What associations might we put into the
University example?

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DEE:I‘\"

©Rick Adrion 2003 (except where noted)

seience Maciaszek Solution
Student Course
<<PK>> student_id : String <<PK>> course_code : String
student_name : String <<CK>> course_name : String|
current_fees : Money credit_points : Integer
AcademicRecord StudyProgram CourseOffering
course_code : String| | year : Date year : Date
year : Date semester : Integer semester : Integer
semester : Integer enrolment_quota : Integer
grade : String

<<PK>> major_iname : String ProfessorinCharge
. iy 1
total_credit_points : Integer |

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

““ﬂ;ﬂ'ﬁﬁ% Specifying Aggregation/Composition

= “Whole-part” relationships between composite and
component classes

= UML models aggregation as a constrained form of
association

= Maciaszek suggests additional power
= ExclusiveOwns and Owns
= Has and Member

= Litmus test: “has” or “is-part-of” is needed to
explain relationship

UNIVERSITY. OF MASSACHUSETTS-AMHERST .+ DE il

12



CMPSCI520/620

POMPUTER . . a Course aggregates its
various CourseOfferings
seience Maciaszek Solution e g
Cour: /
Student <<PK>> course_¢ode  String
<<PK>> student_id : String <<CK>> course_pam¢ : String|
student_name : String credit_points : Integ
current_fees : Money T/
has_stud
* takes V
o takes_crsoff 0.%
AcadenficRecord . CourseOffering
course_gode : Strin year : Date
ear : Dhte| g semester : Integer
Pk . enrolment_quota : Integel
semester : Ihteger
grade / Strin
/ \ 0.*

0.1

Student and AcademicRecord

participate in a composition ProfessorinCharge
relationship

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE;R‘?-“

COMPUTER Behavior Specifications (1)

=Behavior of a system, as it appears to an outside user,
is specified in use cases

=During analysis, use cases specify “what” a system
needs to
do (not “how”)

=Use cases require computations to be performed
=Computations are divided into activities

=can be modeled using activity diagrams
= Activities are carried out by interacting objects
minteractions are modeled using sequence diagrams

UNIVERSITY; OF MASSACHUSETTS-AMHERST - -

©Rick Adrion 2003 (except where noted)

COMPUTER Specifying Generalizations

= Looking for common features among classes

= Move common features up a class hierarchy and
specialized features down

= Apart from inheritance, generalization has
two objectives

= substitutability and polymorphism
= Litmus test: “can be” and “is-a-kind-of” required to
explain relationship
= Are there any generalizations that we can make in the
University example?

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@-‘(

CONPUTER Behavior Specifications (I1)

=Provide an operational view of the system
=Main Tasks

=Define use cases and determine which classes are used
to execute a use case

=|dentify operations on classes
= State specifications in analysis typically reveal entity
classes
=Behavior specifications will often reveal controller
classes and boundary classes (user interface classes)

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘P‘

13



CMPSCI520/620

COMPUTER Maciaszek’s Take: Use Cases

=A use case represents
=a complete piece of functionality
=including main and alternate flows of logic
=a piece of externally visible functionality
=an orthogonal piece of functionality

=use cases can share objects but execute independently
from each other

=a piece of functionality initiated by an actor

=a piece of functionality that delivers value to an
actor

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE;R‘?-“

COMPUTER Use Case Relationships

= Association
=a communication path
= Generalization

=a specialized use case can change any aspect of the base
use case

=Include
=directly includes steps of another use case
= Extend

=customize an extension point
=See (poor) example on page 137 for the University
Enroliment case study
in general, the material from Lecture 9 and 10 supercedes
any use case material provided by Maciaszek
February 20, 2003 © University of Colorado, 2003 9

UNIVERSITY; OF MASSACHUSETTS-AMHERST - -

©Rick Adrion 2003 (except where noted)

COMPUTER Finding Use Cases

=Use cases are discovered via analysis of
=requirements in the requirements documents
=actors and their purpose
=Jacobson suggests asking the following questions
concerning actors to help identify use cases
=What are the main tasks performed by the actor
=Will an actor access or modify information in the system
=Will an actor inform the system about changes in other
systems?
=Should an actor be informed about unexpected changes in
the system?

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@-‘(

CONPUTER Example 4.12

Pre-enrolment activities
=Mail-outs of

=Last semester's examination grades to
students
=Enrolment instructions

Provide Examination Results

F<extend>>
Student Office

Student

Provide Enrolment Instructions

=During enrolment
=Accept students’

<<include>>

=Validate Enter Program of Study alidate Program of Study

Data Entry
Person

Registrar Office

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘P‘

14



CMPSCI520/620

COMPUTER

scinet Better Example logic included COMPUTER

seience Modeling Activities

invokes, not d = Activities capture the flow of logic within a system

=both sequential and parallel control can be modeled

=Since activities do not reference classes, they can be
created without the need for a class diagram
Enroll in Seminar

‘ =Most often used to graphically represent the steps of

a use case
=can show main flow and extensions at once
© = Activities are best discovered by analyzing the action
nroll International Student nroll Family Member steps of use cases, with verbs indicating candidate
International Student aCtiVitieS

generalization logic may be included

generalization

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE

UNIVERSITY: OF MASSACHUSETTS AMRERST: 4D E|

COMEIER University enrollment example “MiiE Modeling Interactions

=One level of abstraction below activities

= Interaction models require at least one iteration of
[help available] | Obtain help state specification to be performed

[otherwise]

Fill out

forms  ['incorrect on forrms =Since we need to have classes to which each object belongs
[correct] Enrolling in = Interaction diagrams do not model object state
[trivial problem] University for changes; however they may show the actions that
Enrollin | «——— first time
Geatany e lead to ja state change . .
Attend = Interactions can help determine operations; any
University message to an object in a interaction must be
Overview .
handled by an operation (actually a method)

=Recall that a method implements an operation; indeed there
may be many methods available for a single operation

Enroll in Pay Tuition
Seminar & Fees

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DT_E

UNIVERSITY. OF MASSACHUSETTS-AMHERST D:

©Rick Adrion 2003 (except where noted)



CMPSCI520/620

CONPUTER Discovering Message Sequences

=The sequence of messages in an interaction is
determined by its associated activity (from the activity
diagram)
=The event that starts the activity is the first message in
the interaction
=The event that ends the activity is the last message in
the interaction
=\We need to figure out what occurs in between; typically
straightforward

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE;R‘?-“

COMPUTER Sequence Diagram

Student EnrollinSeminar | [SecurityLogin Seminar
<actor> <controller> <ul>
wish to enroll

<<create>>
>

provides name

°y

provides student i‘

isValid(name, number)| theStudent

:Student

getAvailableSeminar():vector

>

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UNIVERSITY; OF MASSACHUSETTS-AMHERST - -

©Rick Adrion 2003 (except where noted)

CONPUTER Specifying message sequences

=Useful to distinguish between
ssignals
=asynchronous inter-object communication
=often shown with “half-arrow notation”
=Calls

=synchronous inter-object communication control returns to
caller (usually)

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@-‘(

COMPUTER Defining Operations

= A public interface of a class consists of operations that
offer services to entities external to the class
=operations are best discovered from sequence
diagrams,
since every message must be serviced by an operation
=Other operations can be found using the CRUD (create,
read, update, delete) paradigm; classes need to provide
these services regardless of their domain specific
functionality

CourseOffering

Course year:Date
<<PK>>course_code:string semester:integer
<<C|I(>>c.ours<.=3_name:string enrollment_quota:integer
credit_points: integer std: list<Student>
crs_off: set<CourseOffering> crs: Course
areYouOpen(out c_check) areYouOpen(out ¢_check)
addStudent(stdOID) addStudent(stdOID)

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘P‘

16



CMPSCI520/620

COINES Example 4.17 — Maciaszek

i Program aStudent aCourse
EntryWVindow Student Course
Data ﬁnlry ,
Petkon | | | Enter Program of Stud:
rh addistd crs sem) | ) | ‘ gram of Study
areYouWalid{out s_check’ ‘ use case
[s_check="no"]destroy ‘
|
areYoquen(uLll c_check) 1

[aCoursenftering
CourgeOffering

areYouDpen{out c_check)

E—

|
|
|
y |

[cicheck:”nn"]destmy:

]

|
addCourse(crsOIDY | ‘
\
addStudentq.;tdOID) ‘

addStudent(stdOID:

UNIVERSITY:OF MASSACHUSETTS AMHEF:{-$

CONTHNE! State Change Specifications

=Defines how an object changes state over time in
response to particular events
=States are discovered by analyzing the values of
attributes and determining which have special interest to
use cases

=e.g., having or not having a phone number is a state for
a customer; the specific value of the phone number is
irrelevant to the state

UNIVERSITY, OF MASSACHUSETTS-AMHE]

©Rick Adrion 2003 (except where noted)

COMPUTER

science Example 4.17 — Maciaszek

i ‘ Program ‘

Course

aStudent
Student

aCourse ‘

aCourseOffering
CourseOft

Data Entr
Peifnn |

add(std crs,sem) |

|

|
veYouValidout s_check] }
| [ts_check="no"]destroy |
! |
|

areYouOpen(aut ¢_check)

lo_ehecle="no"ectroy)
— |
|

addCourse (crsOID)

addStudent(stdoID)

areY auOpen(out c_check)

R

Course

| 2

credit_points: integer
crs_off: set<CourseOffering>

<<PK>>course_codesstring
<<CK>>course_name:stri

areYouOpen(out c_check)
addStudent(stdOID)

UNIVERSITY: OFIMASSACHUSETTS AMHERS

Enter Program of Study
use case

CourseOffering

year:Date
semester:integer
enroliment_quota:integer
std: list<Student>

crs: Course
areYouOpen(out c_check)
addStudent(stdOID)

17



