CMPSCI520/620

COMPUTER
SCIENCE

10 - UML Overview

Rick Adrion

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER}“

COMPUTER Use-Case diagrams

=emphasis is on what a system does rather than
how
=Use case diagrams are closely connected to
scenarios
=a scenario is an example of what happens when
someone interacts with the system, e.g.,
"A patient calls the clinic to make an appointment for
a yearly checkup. The receptionist finds the nearest
empty time slot in the appointment book and
schedules the appointment for that time slot."
=3 use case is a summary of scenarios for a single
task or goal
=an actor is who or what initiates the events
involved in that task

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DEE:I‘\"

©Rick Adrion 2003 (except where noted)

COMPITER What is use case modeling?

=use case model
=a view of a system that emphasizes the behavior as it
appears to outside users. A use case model partitions
system functionality into transactions (‘use cases’) that
are meaningful to users (‘actors’).

UNIVERSITY: OFMASSACHUSETTS AMRERST: DE@:‘(

Bﬂﬂ}l;gﬁl[l Use Case Modeling: Core Elements

Construct |Description Syntax

use case A sequence of actions, including
variants, that a system (or other
entity) can perform, interacting with

actors of the system.

actor A coherent set of roles that users

of use cases play when interacting
with these use cases.

ActorName

system Represents the boundary between D

boundary |the physical system and the actors
who interact with the physical
system.

UNIVERSITY. OF MASSACHUSETTS-AMHERST .+ DE il

CMPSCI520/620

BIIM‘I;EIJ'E:IEI Example BIIM‘I;EIJ‘E:IEI Use Case Modeling: Core Relationships

=Make Appointment

=use case for the medical clinic Construct Description Syntax
=actor is a Patient

association The participation of an actor in a use
=connection between actor and use case is a case. i.e., instance of an actor and
communication association (or communication for instances of a use case communicate
short) — with each c?ther. i i
communication generalization |A taxonomic relationship between a
[- more general use case and a more —_—)

case to a base use case, specifying

. specific use case.
actor —>» make appointment extend A relationship from an extension use

Patient L how the behavior for the extension <<extend>>
use case use case can be inserted into the s>
behavior defined for the base use
case.

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE

UNIVERSITY. OF MASSACHUSETTS-AMHERST: 4D

COMPUIER An example “Xtine: Actors

=The ESU University wants to computerize their registration =An actor is someone or some thing that must interact

system with the system under development
=The Registrar sets up the curriculum for a semester

=One course may have multiple course offerings
=Students select 4 primary courses and 2 alternate courses

=Once a student registers for a semester, the billing system is
notified so the student may be billed for the semester
=Students may use the system to add/drop courses for a period
of time after registration Registrar
=Professors use the system to receive their course offering Professor
rosters
=Users of the registration system are assigned passwords
which are used at logon validation Student

Billing System

Copyright © 1997 by Rational Software Corporation

Copyright © 1997 by Rational Software Corporation

UNIVERSITY; OF MASSACHUSETTS-AMHERST = UNIVERSITY. OF MASSACHUSETTS-AMHERST

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

CONPUTER Use Cases

=Registrar -- maintain the curriculum
=Professor -- request roster
=Student -- maintain schedule

registration

Copyright © 1997 by Rational Software Corporation

UNIVERSITY. OF MASSACHUSETTS AMRERST: - DEBAR

=A use case is a pattern of behavior the system exhibits

=Each use case is a sequence of related transactions
performed by an actor and the system in a dialogue

=Actors are examined to determine their needs

=Billing System -- receive billing information from

o O OO

Maintain Curriculum Request Course Roster Maintain Schedule

COMPUTER Use Case Diagram

relationships between actors and use cases

Request Course Roster
Student
% ﬁaintain Schedule

Billing System

Registrar

UNIVERSITY, OF MASSACHUSETTS- AMHERST 3 DE

©Rick Adrion 2003 (except where noted)

=Use case diagrams are created to visualize the

O X

Professor

— >

Maintain Curriculum

COMPUTER Documenting Use Cases

=A flow of events document is created for each use
cases

=\Written from an actor point of view
=Details what the system must provide to the actor when
the use cases is executed
=Typical contents
=*How the use case starts and ends
=Normal flow of events
=Alternate flow of events
=Exceptional flow of events

Copyright © 1997 by Rational Software Corporation

UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I:‘(

c"ﬂ;‘;{'ﬂﬁ% Maintain Curriculum Flow of Events

= This use case begins when the Registrar logs onto the
Registration System and enters his/her password. The
system verifies that the password is valid (E-1) and prompts
the Registrar to select the current semester or a future
semester (E-2). The Registrar enters the desired semester.
The system prompts the Registrar to select the desired
activity: ADD, DELETE, REVIEW, or QUIT.

= |f the activity selected is ADD, the S-1: Add a Course
subflow is performed.

= |f the activity selected is DELETE, the S-2: Delete a Course
subflow is performed.

= |f the activity selected is REVIEW, the S-3: Review
Curriculum subflow is performed.

= [f the activity selected is QUIT, the use case ends.

Copyright © 1997 by Rational Software Corporation

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE&A_

CMPSCI520/620

CONPUTER Documenting use cases

= Brief Description

= Actors involved

=Preconditions necessary for the use case to start

=Detailed Description of flow of events that includes:
=Main Flow of events, that can be broken down to show:

=Subflows of events (subflows can be further divided into smaller
subflows to improve document readability)

=Alternative Flows to define exceptional situations

=Postconditions that define the state of the system after the
use case ends

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE;R‘?-“

COMPUTER Uses and Extends Relationships

=As the use cases are documented, other use case
relationships may be discovered

=A uses relationship shows behavior that is common to
one or more use cases

=An extends relationship shows optional behavior

O <<uses>>
Register for courses

<<uses>>

-,

Logon validation

-,

Maintain curriculum
Copyright © 1997 by Rational Software Corporation

UNIVERSITY; OF MASSACHUSETTS-AMHERST - &

©Rick Adrion 2003 (except where noted)

COMPUTER : LEr :
<eieice Narrative use case specification
Use Case Add a course to the curriculum
Brief Description This use case allows a Registrar to enter a new course.
Actors Registrar
Preconditions Registrar has a valid password (E-1), has selected a

semester default or E-2), and has selected the Add (S-
1) function at the system prompt

Main Flow The system enters the Add a Course subflow

Alternative Flows The Registrar activates the Delete, Review, or
Quit functions

Postconditions If the use case was successful, the Registrar has
accessed the Add a Course function

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

CONPUTER University Enrolment - Maciaszek

= The university offers
=Undergraduate and postgraduate degrees
=To full-time and part-time students
= The university structure
=Divisions containing departments
=Single division administers each degree
=Degree may include courses from other divisions
= University enrolment system
=Individually tailored programs of study
= Prerequisite courses
= Compulsory courses
=Restrictions
= Timetable clashes
= Maximum class sizes, etc.

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'

CMPSCI520/620

COMPUTER
SCIENCE

University Enrolment (cont)

= The system is required to
= Assist in pre-enrolment activities
= Handle the enrolment procedures
= Pre-enrolment activities
= Mail-outs of
= | ast semester's examination grades to students
= Enrolment instructions
= During enrolment
= Accept students' proposed programs of study
= Validate for prerequisites, timetable clashes, class sizes,
special approvals, etc.
= Resolutions to some of the problems may require
consultation with academic advisers or academics in charge
of course offerings

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE;R‘?-“

COMPUTER
SCIENCE

When to model use cases

=Model user requirements with use cases.
=Model test scenarios with use cases.
=|f you are using a use-case driven method

sstart with use cases and derive your structural and
behavioral models from it.

=|f you are not using a use-case driven method

=make sure that your use cases are consistent with your
structural and behavioral models.

UNIVERSITY; OF MASSACHUSETTS-AMHERST - &

©Rick Adrion 2003 (except where noted)

CONPUTER Example 4.12

Pre-enrolment activities
=Mail-outs of

=Last semester's examination grades to
students
=Enrolment instructions

Provide Examination Results

F<extend>>

Student Office

Student

Provide Enrolment Instructions

=During enrolment
=Accept students’

<<include>>

=Validate Enter Program of Study alidate Program of Study

Data Entry
Person

Registrar Office
UNIVERSITY: OF MASSACHUSETITS AMHERST: +4D.EF

COMPUTER Use Case Modeling Tips

= Make sure that each use case describes a significant chunk of
system usage that is understandable by both domain experts and
programmers

= When defining use cases in text, use nouns and verbs accurately
and consistently to help derive objects and messages for interaction
diagrams (see Lecture 2)

= Factor out common usages that are required by multiple use cases

= |f the usage is required use <<include>>

= |f the base use case is complete and the usage may be optional,
consider use <<extend>>

= A use case diagram should
= contain only use cases at the same level of abstraction
=include only actors who are required
= Large numbers of use cases should be organized into packages

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'

CMPSCI520/620

CONPUTER Use Case Realizations

=The use case diagram presents an outside view of the
system

=|nteraction diagrams describe how use cases are
realized as interactions among societies of objects

=Two types of interaction diagrams
=Sequence diagrams
=Collaboration diagrams

Copyright © 1997 by Rational Software Corporation

UNIVERSITY. OF MASSACHUSETTS AMRERST

CONPUTER Sequence Diagram

= A sequence diagram displays object interactions
arranged in a time sequence

- Student registration registration math 101 math 101
— form manager section 1
1:fill in info
2: submit

3| add course(mary, math 01)

4: are you open?

5: are you opeg?

6: add (mary.
7: add (mary

UNIVERSITY; OF MASSACHUSETTS-AMHERST: 1

©Rick Adrion 2003 (except where noted)

CONPITER sequence diagram

=an interaction diagram that details how operations are carried
out
=what messages are sent and when
=are organized according to time
=time progresses as you go down the page

=objects involved in the operation are listed from left to right
according to when they take part in the message sequence.

Symbol Meaning
3 simple message which may be synchronous or
asynchronous
- simple message return (optional)

—_— a synchronous message

— an asynchronous message
—

UNIVERSITY: OFMASSACHUSETTS AMHERST:

CONPUTER Example 4.17 — Maciaszek

i Program aStudent aCourse [aCoursenftering
EntryWVindow Student Course CourgeOffering
Data ﬁnlry
Petson ‘ |

1
L addistd crs serr) | Enter Program of Study

|
areYouWalid{out s_check’ } use case
[s_check="no"]destroy ‘
|

|
areYoquen(uLll c_check)

areYouDpen{out c_check)

[cicheck:”nn"]destmy: g

|
addCourse(crsOIDY |

J

\
\
addStudentq.;tdOID) ‘

|
|
|
y |

addStudent(stdOID:

UNIVERSITY-OF MASSACHUSETTS-AMHERST:

CMPSCI520/620

COMPUTER Collaboration Diagrams

=also interaction diagrams

=focus on object roles instead of the times that
messages are sent

course form
: Registrar \J/ 3: add course
aCourse theManager :
Course CurriculumManager
I <

4: new course

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER.-}“

COMPUTER Classes

=A class is a collection of objects with common structure,
common behavior, common relationships and common
semantics

=Classes may be found by examining the objects in
sequence and collaboration diagram

=A class is drawn as a rectangle with three
compartments

=Classes should be named using the vocabulary of the
domain

=*Naming standards should be created

=e.g., all classes are singular nouns starting with a capital
letter

UNIVERSITY; OF MASSACHUSETTS-AMHERST - %

©Rick Adrion 2003 (except where noted)

COMPUTER Class Modeling

= Captures system state — the function of the system's
information content at a point in time

= Class modeling and use case modeling are typically
conducted in parallel

= A class diagram shows the existence of classes and
their relationships in the logical view of a system; in
UML class diagrams elements include

= Classes and their structure and behavior

= Association, aggregation, generalization, dependency,
and inheritance relationships

= Multiplicity and navigation indicators
= Role names

UNIVERSITY: OFMASSACHUSETTS AMRERST: DEP:-I-‘(

COMPUTER Classes

math 101 math 101
manager section 1

3 add course(mary, ath 01)

4: are you open’
5: 31 you ofjerf

6: add (joe),

ScheduleAlgorithm)|

7: add (ma

— |
RRegistrationForm »Regis\l(ationManager —>Course

pStudent

Professor

»CourseOffering

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE&_E

CMPSCI520/620

COMPUTE Find Classes from requirements CONPUTER University Enrolment - Maciaszek
=Consider Maciaszek’s University Enrollment =More requirements:
SyStem: =A course can be part of any number of majors
=each university has a number of =Each major specifies minimum total credits required

(compulsory(courses and a number of

courses.

=Students may combine course offerings into programs
of study suited to their individual needs and leading to

Course CompulsoryCourse the degree/major in which enrolled
Relevant classes Fuzzy classes
Major Course CompulsoryCourse
] Major ElectiveCourse
Student Sudyprogram
CourseOffering

UNIVERSITY-OF MASSACHUSETTS AMRERSTS DEP/-‘{@. UNIVERSITY: OF-MASSACHUSETTS AMHERST: DEP/-‘(_T:F\‘:I.F;-

COMPUTER : COMPUTER :
science Operations MENTER Attributes
=The behavior of a class is represented by its operations =The structure of a class is represented by its attributes
=Operations may be found by examining interaction = Attributes may be found by examining class definitions,
diagrams the problem requirements, and by applying domain
— — knowledge
registration registration
form manager =More requirements
=Each course offering has a number, location and time
=Each course is at a given level and has a credit-hours
— value
3: add course(mary, math 01 RegistrationManager
d Course CourseOffering
addCourse(Student,Course) name number
number location
numberCredits time
Copyright © 1997 by Rational Software Corporation Copyright © 1997 by Rational Software Corporation

UNIVERSITY. OF MASSACHUSETTS AMHERST - DEPARINEN

©Rick Adrion 2003 (except where noted)

CMPSCI520/620

seience Classes
RegistrationForm ScheduleAlgorithm
RegistrationManager
ourse,) Course
Major name
name Student numberCredits
minTotalCredits
name open()
major addStudent(Studentinfo)
Professor
name CourseOffering
tenureStatus location

open()

addStudent(Studentinfo)

Copyright © 1997 by Rational Software Corporation

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DER.-}“

418 Relationships

=An association is a bi-directional connection between

classes
=An association is shown as a line connecting the related
classes Student CourseOffering

location
name

major open(

representing the whole

addStudent(Studentinfd)
=An aggregation is a stronger form of relationship where
the relationship is between a whole and its parts

=An aggregation is shown as a line connecting the
related classes with a diamond next to the class

CourseOffering
location

Course

open()

ame
numberCredits

open()

Copyright © 1997 by Rational Software Corporation

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DEP;E

©Rick Adrion 2003 (except where noted)

418 Relationships

=Relationships provide a pathway for communication
between objects

=Sequence and/or collaboration diagrams are examined
to determine what links between objects need to exist to
accomplish the behavior -- if two objects need to “talk”
there must be a link between them
=Three types of relationships are:
=Association
=Aggregation
=Dependency

Copyright © 1997 by Rational Software Corporation

UNIVERSITY: OFMASSACHUSETTS AMHERST +4DE

418 Relationships

=A dependency relationship is a weaker form of
relationship showing a relationship between a client and
a supplier where the client does not have semantic
knowledge of the supplier

=A dependency is shown as a dashed line pointing from
the client to the supplier

ScheduleAlgorithm

RegistrationManager

hddStudent(Course, Studentinfo)

Copyright © 1997 by Rational Software Corporation

UNIVERSITY-OF MASSACHUSETTS AMHERST 5~ DEP:

CMPSCI520/620

COMPYTE Finding Relationships

=Relationships are discovered by examining interaction
diagrams
=|f two objects must “talk” there must be a pathway for
communication

RegistrationManager

Registration Math 101:
Manager Course

3: add student(mary.

.

Course

UNIVERSITY:OF MASSACHUSETTS AMRERST+- DEBART

CONPUTER Multiplicity and Navigation

=Multiplicity defines how many objects participate in a
relationships
=Multiplicity is the number of instances of one class
related to ONE instance of the other class
=For each association and aggregation, there are two
multiplicity decisions to make: one for each end of the
relationship
= Although associations and aggregations are bi-
directional by default, it is often desirable to restrict
navigation to one direction

=|f navigation is restricted, an arrowhead is added to
indicate the direction of the navigation

Copyright © 1997 by Rational Software Corporation

UNIVERSITY, OF MASSACHUSETTS-AMHERST < DEPARTW y:

©Rick Adrion 2003 (except where noted)

COMPUTER Relationsh

ips

RegistrationForm

1 ScheduleAlgorithm

RegistrationManager

Student

name
major

Professor

name
tenureStatus

UNIVERSITY: OFMASSACHUSETTS AMRERST +4DERARTI!

Course

name
numberCredits

open()

CourseOffering

location

open()
addStudent(Studentinfo)

COMPUTER

Sseipnee Multiplicity and Navigation

RegistrationForm

1

name
major

Professor

name
tenureStatus

0.4

1 ScheduleAlgorithm
N RegistrationManager |~
urse,]

Course

name

Student numberCredits
open()
3..10
1
4 1.

CourseOffering

location

open()
addStudent(Studentinfo)

Copyright © 1997 by Rational Software Corporation

UNIVERSITY. OF MASSACHUSETTS-AMHERST DEPAF‘\TME‘V‘}I

10

CMPSCI520/620

COMPUTER Inheritance

=Inheritance is a relationships between a superclass and
its subclasses

=There are two ways to find inheritance:
=Generalization
=Specialization
=Common attributes, operations, and/or relationships are
shown at the highest applicable level in the hierarchy

Copyright © 1997 by Rational Software Corporation

UNIVERSITY OF MASSACHUSETTS AMRERST++:DER/

COMPUTER University Enrolment - Maciaszek

= A student's choice of courses may be restricted by timetable clashes and by
limitations on the number of students who can be enrolled in the current
course offering.

= A student's proposed program of study is entered on on-line enrolment
system SPIRE

= The system checks the program's consistency and reports any problems
= The problems need to be resolved with the help of an academic adviser

= The final program of study is subject to academic approval by the
Department head (or delegate) and it is then forwarded to the Registrar
= The student's academic record to be available on demand

= The record to include information about the student’s grades in each course
that the student enrolled in (and has not withdrawn without penalty)

= Each course has one professor in charge of a course, but additional
professors (inc instructors) may also teach in it

= There may be a different professor in charge of a course each semester
= There may be professor for each course each semester

UNIVERSITY, OF MASSACHUSETTS- AMHERST 3 DE A

©Rick Adrion 2003 (except where noted)

P ScheduleAlgorithm

Course
name
numberCredits

open()

COMPUTER P
seience Inheritence
RegistrationForm
0.*) RegistrationManager
e 1
StudentinfoUser l Student
name ame
major
Professor
ltenureStatus 1

CourseOffering

location

0..4 |open()
addStudent(Studentinfo)

Copyright © 1997 by Rational Software Corporation

UNIVERSITY: OFMASSACHUSETTS AMHERST +4DE o

addStudent(Studentinfo)

COMPUTER Maciaszek Solution

Student
<<PK>> student_id : String
student_name : String
current_fees : Money

has_stud

takes

0.*

AcademicRecord
course_code : String
year : Date
semester : Integer
grade : String

UNIVERSITY. OF MASSACHUSETTS-AMHERST DEP_A_

Course

<<PK>> course_code : String
<<CK>> course_name : String|

credit_points : Integer

takes_crsoff 0.*

CourseOffering

year : Date
semester : Integer

enrolment_quota : Integel

0.*

0.1

ProfessorinChar%e

11

CMPSCI520/620

CONPUTER Maciaszek Solution Fitet Activity Modeling

=Show few objects representing the classes = Activity model

= Can graphically represent the flow of events of a use case
Don Donaldson : Student COMPS21 : i ;
=on Yonaldson . studer Course = Can be used to understand a business process at a high-
CMPSCI287 - level of abstraction before an‘y use cases are produced
AcademicRecord = Shows the steps of a computation
CMPSCI520 : = Each step is a state of doing something
Course = Execution steps are called activity states
CMPSCI320 : | = Depicts which steps are executed in sequence and which
AcademicRecord can be executed concurrently
2003 Sect: = Transition — the flow of control from one activity state to
CourseOffering the next

| = Use case descriptions are (usually) written from an
outside actor’s perspective

Rick Adrion : = Activity models take an inside system’s viewpoint
ProfessorlnCharge

UNIVERSITY: OF MASSACHUSETTS AMRERST: 4D E|

UNIVERSITY:OF MASSACHUSETTS AMRERST:*: DE

CIMTHES Activities PIMEHES UML 2 Activity Diagrams

Activity states can be established from the use case
document

Activities should be named from the system’s perspective,
not the actor’s viewpoint

Activity takes time to complete

Action is so quick that — on our time scale — it is considered
to take no time at all

UML uses the same same graphical symbol for activity
state and action state — rounded rectangle

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DT_E

©Rick Adrion 2003 (except where noted)

=object-oriented equivalent of flow charts and data flow
diagrams (DFDs) from structured development
stypically used for
=business process modeling

=»modeling the logic captured by a single use case or
usage scenario

=»modeling the detailed logic of a business rule
=could potentially model
=the internal logic of a complex operation

=far better to simply rewrite the operation so that it is
simple enough that you don’t require an activity diagram

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

UNIVERSITY. OF MASSACHUSETTS-AMHERST D:

12

CMPSCI520/620

COMPUTER

= filled circle = starting point of the
diagram, not require

=filled circle with a border is the
ending point, can have zero or
more activity final nodes.

= rounded rectangles represent
activities, may be physical or

= A black bar with one flow going
into it and several leaving it,
parallel activity.
= Join
= A black bar with several flows
entering it and one leaving it,
denotes_the end of parallél
processing.
= Condition

= a guard which must evaluate to
true in order to traverse the node

UNIVERSITY:OF MASSACHUSETTS AMRERST:

seience Activity Diagram Notation

= |nitial node = Decision

= A diamond with one flow entering and
several leaving

= Activity final node = Merge

= A diamond with several flows entering
and one leaving, all incoming flows
must reach this point until processing
continues, unless otherwise noted

= Activity = Partition

= also called swimlanes, indicating
who/what is performing the activities

electronic = Sub-activity indicator
= rake in the bottom corner of an activit
- FIOW/edge . indicates that the activity is de_scribedy
= arrows on the diagram 3|)garranrgre finely detailed activity
= Fork gram.

= Flow final

= circle with the X through it, process
stops at this point.

= Use case

= non-official? indication that an included
use case is being invoked.

Scott W. Ambler , Copyright 2003 www.agilemodeling.com/

COMPUTER

scienee University enrollment example

B: Forms not filled out

[incorrect]

G: Not eligible to enroll
Apply to
i

Uni

versity

student

Fill out|
forms
L screen

L

Basic Course

Verify
Y applicant g&%ilne!
Display is on list
create

[no match]

Possible
Security
Risk [potentia| matches]

[not on match list]

Perform E?:g Ié?q

Securit .

Checky matchesj [on match list]
Exisiting Use Case F: Student may be in System

UNIVERSITY; OF MASSACHUSETTS-AMHERST:

©Rick Adrion 2003 (except where noted)

Scott W. Ambler , Copyright 2003 www. agilemodeling.com/

““e".'-'ﬂ'ﬁﬁ'f University enroliment example

goplica

Fill out Un’?\%};sti(t]y
forms N —\
\ Enroll
[incorrect] ‘ sermnal’
N LY

[not on list]

registrar

[on match list]

Display
create student
screen

system
Displa
) list o
[potential matches]matches

Scott W. Ambler , Copyright 2003 www.agilemodeling.cor

UNIVERSITY: OFMASSACHUSETTS AMHERST:

““e".'-'ﬂ'ﬁﬁ'f University enroliment example

<<transformation==Iy

Sort by zip;
list.each
Schedule ’
Printed /

Determine
Mailing List

Altach Labels
to Schedules

April 1%

{joinSpec = The schedule is
printed and the date is on or
after April 17 }

Package
Schedules
Far Mailing

Labeled

For Mail
o Schedules

Scott W. Ambler , Copyright 2003 www. agilemodeling.com/

UNIVERSITY-OF MASSACHUSETTS-AMHERST: 3

13

CMPSCI520/620

CONPUTER When to Use Activity Diagrams

=Use activity diagrams when the behavior you are
modeling ...

=does not depend much on external events.

=mostly has steps that run to completion, rather than
being interrupted by events.

=requires object/data flow between steps.

=is being constructed at a stage when you are more
concerned with which activities happen, rather than
which objects are responsible for them (except partitions
possibly).

UNIVERSITY:OF MASSACHUSETTS AMRERST: '

CONPUTER Activity Diagram Modeling Tips
From UML c T A
User Guide:

Request
Return
Get Return
Number
Ship Item —]

H
H
v

Item

~Qlurnerl] [IRt

Credit
Account

UNIVERSITY, OF MASSACHUSETTSIAMHERST 41k

©Rick Adrion 2003 (except where noted)

CONPUTER Activity Diagram Modeling Tips

=Control flow and object flow are not separate. Both are
modeled with state transitions.

=Dashed object flow lines are also control flow.

=You can mix state machine and control/object flow
constructs on the same diagram (though you probably
do not want to).

UNIVERSITY. OF MASSACHUSETTS- AMHERST 1L

CONPUTER Activity Modeling Tips

C Te A

Item ———
[returned| -

UNIVERSITY. OF MASSACHUSETTS AMHERST 32

14

CMPSCI520/620

CONPUIER Activity Diagram Modeling Tips

= Activity diagrams inherit from state machines the
requirement for well-structured nesting of composite
states.

=This means you should either model as if composite
states were there by matching all forks/decisions with a
correspond join/merges ...

=... or check that the diagram can be translated to one
that is well-nested.

=This insures that diagram is executable under state
machine semantics.

UNIVERSITY. OF MASSACHUSETTS AMHERST:+

CONPUIER Activity Diagram Modeling Tips

Not well-nested:

Apply structured coding principles. (Be careful with goto’s!)

UNIVERSITY, OF MASSACHUSETTSIAMHERST 41k

©Rick Adrion 2003 (except where noted)

CONPUIER Activity Diagram Modeling Tips

Well-nested:

UNIVERSITY. OF MASSACHUSETTS - AMHERST: +-

CONPUIER Activity Diagram Modeling Tips

Can be translated to well-nested diagram:

UNIVERSITY. OF MASSACHUSETTS AMHERST -

15

CMPSCI520/620

COMPUTER Wrap Up: Activity Diagrams

=Use Activity Diagrams for applications that are primarily
control and data-driven, like business modeling ...

... rather than event-driven applications like embedded
systems.

= Activity diagrams are a kind of state machine until UML
20...

... so control and object/data flow do not have separate
semantics.

UNIVERSITY.-OF MASSACHUSETTS AMRERST+:- DEF

CONPUTER Types of Events

=UML defines 4 kinds of events
=Signal Event
=Asynchronous signal received
=e.g. evFlameOn
=Call Event
=operation call received
=e.g. op(a,b,c)
=Change Event
=change in value occurred
=Time Event
=Relative time elapse
=Absolute time arrived
=e.g. tm(PulseWidthTime)

UNIVERSITY; OF MASSACHUSETTS-AMHERST = DE;_P

©Rick Adrion 2003 (except where noted)

COMPUTER Statechart modeling

=Captures dynamic changes of class states — the life
history of the class
=These dynamic changes describe typically the behavior
of an object across several use cases
=State of an object — designated by the current values of
the object's attributes
= Statechart Diagram — a bipartite graph of
sstates (rounded rectangles) and
stransitions (arrows) caused by events
=The concepts of states and events are the same
concepts that we know from Activity Diagrams — the
difference is that “the states of the activity graph
represent the states of executing the computation, not
the states of an ordinary object”

UNIVERSITY: OF MASSACHUSETTS AMHERST: < 4DEF

COMPUTER Types of Events

=Events are occurrences of interest that have both
=Location
=Absolute time of occurrence

=Signal events associate with Signals

=A Signal is a specification of an asynchronous
communication between structural elements (e.g.
objects)

=One type of Signal is Exception

UNIVERSITY. OF MASSACHUSETTS-AMHERST DE‘_P'

16

CMPSCI520/620

COMPUTER States and transitions

=Objects change values of their attributes but not all such
changes cause state transitions

=We construct state models for classes that have

interesting state changes, not any state changes

= Statechart Diagram is a model of business rules
=Business rules are invariable over some periods of time
=They are relatively independent of particular use cases

UNIVERSITY. OF MASSACHUSETTS AMRERST:

COMPUTER States and transitions

Class "Course” Update
/ enter data delete
planned

release

A .
course cancelled bookabl new reservation
ookable res. cancelled

res. cancelled [is full]
R h
cancelled I ful] [timeout]
do | course
of cance cancelled

[timeout]
3 / archive data

is_full: totalParticipants = maxParticipants
timeout: today >= date
Heinrich Hussmann

UNIVERSITY, OF MASSACHUSETTS-AMHE]

©Rick Adrion 2003 (except where noted)

PN Statecharts & Activity Diagrams

process
reservation

check
eservation

check
participant

check
availability

[ok] [ok]

create
reservation

Heinrich Hussmann

UNIVERSITY: OFMASSACHUSETTS, AMHEF:{-S

CONTHNE! Statechart Diagram

= Normally attached to a class, but can be attached to
other modeling concepts, e.g. a use case
= When attached to a class, the diagram determines
how obijects of that class react to events
= Determines — for each object state — what action the
object will perform when it receives an event
* The same object may perform a different action for
the same event depending on the object’s state
= The action’s execution will typically cause a state
change

UNIVERSITY. OF MASSACHUSETTS AMHERST 32

17

CMPSCI520/620

COMPUTER Statecharts

=Capture state-dependent requirements
=Statechart created for each state-dependent class
=UML provides hierarchical state transition diagrams
=Based on Harel statecharts
=|Information Captured
=States
=Capture all possible states of the class
=Events and conditions
=Describe transitions between states
= Actions

=Indicate processing that occurs on entry or exit to/from a
state

UNIVERSITY:OF MASSACHUSETTS AMHEF:{-$

COMPUTER Nested submachines

-
W swbstae

reference

H
[Ssireing
[Ree BITSomacioe |

RAMTest | goreet

Tnolude / OpsSubmachine

toOn(modo; thiode)

foma Fais
I S5Eliios o

devica Test

Srrorhandied

[indicator
W submachine

BITSubmachine OpsSubmachine,

UNIVERSITY, OF MASSACHUSETTS-AMHE] i

©Rick Adrion 2003 (except where noted)

PNNINER Statechart notation

event parameters puard condition

crions,
event pame

el (p:C) [ccn‘d]laé action2 State B I
State A J tmn,;amons Icmq action

oxit/ actiond | exit action
o1 / actions intemal transition

T .
a3 a2 completion ransition
Lacks a ergger event

explicit fransitipn fires on completion of activiry

(aborts nested ac vil)',‘lr canc :St t 5 e state ~
ate
o |

¥ 4 S ®)

snittal state sub state fimal stare

UNIVERSITY: OFIMASSACHUSETTS AMHERS

CONTHNE! Statechart Diagram

Pending

stock not available
New Order Back Order

stock available[(ship date in future]

Future Order
J stock avail [ship date in future]

stock available[ship date\now] / configureComputer

[canteled]

Cancelled W Ready to Ship
[canceled]

ship[accepted]
‘ Filled

UNIVERSITY-OF MASSACHUSETTS-AMHE]

18

CMPSCI1520/620

CONSHE! Implementation diagrams

Component Diagram

User Interface

Client
Course

Manager i
5 User Interface

)

n Deployment Diagram

Server

& saL ;
Cl_ient_
05 Application
Database
-

Heinrich Hussmann

UNIVERSITY. OF MASSACHUSETTS AMRE]

©Rick Adrion 2003 (except where noted)

Database

Course
Manager
Q saL

19

