CMPSCI520/620

COMPUTER
SCIENCE

UNIVERSITY:OF MASSACHUSETTS AMRERST:*:

11 - UML & Requirements

Rick Adrion

COMPUTER

= |nitial node
= filled circle = starting point of the
diagram, not require
= Activity final node
=filled circle with a border is the
ending point, can have zero or
more activity final nodes.
= Activity
= rounded rectangles represent
activities, may be physical or
electronic
= Flow/edge
= arrows on the diagram
= Fork
= A black bar with one flow going
into it and several leaving it,
parallel activity.
= Join
= A black bar with several flows
entering it and one leaving it,
denotes_the end of parallél
processing.
= Condition
= a guard which must evaluate to
true in order to traverse the node

UNIVERSITY; OF MASSACHUSETTS-AMHERST = D+

<cience Activity Diagram Notation

= Decision
= A diamond with one flow entering and
several leaving
= Merge
= A diamond with several flows entering
and one leaving, all incoming flows
must reach this point until processing
continues, unless otherwise noted
= Partition
= also called swimlanes, indicating
who/what is performing the activities
= Sub-activity indicator
= rake in the bottom corner of an activity
indicates that the activity is described
by a more finely detailed activity
diagram.
= Flow final
= circle with the X through it, process
stops at this point.
= Use case
= non-official? indication !hgt an included

use case is being invoked.

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

©Rick Adrion 2003 (except where noted)

CONPUTER UML 2 Activity Diagrams

=object-oriented equivalent of flow charts and data flow
diagrams (DFDs) from structured development
stypically used for
=business process modeling

=modeling the logic captured by a single use case or
usage scenario

=»modeling the detailed logic of a business rule
=could potentially model
=the internal logic of a complex operation

=far better to simply rewrite the operation so that it is
simple enough that you don’t require an activity diagram

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UNIVERSITY: OFMASSACHUSETTS AMRERST:

““ﬂ-‘;ﬁ'ﬂﬁ'ﬁ University enrollment example

Apply to

Un’?\?e)ll'sity
M N
Enroll ‘

seminar ‘
LY

Fill out
forms

applicant
[incorrect]

Must be on

[not on list]

screen

system

) list o
[potential matches]matches

Scott W. Ambler , Copyright 2003 www.agilemodeling.cor

UNIVERSITY- OF MASSACHUSETTS-AMHERST +-1;

CMPSCI520/620

““e".'-'ﬂ'ﬁﬁ'f University enrollment example

Use-case
course of action

B: Forms not filled out G: Not eligible to enroll

Apply to
Ui n?\?e¥sity

[incorrect]

Verify
applicant
is on list

Fill out|
forms
N

L

Basic Course

Display
create

student
screen

Create :
student

Possible [not on match list]
Security >
ternative Risk [potentia| matches]

Use-case |

triggered Disola
Perform i {) ?/
Security mlzlastcr?es _
Check [on match list]

Exisiting Use Case F: Student may be in System

Scott W. Ambler , Copyright 2003 www. agilemodeling.com/

UNIVERSITY:OF MASSACHUSETTS AMRERST: '

CONPUTE When to Use Activity Diagrams

=Use activity diagrams when the behavior you are
modeling ...

=does not depend much on external events.

=mostly has steps that run to completion, rather than
being interrupted by events.

=requires object/data flow between steps.

=is being constructed at a stage when you are more
concerned with which activities happen, rather than
which objects are responsible for them (except partitions
possibly).

UNIVERSITY; OF MASSACHUSETTS-AMHERST:

©Rick Adrion 2003 (except where noted)

““e".'-'ﬂ'ﬁﬁ'f University enroliment example

. <<transformation=>1
pin St by zip;
list.each

Schedule /
Printed / /
/

‘- Prnl Attach Labels

Determineg
Mailing Lisg [Mg
g/ Address| Label
nSpsc = The schedule ¥

printed and the date is on o
after April 17 }

to Schedules

Ready
Far Mail
Pick-up

Package
Schedules
Far Mailing

Labeled
Schedules

Scott W. Ambler , Copyright 2003 www. agilemodeling.com/

UNIVERSITY: OF IMASSACHUSETTS AMHERST:+4L

CONPUTER Activity Diagram Modeling Tips

=Control flow and object flow are not separate. Both are
modeled with state transitions.

=Dashed object flow lines are also control flow.

=You can mix state machine and control/object flow
constructs on the same diagram (though you probably
do not want to).

UNIVERSITY. OF MASSACHUSETTS AMHERST 32

CMPSCI520/620

COMPUTER Wrap Up: Activity Diagrams

=Use Activity Diagrams for applications that are primarily
control and data-driven, like business modeling ...

... rather than event-driven applications like embedded
systems.

= Activity diagrams are a kind of state machine until UML
20...

... so control and object/data flow do not have separate
semantics.

UNIVERSITY.-OF MASSACHUSETTS AMRERST+:- DEF

CONPUTER Types of Events

=UML defines 4 kinds of events
=Signal Event
=Asynchronous signal received
=e.g. evFlameOn
=Call Event
=operation call received
=e.g. op(a,b,c)
=Change Event
=change in value occurred
=Time Event
=Relative time elapse
=Absolute time arrived
=e.g. tm(PulseWidthTime)

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DE;_P

©Rick Adrion 2003 (except where noted)

COMPUTER Statechart modeling

=Captures dynamic changes of class states — the life
history of the class
=These dynamic changes describe typically the behavior
of an object across several use cases
=State of an object — designated by the current values of
the object's attributes
= Statechart Diagram — a bipartite graph of
sstates (rounded rectangles) and
stransitions (arrows) caused by events
=The concepts of states and events are the same
concepts that we know from Activity Diagrams — the
difference is that “the states of the activity graph
represent the states of executing the computation, not
the states of an ordinary object”

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

COMPUTER Types of Events

=Events are occurrences of interest that have both
=Location
=Absolute time of occurrence

=Signal events associate with Signals

=A Signal is a specification of an asynchronous
communication between structural elements (e.g.
objects)

=One type of Signal is Exception

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'

CMPSCI520/620

COMPUTER States and transitions

=Objects change values of their attributes but not all such
changes cause state transitions

=We construct state models for classes that have

interesting state changes, not any state changes

= Statechart Diagram is a model of business rules
=Business rules are invariable over some periods of time
=They are relatively independent of particular use cases

UNIVERSITY. OF MASSACHUSETTS AMRERST:

COMPUTER States and transitions

Class "Course” Update
/ enter data delete
planned

release

A .
course cancelled bookabl new reservation
ookable res. cancelled

res. cancelled [is full]
R h
cancelled I ful] [timeout]
do | course
of cance cancelled

[timeout]
3 / archive data

is_full: totalParticipants = maxParticipants
timeout: today >= date
Heinrich Hussmann

UNIVERSITY, OF MASSACHUSETTS-AMHE]

©Rick Adrion 2003 (except where noted)

PN Statecharts & Activity Diagrams

process
reservation

check
eservation

check
participant

check
availability

[ok] [ok]

create
reservation,

Heinrich Hussmann

UNIVERSITY: OFMASSACHUSETTS, AMHEF:{-S

CONTHNE! Statechart Diagram

= Normally attached to a class, but can be attached to
other modeling concepts, e.g. a use case
= When attached to a class, the diagram determines
how obijects of that class react to events
= Determines — for each object state — what action the
object will perform when it receives an event
* The same object may perform a different action for
the same event depending on the object’s state
= The action’s execution will typically cause a state
change

UNIVERSITY. OF MASSACHUSETTS AMHERST 32

CMPSCI1520/620

COMPUTER Statecharts

=Capture state-dependent requirements
= Statechart created for each state-dependent class
=UML provides hierarchical state transition diagrams
=Based on Harel statecharts
=|nformation Captured
=States
=Capture all possible states of the class
=Events and conditions
=Describe transitions between states
=Actions

=Indicate processing that occurs on entry or exit to/from a
state

UNIVERSITY:OF MASSACHUSETTS AN

CONPUTER Example

On

stub state | one(defaultiade)
reference

—
Tnude / BT Skbmaching \ Operating

include / OpsSubmachine

\
oOn(mode: tMode) RAM Test
efaulthMode = mode! device Test

@s_t/ Normal Failsafe

toOff errorFound

Unrecoverable
Error

submachine

errorHandled

indicator

UNIVERSITY, OF MASSACHUSETTS AN

©Rick Adrion 2003 (except where noted)

FONTENE! Statechart notation

event parameters puard condition

m;cm%.‘ \ ‘/A/tmmx

[State B |

&1 (p:C) [cond] / action1; action2
State A J

a3 a2

explicit transitipn
(aborts nested activity)

¢ state

entry factiond | ety action
exit/actiond | €¥it action
a1 i actions intemal transition

T .
completion transition
Lacks a ergger event
fires on completion of activiry

'd State C

~

o—{ — —@®

N o L

®)

UNIVERSITY: OF MASSACHUSETTS -AMI

snittal state sub state fimal stare

COMPUTER Nested submachines
= e o
: ;“3‘;‘3’ ::;U‘ I"m include / OpsSubmachine

toOn(modo; thiode)

T s o

RAN Test Normal Falsae

devica Test

o=t
dgDeviceTe:

= arorfound

- Error
roriandid

| [indicator
|
|
_|
|
_|
|
_|
_|
< state
a |
_|

UNIVERSITY. OF MASSACHUSETTS AN

CMPSCI520/620

CONPUTER Implementation diagrams

Component Diagram

3
U Interf: .
Deployment Diagram

Client
Course

=

Manager i
5 User Interface
i Server
Client Course
Application Manager

Q SQL
Ca
Ca

Heinrich Hussmann

UNIVERSITY:OF MASSACHUSETTS AMRERST:

CONPUTER System Planning

=Business strategy
=Small organizations
=Large organizations
= Approaches
=Strength, Weaknesses, Opportunities, Threats (SWOT)
=VValue Chain Model (VCM)
=Business Process Re-Engineering (BPR)
=Information Systems Architecture (ISA)
=Effectiveness vs. efficiency

UNIVERSITY; OF MASSACHUSETTS-AMHERST:

©Rick Adrion 2003 (except where noted)

CONPUTE! Requirements Process & Products

Market Analysis
Systems Analysis
Business Planning

Systems Engineering

y

Requirements Analysis
Requirements Definition
System Specification

Market Needs
Business Needs
System Requirements

Requirements Definition
Requirements Document
Requirements Specification

Behavioral Specification
System Specification
Functional Specification
Specification Document
Requirements Specification

Specification

UNIVERSITY. OF IMASSACHUSETTS AMHERST:

et Approaches

sSWOT
=Top-down classification, ranking and selection of projects
based on: mission statement, internal strengths and
weaknesses, external opportunities and threats, objectives,
goals, strategies, and policies
=VCM
=Look at “value chain” — from raw materials to final products
sold and shipped to customers and identify critical areas
where IT can transform organization’s value chain
=BPR
=Aimed at radical redesign of business processes, based on
business process”’ownership,” and horizontally cross-cutting
processes with end at points of contact with customers. IT
support enables BPR
=[SA
=A neutral architectural framework with stakeholders (planner,
owner, designer, builder, subcontractor) and activities(what,
how, where, who, when, why)

UNIVERSITY-OF MASSACHUSETTS-AMHERST: 1

CMPSCI1520/620

COMPUTER
SCIENCE

Systems and management levels

CONPUTER SW Requirements Defn Process

Lewel of dedsion Foous of decision “Typpicd IS Typical IT

malsing maldng applicanons solutions

Strategic Steategies in Madzet and sales Diata mining,
suppott of analysis, Knovledge
organizational Prmoduct planning, | managerment
long-term Petformance
abjectives evaation

Tactica Policies insupport Budget analysis, Data sarshause,
of shod-tern Salary forwcashng, | Analybed
goals and rescurce Inventory processing,
allocation scheduling Spreadsheets

Costomer service

Clperational Doay-to-day staff Payroll, Diatabase,
achrabies and Invocmng, Trmsactional
prochuction Purchasing, processing,
suppott Arcounting Fppleahon

generatos

UNIVERSITY:OF MASSACHUSETTS A

UNIVERSITY: OFIMASSACHUSETTS: Al

=Requirements identification

=|dentification of software development constraints
=Requirements analysis

=Requirements representation

=Requirements communication
=Preparation for validation of software requirements

=Managing the requirements definition process definition
process.

COMPUTER
SCIENCE

Source of requirements

Requirements identification

Unconstrained

Environment
for the
Software
Requirements
Definition
Process

Highly
Constrained

Decision
@ Support
System

Corporate
@ Accounting
System

Manufacturers
@ Operating
System

Enhancements to
@ Corporate Accounting
System

Airliner Flight
@ Control
System

WMissile
@ Guidance
System

% of Requirements Gathered from People

UNIVERSITY, OF MASSACHUSETTS AMHE

©Rick Adrion 2003 (except where noted)

=elicited from people or derived from system
requirements

=Software needs -- Context analysis

=documents why software is to be created and why
certain technical, operational, and economic feasibilities
establish boundary conditions

=Elicitation from people
=Deriving from system planning requirements
=Task analysis to develop user interface

UNIVERSITY-OF MASSACHUSETTS AM

CMPSCI520/620

COMPUTER More steps

=|dentification of software development constraints
=Costs, hardware/software, reliability, portability
=Requirements analysis
=Assessment of potential problems

=Classification of requirements mandatory, desirable, and
non-essential

=Evaluation of feasibility and risks

UNIVERSITY.-OF MASSACHUSETTS AMRERST+:- DEF

COMPUTER More steps

=Requirements communication
=Present to stakeholders for review
=Preparation for validation of software requirements
=Establish criteria
=|dentify techniques to be used
=Managing the requirements definition process definition
process.
=a major project management challenge.

=an application that must support five different classes of
users with significantly different expectations could
easily involve a requirements definition process that is
five times more difficult than the corresponding process
for a homogeneous group

UNIVERSITY, OF MASSACHUSETTS AMHERST ;D EpPAR]

©Rick Adrion 2003 (except where noted)

COMPUTER Requirements representation

=Use of models
=A good model:

=Reduces the amount of complexity that must be
comprehended at one time.

=|s inexpensive to build and modify compared to the real
thing.
=Facilitates the description of complex aspects of the real
thing.
=Roles for prototyping
=prototype is not a substitute for a thorough written
specification
=a system can be captured in a prototype

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

COMPUTER Software Requirement Products

=Requirements definition
=Functional
=Non-functional
=Inverse
=Design & implementation constraints
=Requirement documents
=Standards
=“C-requirements”
=“D-requirements”

UNIVERSITY. OF MASSACHUSETTS AMHERST - DEPART

CMPSCI520/620

COMPUTER Customer/Developer

= Objectives
=Ranking of attributes
=Key contents
=“C-requirements”
= Functionality
= Information definitions
= Critical non-functional requirements
= Critical design constraints
= Acceptance criteria
=“D-requirements”
= Functionality
= Information definitions
= Interfaces to external systems
= Critical non-functional requirements
= Critical design constraints
= Acceptance criteria and tests

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER.-}“

COMPUTER

<o Outcomes of a Good Process

=software engineers and developers
=solving the right problem for the users.

=have clear, high-level specification of the system to be built.
=solving a problem that is feasible from all perspectives, not

only technical but human

=customers will be able to use the system, like it, make
effective use of it, and that the system will not have

undesirable side effects
=have the trust and confidence of the customers
=gained knowledge of the domain of the system

=they have a variety of peripheral or ancillary information about
the system useful for making low-level tradeoffs and design

decisions.
=prevented the system from being overly specified
=have freedom to make implementation decisions.

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DEP;E

©Rick Adrion 2003 (except where noted)

COMPUTER Outcomes of a Good Process

=The buyers or users
=often begin with only a vague idea of what they really need
and with little idea of what software technology might offer.
=a good process helps them explore and fully understand their
requirements
= separation of what they want and what they need

= constraints that might be imposed on the system by technology,
organizational practices or government regulations.

=understand alternatives, both technological and procedural, that
might be considered in the proposed system
=understand the tradeoffs
=a good understanding of the implications of their decisions =
= fewer surprises
=users committed to the success of the project.

UNIVERSITY: OFMASSACHUSETTS AMHERST +4DE

COMPUTER Outcomes of a Poor Process

= buyers and users can be dissatisfied

=developers did not really listen to them, or if the developers dominated
the process and tended to force their own views and interpretations on
the buyers and users.

= a chaotic development process -- developers are missing important
information

= requiring additional meetings with the buyers and users
=may make the wrong decisions or tradeoffs
=requirements may change more often,

= greater need for configuration management, or in delays or wasted effort
in design and implementation

= cost and schedule overruns, and sometimes failed or canceled projects.
= developers are solving the wrong problem
= guarantees the failure of the whole project
= outcome
= |oss of money for the company developing or buying the software,
=loss of reputation or credibility for the developers
=a decline in the developers’ morale.

UNIVERSITY-OF MASSACHUSETTS AMHERST 5~ DEP:

CMPSCI520/620

CONPUTER Underlying Difficulties

= Articulation Problems
=Communication Barriers
=Knowledge and Cognitive Limitations
=Human Behavior Issues

=Technical Issues

UNIVERSITY:OF MASSACHUSETTS AMRERST4-DE

COMPUTER Communication Barriers

=users and developers come from different worlds and have
different professional vocabularies and views
=users - high level attributes like usability and reliability
=developers- lower-level attributes like resource utilization,
algorithms, and hardware/ software tradeoffs.
= natural languages are inherently ambiguous
= social interactions
=different personality types and different value systems among
people.
=can lead to unexpected difficulties in communication
=SIS example
= project leader was a high-level person in the company, and he would only
talk to comparably high-level people in the university - deans and vice
presidents
= developers on the project would only talk to the IT & administrative staff in
the university who (they thought) would actually use system
= no one talked to faculty, students, and department staff

UNIVERSITY, OF MASSACHUSETTS- AMHERST 3 DE 7

©Rick Adrion 2003 (except where noted)

COMPUTER Articulation Problems

=aware of needs, but unable to articulate them appropriately
=aware of a need but be afraid to articulate it

=not be aware of their needs

=users and developers different meanings for common terms

=users cannot don’t understand the consequences or
alternatives.

=no single person has the complete picture, no matter how
articulate a user may be

=developers may not really be listening to the users

=developers may fail to understand, appreciate, or relate to the
users

=developers overrule or dominate the users

UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I:‘(_

CONPUTER Knowledge and Cognitive Limits

=requirements elicitor must have adequate domain
knowledge

=no person has perfect memory

=informal or intuitive statistics are frequently interpreted
differently

=scale and complexity

=preconceived approach to the solution of a problem
=“tunnel vision”

=impatience

UNIVERSITY. OF MASSACHUSETTS-AMHERST .+ DE

10

CMPSCI520/620

COMPUTER Human Behavior Issues

=conflicts and ambiguities in the roles
=fear that installation of the software will necessitate
change

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER}“

COMPUTER Technical Issues

=complexity and social impact

=changing requirements

=changing software and hardware technologies
=*many sources of requirements

=nature or novelty of the system

CONPUTE! Requirements Engineering

=requirements elicitation
=the process through which the customers, buyers, or users of
a software system discover, reveal, articulate, and understand
their requirements.
=requirements analysis
=the process of reasoning about the requirements that have
been elicited; it involves activities such as examining
requirements for conflicts or inconsistencies, combining
related requirements, and identifying missing requirements.
=requirements specification
=the process of recording the requirements in one or more
forms, including natural language and formal, symbolic, or
graphical representations; also, the product that is the
document produced by that process.
=requirements validation
=the process of confirming with the customer or user of the
software that the specified requirements are valid, correct, and
complete.

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DEE:I‘\"

©Rick Adrion 2003 (except where noted)

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

CONPUTER Requirements Elicitation

=often called
midentifying, gathering, determining, formulating,
extracting, or exposing
=these terms have different connotations
=gathering suggests that the requirements are already
present somewhere and we need only bring them
together
=formulating suggests that we get to make them up
=extracting and exposing suggest that the requirements
are being hidden by the users
= some truth to all of these connotations

UNIVERSITY. OF MASSACHUSETTS-AMHERST .+ DE il

11

CMPSCI520/620

COMPUTER A General Elicitation Procedure

=identify relevant sources of requirements (the users).
= ask them appropriate questions to gain an understanding of
their needs.
=analyze the gathered information, looking for implications,
inconsistencies, or unresolved issues.
= confirm your understanding of the requirements with the
users.
=synthesize appropriate statements of the requirements.
=how?
=detailed processes
=specific questions or categories of questions to as
=structured meeting formats
=specific individual or group behaviors, or
=templates for organizing and recording information.

UNIVERSITY. OF MASSACHUSETTS AMRERST+:-DEF

COMPUTER General approach

= Asking
=|dentify the appropriate person, such as the buyer or
user of the software, and ask what the requirements are.
=Observing and inferring.
=Observe the behavior of users of an existing system
whether manual or automated), and then infer their
needs from that behavior.
=Discussing and formulating
=Discuss with users their needs and jointly formulate a
common understanding of the requirements.
=Negotiating with respect to a standard set
=Beginning with an existing or standard set of
requirements or features, negotiate with users which of
those features will be included, excluded, or modified.

UNIVERSITY, OF MASSACHUSETTS- AMHERST 3 DE

©Rick Adrion 2003 (except where noted)

COMPUTER Participants

=|lead = software engineer (software requirements engineer)
=responsible for producing the requirements specification
= support = other software engineers, documentation specialists, or
clerical staff.
= users = depends on application
=|S: sales representatives, order processing personnel, shipping
department personnel, and accounting personnel. Department
managers and company executives
=Embedded System: design engineers (HW & SW), regulators,
system users, managers
= Productivity tools: users of existing packages, market researchers
= SIS: students, faculty, advisors, department staff, college staff,
registrars, bursars, financial aid, accountants, financial officers,
admissions officers, administrators, laboratory technical staff, IT staff,
human resources staff, ...
=no one person knows everything about what a software system
should do

= always many participants in a successful requirements elicitation
effort

UNIVERSITY: OFMASSACHUSETTS AMHERST +4DE

COMPUTER General approach

=Studying and identifying problems.
=Perform investigations of problems to identify
requirements for improving a system.
=Discovering through creative processes
=For very complex problems with no obvious solutions,
employ creative processes involving developers and
users.
=Postulating
=\When there is no access to the user or customer, or for
the creation of an unprecedented product, use creative
processes or intuition to identify features or capabilities
that the user might want.

UNIVERSITY. OF MASSACHUSETTS-AMHERST .+ DE

12

CMPSCI520/620

COMPUTER
SCIENCE

Traditional methods

=|nterviewing customers and domain experts
=Questionnaires

=Observation

=Study of documents and software systems

UNIVERSITY.-OF MASSACHUSETTS AMRERST+:- DEF

COMPUTER
SCIENCE

Interviews

=|nterviewing customers and domain experts
=Questions to be avoided

=Opinionated questions

=Biased questions

=Imposing questions

UNIVERSITY, OF MASSACHUSETTS AMHERST ;D EpPAR]

©Rick Adrion 2003 (except where noted)

CONPUTER Interviews

=Tutorial interview

=Expert offers potential solutions and alternatives

=Focused interview
=Analyst prepares topics but not questions
= Structured interview

=Analyst prepares & follows a flexible topic structure

=Open-ended questions
=Close-ended questions
=Card sorting, repertory grids
=Teachback interview

=Users describe problem solving activity to analyst

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

COMPUTER questioning techniques

=scenario

ssystem-specific questions

wreflects less mature evaluation
=questionnaire

=more general items

=reflects more mature evaluation practices
=checklist

=domain-specific

=reflects more mature evaluation practices

UNIVERSITY. OF MASSACHUSETTS AMHERST - DEPART

13

CMPSCI520/620

CONPUTER Scenario

=a specified sequence of steps involving the use or
modification of the system

=provides a means to characterize how well a particular
architecture responds to the

=demands placed on it by those scenarios test what we
normally call modifiability

UNIVERSITY.-OF MASSACHUSETTS AMRERST+:- DEF

CONPUTER Purpose of Scenarios

=Concretize abstract models
=Scenarios instead of abstract models
=Scenario use with prototypes
=Complexity reduction

=Agreement and consistency
=Scenario usage with glossaries
=Reflection on static models

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DE;_P

©Rick Adrion 2003 (except where noted)

CONPUTER Scenario usage -- current practice

=Form
=narrative text
=Structured text
=Diagrammatic notation
=Images
=Animations and simulations
=Content
=System context
=System interaction
=System internals

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

COMPUTER When to use scenarios

=\When abstract modeling fails
=Cost
=Inherent complexity
sTeam issues
=|n conjunction with prototypes
=Can yield symbiotic results
=Steps
=Develop scenarios
=Develop prototypes
=Validate prototypes
=Refine scenarios

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'

14

CMPSCI520/620

COMPUTER When to use scenarios

=For complexity reduction
=Use-case approach
=Scenarios become a structuring device
=For exception handling & identification
=For achieving partial agreement
=Stakeholders have different goals & interests
=Use scenarios to drive the agreement process
=|n conjunction with glossaries
=Establish a common understanding of terms

UNIVERSITY.-OF MASSACHUSETTS AMRERST+:- DEF

COMPUTER Checklist

=a more detailed set of questions that is developed after
much experience evaluating a common (usually
domain-specific) set of systems.
=help keep a balanced focus on all areas of the system
=more focused on particular qualities of the system than
questionnaires
=e.g., performance questions in a real-time information
system
=is the system writing the same data multiple times to disk?

=has consideration been given to handling peak as well as
average loads?

UNIVERSITY, OF MASSACHUSETTS AMHERST ;D EpPAR]

©Rick Adrion 2003 (except where noted)

COMPUTER Questionnaire

=a list of general and relatively open questions that apply
to all systems

=how the requirements were generated and documented
=details of the requirements description

=user interface aspects separated from functional
aspects?

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

COMPUTER Questionnaires & Observation

=Questionnaires
=In addition to interviews
=Close-ended questions
=Multiple-choice questions
=Rating questions
=Ranking questions

=Observation
=Passive
=Active
=Carried for a prolonged period of time
=People tend to behave differently

UNIVERSITY. OF MASSACHUSETTS AMHERST - DEPART

15

CMPSCI520/620

CONPUTER Other CONPUTER Modern methods
=Study of documents and software systems =Prototyping
=Use case requirements = Joint Application Development (JAD)
=Organizational documents =Rapid Application Development (RAD)

=System forms and reports

=Domain knowledge requirements
=Domain journals and reference books
*ERPS-s

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER:?; UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I:‘(

COMPUTER COMPUTER

seienee Simulations, prototypes, etc seienee Prototyping
=may help to create and to clarify the requirements =strategies
=performance models are an example of a simulation =throw-away prototype
=simulation or prototype may answer an issue raised by a =evolutionary prototype
questioning technique =advantages
=e.g., what evidence do you have to support this =users may be better able to understand and express their
a-ss-(,artion’7 y needs by comparing to an existing or reference system
- "process
=iterative process of building a prototype and evaluating it with
the users.

=each iteration allows the users to understand their
requirements better, including understanding the implications
of the requirements articulated in previous iterations.

=eventually, a final set of requirements can be formulated and
the prototypes discarded.

UNIVERSITY.OF MASSACRUSETTS ANHERST KR UNIVERSITY. OF MASSACHUSETTS ANHERST /- DEPARTHE

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

FMENER Prototyping

=distinguish the terms prototype and mock-up,
= A prototype demonstrates behavior of a part of the desired
system,
=A mock-up demonstrates the appearance of the desired
system
=mock-ups of user interfaces are especially common.
=beneficial only if the prototype can be built substantially faster
than the actual system
= prototyping should not be viewed as a euphemism for trial-
and-error programming or “hacking.”
= prototyping is properly used to elicit and understand
requirements, followed by a structured and managed process
to build the actual system
=useful in overcoming articulation problems and
communication barriers.

UNIVERSITY:OF MASSACHUSETTS AMRERST+- DEBART

©Rick Adrion 2003 (except where noted)

COMPUTER

seience Cleanroom method

Requirements

.
Iﬁi/el Specs

Inlsreevne-I or;‘)t%ent Plan

[Ls

Increment
+ Sign onloff
+ selup

[] New

Il Reused
— Stubbed

UNIVERSITY: OFMASSACHUSETTS: AMRERST +4DERART]

B Copsmpge 5

Increment 2 Increme

+ Sign on/off

« Setup
+ Panel navigation

Sign onloff
* Setuy

+ Panel navigation
+ Primary functions

Complete system

Increment 4

+ Sign onloff

+ Setup

+ Panel navigation

+ Primary functions

+ Secondary functions

17

